EP0184515B1 - Process for the electrolytic preparation of rare-earth elements or their alloys, and apparatus for carrying out the process - Google Patents

Process for the electrolytic preparation of rare-earth elements or their alloys, and apparatus for carrying out the process Download PDF

Info

Publication number
EP0184515B1
EP0184515B1 EP85402404A EP85402404A EP0184515B1 EP 0184515 B1 EP0184515 B1 EP 0184515B1 EP 85402404 A EP85402404 A EP 85402404A EP 85402404 A EP85402404 A EP 85402404A EP 0184515 B1 EP0184515 B1 EP 0184515B1
Authority
EP
European Patent Office
Prior art keywords
bath
cathode
rare earth
zone
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402404A
Other languages
German (de)
French (fr)
Other versions
EP0184515A1 (en
Inventor
Françoise Seon
Ghislaine Barthole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Priority to AT85402404T priority Critical patent/ATE45597T1/en
Publication of EP0184515A1 publication Critical patent/EP0184515A1/en
Application granted granted Critical
Publication of EP0184515B1 publication Critical patent/EP0184515B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32

Definitions

  • the present invention relates to a process for the electrolytic preparation in baths of molten salts of rare earth metals or their alloys and to a device for carrying out this process.
  • rare earths is understood to mean any element belonging to the group formed by yttrium and the lanthanides except for samarium, europium, ytterbium and thullium.
  • Example 1 describes the electrolysis of a cerium chloride in a bath of LiCI-LiF salts, by means of a molten metal cathode made of a Ce-Cu eutectic alloy, which leads to the enrichment of this in cerium, then the alloy obtained is used as an anode in another electrolysis step, in order to obtain cerium of high purity by cathodic deposition.
  • a first objective of the invention is therefore the preparation of a rare earth metal by electrolytic means under conditions such that the process is applicable industrially.
  • a second objective of the invention is the development of a process for the preparation of rare earth metal alloys which is also industrially transposable.
  • Another objective of the invention is the development of a device allowing in particular the implementation of the above methods.
  • the process according to the invention for the preparation by electrolysis in a bath of molten salts, of a rare earth metal or of an alloy of a rare earth metal with at least one metal chosen from the group of rare earths and transition metals is characterized in that one carries out on solid electrodes, the electrolysis of at least one chloride of a rare earth in a salt bath essentially comprising lithium chloride and lithium fluoride .
  • the invention also relates to a cell for electrolysis in a bath of molten salts which can be used in particular for the implementation of the above processes, characterized in that it comprises a tank whose bottom is extended by a withdrawal zone constituted by a pipe of internal cross section smaller than that of the tank: said pipe being provided with two longitudinally spaced valves delimiting a settling space or comprising a part (11) having a smaller cross section than that of the rest of the zone.
  • the above-mentioned pipe opens at the center of the bottom of the tank.
  • the process of the invention makes it possible to obtain a metal of good purity or an alloy with a high rare earth content with high metal yields which can exceed 80% and this under industrially applicable conditions.
  • the invention relates to the preparation of metals and alloys of rare earth metals. It applies more particularly to the preparation of neodymium metal from neodymium chloride, it in fact offers in the case of neodymium a particularly significant improvement in yield.
  • the invention also relates to the preparation of alloys and in particular the preparation of alloys based on neodymium.
  • the alloys capable of being prepared are the alloys between rare earth metals, for example Nd-La, Nd-Ce, Nd-Pr or else alloys between one or more rare earth metals and a metal chosen from the group of metals of transition.
  • Examples of such metals include iron, cobalt, nickel and chromium.
  • the following alloys can in particular be prepared: Nd-Fe, La-Fe, Nd-La-Fe, Pr- Fe.
  • the bath used for electrolysis also includes the rare earth chloride (s), at least one lithium fluoride and one lithium chloride. In this case, the best yields are generally obtained.
  • the proportion of the rare earth chloride (s) in the bath can vary between 10 and 70% by weight, it is more particularly between 15 and 45%.
  • the proportion by weight between lithium chloride on the one hand and lithium fluoride on the other hand preferably varies between 1.5: 1 and 3: 1.
  • the temperature of the bath during electrolysis is fixed so as to be higher than the melting temperature of the electrolytic bath.
  • this temperature is between 650 ° C and 1100 ° C, especially between 700 and 900 ° C.
  • a graphite anode is generally used.
  • the nature of the cathode can vary depending on the type of product prepared.
  • tungsten cathode When preparing a pure rare earth metal, a tungsten cathode is advantageously used. We can also use a cathode made of the same rare earth metal that we are trying to prepare. Cathodes of the same type will be used to prepare an alloy of rare earth metals with one another.
  • the cathode In the case of the preparation of an alloy of a rare earth metal with a transition metal, the cathode will be a consumable cathode made up of this transition metal or of the same rare earth metal-transition metal alloy as that which one seeks to obtain.
  • the voltage across the electrodes will generally be between 4 and 10 V.
  • the cathodic current densities (Dcc) can vary between 70 A.dm- 2 and 700 A.dm -2 , more particularly between 100 and 250 A.dm -2 .
  • the anodic current densities (Dca) are generally between 50 and 250 A.dm -2 .
  • the metal yield indicated denotes the ratio of the rare earth metal obtained relative to the metal corresponding to the rare earth chloride (TRCI 3 ) introduced.
  • the voltage across the electrodes was between 4.6 and 5.0 V.
  • a 4 hour electrolysis provided, with a metal yield of 40%, 24.1 g of metal whose neodymium, lithium and tungsten contents were 98%, 0.07% and ⁇ 1% respectively.
  • the mass and composition of the electrolysis bath and the temperature were identical to those considered in Example 2 (neodymium chloride containing 7.5% oxychloride and 2.7% water).
  • the intensity of the electrolysis current was lower (13.5 A).
  • the cathode consisting of an iron grid (consumable) and a steel contact, the dcc was 100 A.dm 2 .
  • the value of the dca was 135 A.dm 2 .
  • 50 g of metal were obtained (metal yield of 84%) containing at least 85% of Nd, 12% of iron and 0.7% of lithium.
  • the bath has the following composition: LaC1 3 25%, LiCI 53%, LiF 22%.
  • a cathode constituted by an iron bar is used, the dcc is 165 A.dm -2 , the dca is 215 A.dm- 2 and the interpolar distance is 60 mm.
  • the temperature is 840 ° C.
  • the metal yield is 34%.
  • the bath has the following composition: NdCl 3 15%, LaCl 3 10%, LiCI 53%, LiF 22%.
  • the cathode is an iron bar
  • the dcc is 100 A.dm -2
  • the dca is 142 A.dm 2
  • the interpolar distance is 40 mm.
  • the temperature is 750 ° C.
  • t 1.5 to, an alloy of the following composition is obtained with a metal yield of 74%: Nd 55%, La 37%, Fe 9.2%, Li 0.5%.
  • a bath is used with the following composition: PrC1 3 25%, LiCI 53%, LiF 22%.
  • the cathode is of the same type as in Example 7, the dcc is 100 A.dm- 2 , the dca is 140 A.dm 2 and the interpolar distance is 45 mm.
  • the metal yield is 60%.
  • This example concerns the preparation of neodymium-iron alloys.
  • the composition of the bath was varied.
  • the anode is made of graphite and the cathode is an iron rod.
  • This example concerns the preparation of a gadolinium-iron alloy.
  • a bath of composition is used: Gd C1 3 26%; LiCl 52.3%; LiF 21.7%.
  • the anode is made of graphite, the cathode of iron.
  • the bath temperature is 940 ° C, the dca of 89 A.dm- 2 , the dcc of 250 A.dm -2 , the interpolar distance of 46 mm.
  • t 0.94 to, an alloy of composition Gd 86%, Fe 14% is obtained.
  • the metal yield is 42%.
  • the cell according to the invention is designed so as to allow the metal or the alloy formed to be poured or drawn off through its bottom. It therefore includes in its lower part a withdrawal zone in which the product formed is collected by decantation, this zone having such a configuration or being provided with withdrawal means such that the metal or the alloy can be easily extracted.
  • a cell 1 consisting of an upper part 2, generally a cylindrical tank and a lower part in the form of a pipe 3 constituting the withdrawal zone.
  • This area has an internal cross section smaller than that of the upper part and preferably it is constituted by a pipe extending in the vertical extension of the tank and advantageously having a cylindrical cross section.
  • the pipe 3 preferably opens out at the center of the bottom 4 of the upper part.
  • the upper part of the cell is provided with external heating means of the electric heating type by radiation, contact or induction or else heating by gas or oil burner.
  • FIGS 1 and 2 illustrate two particular embodiments of the withdrawal zone.
  • the withdrawal zone or pipe 3 consists of three distinct zones, a connection zone 5, a central zone 6 and an external zone 7.
  • the central zone 6 is separated from the other two by valves 8 and 9 fully open and remotely controlled. This zone 6 thus delimited forms a settling space.
  • Zones 5 and 6 are each provided with heating means of the electric heating type for example.
  • the diameter and the height of the zone 6 is a function of the racking frequency. Generally, one can provide a height of zone 6 between 2.5 times and 6 times that of zone 5.
  • the draw-off zone 3 in FIG. 2 is also made up of three zones, a connection zone 10, a central zone 11, the particularity of which is to have a cross section smaller than that of the rest of zone 3 and in particular of the zone 10 and an external zone 12.
  • This same zone 12 is itself divided into two parts: a part 13 adjacent to the zone 11 and an external part 14. These two parts are essentially distinguished from each other by the fact that they include independent heating means.
  • Zone 11 is also provided with heating means. It is preferable to use for parts 13 and 14 electrical heating means by contact or by radiation and with regard to part 14 by induction optionally and for zone 11 very flexible heating means, for example of the oil or gas burner type. gas.
  • the dimensions of the racking area are also a function of the racking frequency.
  • the diameters of the zones 10 and 12 are identical and are in a ratio of 2 to 4 approximately with that of the zone 11.
  • the entire electrolysis cell is made of a material capable of withstanding the temperature of the bath and corrosion due to the various products used. Mention may be made, as suitable material, of cast iron, in particular gray cast iron with lamellar or spheroidal graphite. It is also possible to use cast iron alloyed with chromium or nickel or preferably with molybdenum-silicon.
  • a graphite anode is generally used.
  • the nature thereof depends on the type of product prepared as has been seen above: tungsten for a pure rare earth metal, consumable cathode in transition metal or in rare earth metal-metal alloys transition for alloys.
  • a cylindrical cathode is used, placed vertically in the tank, preferably in the center.
  • the withdrawal zone of the cell is constituted by a cylindrical pipe, it is advantageous to have the cathode vertical to this pipe.
  • the cathode is hollow and cylindrical. It is thus possible to provide the cell with rare earth chloride through the hollow central part of the cathode.
  • the anode can consist of one or more vertical cylinders 15 arranged around the cathode 16.
  • Six cylinders 15 can be used, for example.
  • the anode can also be constituted by a circular crown 17 centered around the cathode 16.
  • crown sectors could also be used.
  • the electrodes are advantageously placed in the cell so that the lower end of the cathode is closer to the bottom of the tank than the lower ends of one or more anodes.
  • the cell is continuously supplied with rare earth chloride through a hopper.
  • the chloride is introduced into the central part of this electrode.
  • the metal or alloy formed during the electrolysis falls to the bottom of the tank and is recovered in the withdrawal zone in a cyclic manner.
  • valve 8 being open, the valve 9 closed, the metal or the alloy is allowed to completely fill the zone 6. Once the filling is completed, the valve 8 is closed and the valve 9 so as to allow the product to flow into the external zone 7.
  • zone 12 Part 14 of zone 12 is kept cold, that is to say at a temperature below the melting temperature of the bath and the metal or the alloy is allowed to settle in part 13, the zones 10, 11 and 13 being heated. Zone 11 is then very quickly cooled and a salt plug is formed there. The external part 14 of the zone 12 is then rapidly heated to pour the product collected at 13. The parts 13 and 14 are then allowed to cool to form a new salt plug in the zone 12 and the zone 11 is gradually reheated.
  • the device which has been described above can be applied to any type of electrolysis in a bath of molten salts in which a final product is collected by decantation. Its application is therefore not limited to the baths which have been described more particularly in the present description.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

1. A process for the preparation of a rare earth metal or an alloy of rare earth metal with at least one metal selected from the group consisting of rare earths and transition metals by electrolysis in a bath of molten salts, characterised by effecting on solid electrodes the electrolysis of at least one chloride of a rare earth in a bath of salts essentially comprising lithium chloride and lithium fluoride ; the cathode being a cathode of tungsten or formed by at least one rare earth metal when preparing a rare earth metal or an alloy of rare earth metals, the cathode being formed by a transition metal or an alloy of a rare earth metal and a transition metal when preparing an alloy of at least one rare earth metal and at least one transition metal.

Description

La présente invention concerne un procédé de préparation électrolytique en bains de sels fondus de métaux de terres rares ou de leurs alliages et un dispositif pour la mise en oeuvre de ce procédé.The present invention relates to a process for the electrolytic preparation in baths of molten salts of rare earth metals or their alloys and to a device for carrying out this process.

On entend par terres rares (TR) dans la description qui suit tout élément appartenant au groupe formé par l'yttrium et les lanthanides excepté le samarium, l'europium, l'ytterbium et le thullium.In the following description, the term “rare earths” is understood to mean any element belonging to the group formed by yttrium and the lanthanides except for samarium, europium, ytterbium and thullium.

Actuellement, l'électrolyse en milieu fondu d'un chlorure de terre rare et notamment du néodyme pose des problèmes par les très faibles rendements obtenus. Ceci est dû à une forte solubilité du métal en présence de son chlorure. Un tel procédé est décrit dans l'article de T. KURITA (Denku Kagaku, 1967, 35 (7) p. 496-501). On y fait état d'un rendement qui n'atteint pas 20% de néodyme pur dans le cas d'un bain fondu constitué par du chlorure de néodyme et du chlorure de potassium.Currently, the electrolysis in a molten medium of a rare earth chloride and in particular of neodymium poses problems by the very low yields obtained. This is due to the high solubility of the metal in the presence of its chloride. Such a process is described in the article by T. KURITA (Denku Kagaku, 1967, 35 (7) p. 496-501). There is reported a yield which does not reach 20% of pure neodymium in the case of a molten bath consisting of neodymium chloride and potassium chloride.

On connait selon US 2 961 387, un procédé de raffinage d'un métal de terre rare. L'exemple 1 décrit l'électrolyse d'un chlorure de cérium dans un bain de sels LiCI-LiF, au moyen d'une cathode à métal fondu constituée d'un alliage eutectique Ce-Cu, ce qui conduit à l'enrichissement de celui-ci en cérium, puis l'alliage obtenu est utilisé comme anode dans une autre étape d'électrolyse, afin d'obtenir du cérium de grande pureté par dépôt cathodique.According to US 2,961,387, a process for refining a rare earth metal is known. Example 1 describes the electrolysis of a cerium chloride in a bath of LiCI-LiF salts, by means of a molten metal cathode made of a Ce-Cu eutectic alloy, which leads to the enrichment of this in cerium, then the alloy obtained is used as an anode in another electrolysis step, in order to obtain cerium of high purity by cathodic deposition.

On a également étudié dans l'article «Electrode processes during cerium electrolysis in chloride- fluoride melts» Chemical Abstracts 62, 7384h-7385a (1965) l'électrolyse du cérium 3+ généré à partir d'une anode en cérium par oxydation anodique en présence d'eutectique fondu LiCI-KCI et éventuellement de LiF.We also studied in the article "Electrode processes during cerium electrolysis in chloride-fluoride melts" Chemical Abstracts 62, 7384h-7385a (1965) the electrolysis of cerium 3+ generated from an anode into cerium by anodic oxidation in presence of LiCI-KCI molten eutectic and possibly LiF.

Enfin, on a mentionné dans FR-430 116 l'obtention de cérium (ou métaux similaires) par électrolyse directe du sel de terre rare en présence d'un sel de métaux légers électro positifs par rapport au cérium.Finally, it was mentioned in FR-430 116 obtaining cerium (or similar metals) by direct electrolysis of the rare earth salt in the presence of a light metal salt electro positive with respect to cerium.

Un premier objectif de l'invention est donc la préparation d'un métal de terre rare par voie électrolytique dans des conditions telles que le procédé soit applicable industriellement.A first objective of the invention is therefore the preparation of a rare earth metal by electrolytic means under conditions such that the process is applicable industrially.

Un deuxième objectif de l'invention est la mise au point d'un procédé de préparation d'alliages de métaux de terres rares qui soit lui aussi transposable industriellement.A second objective of the invention is the development of a process for the preparation of rare earth metal alloys which is also industrially transposable.

Enfin un autre objectif de l'invention est l'élaboration d'un dispositif permettant notamment la mise en oeuvre des procédés ci-dessus.Finally, another objective of the invention is the development of a device allowing in particular the implementation of the above methods.

Dans ce but le procédé selon l'invention de préparation par électrolyse en bain de sels fondus, d'un métal de terre rare ou d'un alliage d'un métal de terre rare avec au moins un métal choisi dans le groupe des métaux de terres rares et des métaux de transition est caractérisé en ce que l'on réalise sur électrodes solides, l'électrolyse d'au moins un chlorure d'une terre rare dans un bain de sels comprenant essentiellement du chlorure de lithium et du fluorure de lithium.For this purpose, the process according to the invention for the preparation by electrolysis in a bath of molten salts, of a rare earth metal or of an alloy of a rare earth metal with at least one metal chosen from the group of rare earths and transition metals is characterized in that one carries out on solid electrodes, the electrolysis of at least one chloride of a rare earth in a salt bath essentially comprising lithium chloride and lithium fluoride .

Par ailleurs l'invention concerne aussi une cel-Iule pour électrolyse en bain de sels fondus utilisable notamment pour la mise en oeuvre des procédés ci-dessus, caractérisée en ce qu'elle comporte une cuve dont le fond est prolongé par une zone de soutirage constituée par une conduite de section transversale interne inférieure à celle de la cuve: ladite conduite étant munie de deux vannes longitudinalement espacées délimitant un espace de décantation ou comportant une partie (11) présentant une section transversale plus petite que celle du reste de la zone.Furthermore, the invention also relates to a cell for electrolysis in a bath of molten salts which can be used in particular for the implementation of the above processes, characterized in that it comprises a tank whose bottom is extended by a withdrawal zone constituted by a pipe of internal cross section smaller than that of the tank: said pipe being provided with two longitudinally spaced valves delimiting a settling space or comprising a part (11) having a smaller cross section than that of the rest of the zone.

Selon un mode de réalisation particulier de l'invention la conduite précitée s'ouvre au centre du fond de la cuve.According to a particular embodiment of the invention the above-mentioned pipe opens at the center of the bottom of the tank.

Le procédé de l'invention permet d'obtenir un métal de bonne pureté ou un alliage à haute teneur en terre rare avec des rendements métal élevés pouvant dépasser 80% et ceci dans des conditions applicables industriellement.The process of the invention makes it possible to obtain a metal of good purity or an alloy with a high rare earth content with high metal yields which can exceed 80% and this under industrially applicable conditions.

D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre, et des exemples concrets mais non limitatifs de mise en oeuvre du procédé. On fera aussi référence aux dessins annexés pour lesquels:

  • - la fig. 1 est une vue en coupe schématique d'un premier mode de réalisation d'une cellule d'électrolyse selon l'invention.
  • - la fig. 2 est une vue en coupe schématique d'un second mode de réalisation d'une cellule d'électrolyse selon l'invention.
Other characteristics and advantages of the invention will be better understood on reading the description which follows, and concrete but non-limiting examples of implementation of the method. Reference will also be made to the appended drawings for which:
  • - fig. 1 is a schematic sectional view of a first embodiment of an electrolysis cell according to the invention.
  • - fig. 2 is a schematic sectional view of a second embodiment of an electrolysis cell according to the invention.

Comme indiqué plus haut l'invention concerne la préparation des métaux et alliages de métaux de terres rares. Elle s'applique plus particulièrement à la préparation du néodyme métal à partir du chlorure de néodyme, elle offre en effet dans le cas du néodyme une amélioration particulièrement importante du rendement.As indicated above, the invention relates to the preparation of metals and alloys of rare earth metals. It applies more particularly to the preparation of neodymium metal from neodymium chloride, it in fact offers in the case of neodymium a particularly significant improvement in yield.

L'invention concerne aussi la préparation d'alliages et notamment la préparation d'alliages à base de néodyme.The invention also relates to the preparation of alloys and in particular the preparation of alloys based on neodymium.

Les alliages susceptibles d'être préparés sont les alliages entre métaux de terres rares par exemple Nd-La, Nd-Ce, Nd-Pr ou bien des alliages entre un ou plusieurs métaux de terres rares et un métal choisi dans le groupe des métaux de transition. On peut mettre en oeuvre comme métaux de transition, tous les métaux présentant un point de fusion supérieur à la température du bain de sel fondu au moment de l'électrolyse, température qui par exemple peut varier entre 650 °C et 1100 °C. A titre d'exemple de tels métaux, on peut citer le fer, le cobalt, le nickel et le chrome. C'est ainsi que selon l'invention on peut préparer notamment les alliages suivants: Nd-Fe, La-Fe, Nd-La- Fe, Pr- Fe.The alloys capable of being prepared are the alloys between rare earth metals, for example Nd-La, Nd-Ce, Nd-Pr or else alloys between one or more rare earth metals and a metal chosen from the group of metals of transition. Can be used as transition metals, all metals having a melting point higher than the temperature of the molten salt bath at the time of electrolysis, temperature which for example can vary between 650 ° C and 1100 ° C. Examples of such metals include iron, cobalt, nickel and chromium. Thus, according to the invention, the following alloys can in particular be prepared: Nd-Fe, La-Fe, Nd-La-Fe, Pr- Fe.

Selon l'invention, on part du chlorure de la terre rare que l'on cherche à préparer sous la forme métal. Pour l'obtention d'un alliage comprenant plusieurs métaux de terres rares, on part alors d'un bain comprenant un mélange des chlorures de chacune de ces terres rares. Ces chlorures doivent de préférence présenter une teneur en eau inférieure à 6% en poids.According to the invention, one starts from the chloride of the rare earth which one seeks to prepare in the metal form. To obtain an alloy comprising several rare earth metals, one then starts from a bath comprising a mixture of the chlorides of each of these rare earths. These chlorides should preferably have a water content of less than 6% by weight.

Le bain qui sert à l'électrolyse comprend outre le ou les chlorures de terre rare, au moins un fluorure de lithium et un chlorure de lithium. Dans ce cas, on obtient généralement les meilleurs rendements.The bath used for electrolysis also includes the rare earth chloride (s), at least one lithium fluoride and one lithium chloride. In this case, the best yields are generally obtained.

La proportion du ou des chlorures de terre rare du bain peut varier entre 10 et 70% en poids, elle est plus particulièrement comprise entre 15 et 45%.The proportion of the rare earth chloride (s) in the bath can vary between 10 and 70% by weight, it is more particularly between 15 and 45%.

Par ailleurs, la proportion en poids entre le chlorure de lithium d'une part et le fluorure de lithium d'autre part varie de préférence entre 1,5:1 et 3:1.Furthermore, the proportion by weight between lithium chloride on the one hand and lithium fluoride on the other hand preferably varies between 1.5: 1 and 3: 1.

Il est avantageux enfin d'utiliser un bain présentant une teneur en fluorure de lithium d'au moins 15%.Finally, it is advantageous to use a bath having a lithium fluoride content of at least 15%.

La température du bain durant l'électrolyse est fixée de manière à être supérieure à la température de fusion du bain électrolytique.The temperature of the bath during electrolysis is fixed so as to be higher than the melting temperature of the electrolytic bath.

D'une manière générale, cette température est comprise entre 650 °C et 1100 °C, notamment entre 700 et 900 °C.Generally, this temperature is between 650 ° C and 1100 ° C, especially between 700 and 900 ° C.

Les conditions concernant plus particulièrement l'électrolyse vont être décrites ci-dessous.The conditions relating more particularly to electrolysis will be described below.

En ce qui concerne les électrodes, on utilise généralement une anode en graphite. La nature de la cathode peut varier en fonction du type de produit préparé.As regards the electrodes, a graphite anode is generally used. The nature of the cathode can vary depending on the type of product prepared.

Lors de la préparation d'un métal de terre rare pur, on utilise avantageusement une cathode de tungstène. On pourra aussi utiliser une cathode constituée du même métal de terre rare que l'on cherche à préparer. On utilisera des cathodes du même type pour préparer un alliage de métaux de terres rares entre eux.When preparing a pure rare earth metal, a tungsten cathode is advantageously used. We can also use a cathode made of the same rare earth metal that we are trying to prepare. Cathodes of the same type will be used to prepare an alloy of rare earth metals with one another.

Dans le cas de la préparation d'un alliage d'un métal de terre rare avec un métal de transition, la cathode sera une cathode consommable constituée de ce métal de transition ou du même alliage métal de terre rare-métal de transition que celui que l'on cherche à obtenir.In the case of the preparation of an alloy of a rare earth metal with a transition metal, the cathode will be a consumable cathode made up of this transition metal or of the same rare earth metal-transition metal alloy as that which one seeks to obtain.

La tension aux bornes des électrodes sera généralement comprise entre 4 et 10 V.The voltage across the electrodes will generally be between 4 and 10 V.

Les densités de courant cathodiques (Dcc) peuvent varier entre 70 A.dm-2 et 700 A.dm-2, plus particulièrement entre 100 et 250 A.dm-2. Les densités de courant anodiques (Dca) sont généralement comprises entre 50 et 250 A.dm-2.The cathodic current densities (Dcc) can vary between 70 A.dm- 2 and 700 A.dm -2 , more particularly between 100 and 250 A.dm -2 . The anodic current densities (Dca) are generally between 50 and 250 A.dm -2 .

Par ailleurs, on s'est aperçu qu'il était avantageux de conduire l'électrolyse dans des conditions telles que l'on ait une pression partielle de chlore dans la phase gazeuse qui soit d'au moins 1,01.104 Pa (0,1 atmosphère). Dans un tel cas, il y a une transformation des oxychlorures présents dans le bain selon la réaction TROCl+Cl2 → TRCl3+½ O2; les oxychlorures y ont en effet été apportés comme impuretés avec les chlorures de terres rares. Dans ce cas, on peut utiliser comme produits de départ des chlorures de terres rares pouvant présenter un taux en oxychlorure allant jusqu'à 25% en poids.Furthermore, it has been found that it is advantageous to conduct the electrolysis under conditions such that there is a partial pressure of chlorine in the gas phase which is at least 1.01 × 10 4 Pa (0, 1 atmosphere). In such a case, there is a transformation of the oxychlorides present in the bath according to the reaction TROCl + Cl 2 → TRCl 3 + ½ O 2 ; the oxychlorides have in fact been brought there as impurities with the rare earth chlorides. In this case, it is possible to use as starting materials rare earth chlorides which may have an oxychloride level of up to 25% by weight.

Des exemples vont maintenant être donnés. Les essais décrits ont été effectués dans des creusets d'alumine avec des anodes de graphite de diamètre de 10 à 25 mm; la distance interpolaire était de 65 mm pour les exemples 1 à 4. Pour chaque électrolyse, le métal produit a été récupéré après refroidissement dans le creuset. Les compositions des bains sont données en % en poids.Examples will now be given. The tests described were carried out in alumina crucibles with graphite anodes with a diameter of 10 to 25 mm; the interpolar distance was 65 mm for examples 1 to 4. For each electrolysis, the metal produced was recovered after cooling in the crucible. The bath compositions are given in% by weight.

Le rendement métal indiqué désigne le rapport du métal de terre rare obtenu par rapport au métal correspondant au chlorure de terre rare (TRCI3) introduit.The metal yield indicated denotes the ratio of the rare earth metal obtained relative to the metal corresponding to the rare earth chloride (TRCI 3 ) introduced.

Exemple 1Example 1 - Obtention du néodyme métal.- Obtaining metal neodymium.

On réalise à 850 °C et sur cathode de tungstène (0=4 mm) l'électrolyse de 800 g d'un mélange fondu de composition NdC13:13,3%; LiCI:62,0%; LiF:24,7%. Cette électrolyse a été effectuée avec un courant d'intensité 1=8,5 A, ce qui correspondait à une densité de courant cathodique d.c.c.=690 A.dm-2, et à une densité de courant anodique d.c.a.= à 60 A.dm 2. La tension aux bornes des électrodes était comprise entre 4,6 et 5,0 V. Une électrolyse de 4 heures a fourni, avec un rendement métal de 40%, 24,1 g de métal dont les teneurs en néodyme, lithium et tungstène étaient respectivement 98%, 0,07% et < 1 %.Electrolysis of 800 g of a molten mixture of composition NdC1 3 : 13.3% is carried out at 850 ° C. and on a tungsten cathode (0 = 4 mm); LiCI: 62.0%; LiF: 24.7%. This electrolysis was carried out with a current of intensity 1 = 8.5 A, which corresponded to a cathodic current density dcc = 690 A.dm- 2 , and to an anodic current density dca = at 60 A.dm 2 . The voltage across the electrodes was between 4.6 and 5.0 V. A 4 hour electrolysis provided, with a metal yield of 40%, 24.1 g of metal whose neodymium, lithium and tungsten contents were 98%, 0.07% and <1% respectively.

Exemple 2Example 2 - Obtention d'un alliage néodyme-fer à faible teneur en fer.- Obtaining a neodymium-iron alloy with a low iron content.

800 g de bain de composition très voisine de celle correspondant au mélange électrolysé dans l'exemple 1, NdCl3 13%, LiCI 62%, LiF 25%, ont été utilisés. L'électrolyse a été effectuée à 730 'C sur une cathode constituée de 65 g d'alliage Nd/Fe à 20% de fer (alliage préalablement fabriqué par calciothermie). Le contact électrique a été assuré au moyen d'une tige d'acier. L'intensité du courant d'électrolyse était élevée, 25 A, mais ne correspondait qu'à une faible d.c.c. (11 OA.dm 2); la d.c.a. était de 250A.dm 2. Après une électrolyse de 1 heure 20 minutes, on a récupéré 48 g de métal (rendement métal de 80,4%), contenant au moins 89% de Nd, 8,7% de fer et 0,1% de lithium.800 g of bath with a composition very close to that corresponding to the electrolyzed mixture in Example 1, NdCl 3 13%, LiCI 62%, LiF 25%, were used. The electrolysis was carried out at 730 ° C. on a cathode made up of 65 g of Nd / Fe alloy with 20% iron (alloy previously produced by calciothermy). The electrical contact was ensured by means of a steel rod. The intensity of the electrolysis current was high, 25 A, but corresponded only to a low dcc (11 OA.dm 2 ); the dca was 250A.dm 2 . After an electrolysis of 1 hour 20 minutes, 48 g of metal were recovered (metal yield of 80.4%), containing at least 89% of Nd, 8.7% of iron and 0.1% of lithium.

Exemple 3Example 3 - Obtention d'un alliage néodyme-fer.- Obtaining a neodymium-iron alloy.

La masse et la composition du bain d'électrolyse ainsi que la température étaient identiques à celles considérées dans l'exemple 2 (le chlorure de néodyme contenant 7,5% d'oxychlorure et 2,7% d'eau). L'intensité du courant d'électrolyse était plus faible (13,5 A). A la cathode, constituée par une grille en fer (consommable) et un contact en acier, la d.c.c. était de 100 A.dm 2. La d.c.a. avait pour valeur 135 A.dm 2. Après 2 heures et 30 minutes d'électrolyse, on a obtenu 50 g de métal (rendement métal de 84%) contenant au moins 85% de Nd, 12% de fer et 0,7% de lithium.The mass and composition of the electrolysis bath and the temperature were identical to those considered in Example 2 (neodymium chloride containing 7.5% oxychloride and 2.7% water). The intensity of the electrolysis current was lower (13.5 A). At the cathode, consisting of an iron grid (consumable) and a steel contact, the dcc was 100 A.dm 2 . The value of the dca was 135 A.dm 2 . After 2 hours and 30 minutes of electrolysis, 50 g of metal were obtained (metal yield of 84%) containing at least 85% of Nd, 12% of iron and 0.7% of lithium.

Dans les exemples qui suivent (4 à 8) la durée d'électrolyse est donnée par rapport à to qui est le temps théoriquement nécessaire à la réduction de la totalité du TRC13 si le rendement métal était de 100%.In the examples which follow (4 to 8) the duration of electrolysis is given with respect to which is the time theoretically necessary for the reduction of the totality of TRC1 3 if the metal yield was 100%.

Exemple 4Example 4 - Obtention de lanthane pur.- Obtaining pure lanthanum.

On part d'un bain de composition suivante: LaCl3 13%, LiCI 62%, LiF 25%. On utilise une cathode constituée par une barre de tungstène, la d.c.c. est de 690 A.dm-2, la d.c.a. de 60 Adm-2. La distance interpolaire est de 65 mm. La température est de 800 °C. Après t=to, on obtient un métal dont la teneur en lanthane est d'au moins 95%, le rendement métal est de 33%.We start with a bath of the following composition: LaCl 3 13%, LiCI 62%, LiF 25%. A cathode constituted by a tungsten bar is used, the dcc is 690 A.dm -2 , the dca is 60 Adm -2 . The interpolar distance is 65 mm. The temperature is 800 ° C. After t = to, a metal is obtained whose lanthanum content is at least 95%, the metal yield is 33%.

Exemple 5Example 5 - Obtention d'un alliage lanthane-fer.- Obtaining a lanthanum-iron alloy.

Le bain a la composition suivante: LaC13 25%, LiCI 53%, LiF 22%. On utilise une cathode constituée par une barre de fer, la d.c.c. est de 165 A.dm-2, la d.c.a. de 215 A.dm-2 et la distance interpolaire de 60 mm. La température est de 840 °C. On obtient après t=1,5 to un alliage comprenant 92% de La et 7% de Fe. Le rendement métal est de 34%.The bath has the following composition: LaC1 3 25%, LiCI 53%, LiF 22%. A cathode constituted by an iron bar is used, the dcc is 165 A.dm -2 , the dca is 215 A.dm- 2 and the interpolar distance is 60 mm. The temperature is 840 ° C. An alloy comprising 92% of La and 7% of Fe is obtained after t = 1.5 to an alloy. The metal yield is 34%.

Exemple 6Example 6 - Obtention d'un alliage néodyme-lanthane.- Obtaining a neodymium-lanthanum alloy.

On part d'un bain ayant la composition suivante: NdCl3 26%, LaCl3 9%, LiCI 46%, LiF 19%. La cathode est une barre de tungstène, la d.c.c. est de 276 Adm-2, la d.c.a. de 235 A.dm-2 et la distance interpolaire de 63 mm. La température est de 860 °C. Après une durée d'électrolyse de t=0,7 to, on obtient avec un rendement métal de 57%, un alliage de composition: Nd 81 %, La 18%, avec une teneur en lithium de 0,1%.We start with a bath having the following composition: NdCl 3 26%, LaCl 3 9%, LiCI 46%, LiF 19%. The cathode is a tungsten bar, the dcc is 276 Adm -2 , the dca is 235 A.dm- 2 and the interpolar distance is 63 mm. The temperature is 860 ° C. After an electrolysis time of t = 0.7 to, we obtain with a metal yield of 57%, an alloy of composition: Nd 81%, La 18%, with a lithium content of 0.1%.

Exemple 7Example 7 - Obtention d'un alliage néodyme, lanthane, fer.- Obtaining a neodymium, lanthanum, iron alloy.

Le bain présente la composition suivante: NdCl3 15%, LaCl3 10%, LiCI 53%, LiF 22%.The bath has the following composition: NdCl 3 15%, LaCl 3 10%, LiCI 53%, LiF 22%.

La cathode est une barre de fer, la d.c.c. est de 100 A.dm-2, la d.c.a. de 142 A.dm 2 et la distance interpolaire de 40 mm. La température est de 750 °C. Après t=1,5 to, on obtient avec un rendement métal de 74%, un alliage de composition suivante: Nd 55%, La 37%, Fe 9,2%, Li 0,5%.The cathode is an iron bar, the dcc is 100 A.dm -2 , the dca is 142 A.dm 2 and the interpolar distance is 40 mm. The temperature is 750 ° C. After t = 1.5 to, an alloy of the following composition is obtained with a metal yield of 74%: Nd 55%, La 37%, Fe 9.2%, Li 0.5%.

Exemple 8Example 8 - Obtention d'un alliage praséodyme-fer.- Obtaining a praseodymium-iron alloy.

On utilise un bain avec la composition qui suit: PrC13 25%, LiCI 53%, LiF 22%. La cathode est du même type que dans l'exemple 7, la d.c.c. est de 100 A.dm-2, la d.c.a. de 140 A.dm 2 et la distance interpolaire de 45 mm. La température du bain est de 750 °C. Après t=1,5 to, on obtient un alliage de composition Pr 86%, Fe 12%, Li 0,5%. Le rendement métal est de 60%.A bath is used with the following composition: PrC1 3 25%, LiCI 53%, LiF 22%. The cathode is of the same type as in Example 7, the dcc is 100 A.dm- 2 , the dca is 140 A.dm 2 and the interpolar distance is 45 mm. The bath temperature is 750 ° C. After t = 1.5 to, an alloy of composition Pr 86%, Fe 12%, Li 0.5% is obtained. The metal yield is 60%.

Exemple 9Example 9

Cet exemple concerne la préparation d'alliages néodyme-fer. On a fait varier la composition du bain. Dans tous les cas, l'anode est en graphite et la cathode est une tige de fer.This example concerns the preparation of neodymium-iron alloys. The composition of the bath was varied. In all cases, the anode is made of graphite and the cathode is an iron rod.

Les resultats sont reportés dans le tableau ci-dessous.

  • T désigne la température du bain en °C
  • t désigne la durée de l'électrolyse par rapport à to défini ci-dessus
  • Di désigne la distance interpolaire en mm
  • R désigne le rendement métal tel que défini ci-dessus.
    Figure imgb0001
The results are reported in the table below.
  • T denotes the bath temperature in ° C
  • t denotes the duration of the electrolysis with respect to to defined above
  • Di designates the interpolar distance in mm
  • R denotes the metal yield as defined above.
    Figure imgb0001

Exemple 10Example 10

Cet exemple concerne la préparation d'un alliage gadolinium-fer.This example concerns the preparation of a gadolinium-iron alloy.

On utilise un bain de composition: Gd C13 26%; LiCl 52,3%; LiF 21,7%.A bath of composition is used: Gd C1 3 26%; LiCl 52.3%; LiF 21.7%.

L'anode est en graphite, la cathode en fer. La température du bain est de 940 °C, la d.c.a. de 89 A.dm-2, la d.c.c. de 250 A.dm-2, la distance interpolaire de 46 mm. Après t=0,94 to, on obtient un alliage de composition Gd 86%, Fe 14%. Le rendement métal est de 42%.The anode is made of graphite, the cathode of iron. The bath temperature is 940 ° C, the dca of 89 A.dm- 2 , the dcc of 250 A.dm -2 , the interpolar distance of 46 mm. After t = 0.94 to, an alloy of composition Gd 86%, Fe 14% is obtained. The metal yield is 42%.

Le dispositif pour la mise en oeuvre du procédé va maintenant être décrit.The device for implementing the method will now be described.

La cellule selon l'invention est conçue de manière à permettre la coulée ou le soutirage par son fond du métal ou de l'alliage formé. Elle comporte donc dans sa partie basse une zone de soutirage dans laquelle on recueille par décantation le produit formé, cette zone ayant une configuration telle ou étant munie de moyens de soutirage tels que l'on puisse extraire facilement le métal ou l'alliage.The cell according to the invention is designed so as to allow the metal or the alloy formed to be poured or drawn off through its bottom. It therefore includes in its lower part a withdrawal zone in which the product formed is collected by decantation, this zone having such a configuration or being provided with withdrawal means such that the metal or the alloy can be easily extracted.

En se référant aux figures, on peut voir une telle cellule 1, constituée d'une partie haute 2, généralement une cuve cylindrique et d'une partie basse se présentant sous la forme d'une conduite 3 constituant la zone de soutirage. Cette zone présente une section transversale interne inférieure à celle de la partie haute et de préférence elle est constituée par une conduite s'étendant dans le prolongement vertical de la cuve et présentant avantageusement une section transversale cylindrique. La conduite 3 débouche de préférence au centre du fond 4 de la partie haute.Referring to the figures, one can see such a cell 1, consisting of an upper part 2, generally a cylindrical tank and a lower part in the form of a pipe 3 constituting the withdrawal zone. This area has an internal cross section smaller than that of the upper part and preferably it is constituted by a pipe extending in the vertical extension of the tank and advantageously having a cylindrical cross section. The pipe 3 preferably opens out at the center of the bottom 4 of the upper part.

Pour faciliter la coulée du produit on peut prévoir un fond 4 légèrement incliné vers le bas, par exemple de l'ordre de 10°.To facilitate the pouring of the product, it is possible to provide a bottom 4 slightly inclined downwards, for example of the order of 10 °.

La partie haute de la cellule est munie de moyens de chauffage extérieur du type chauffage électrique par rayonnement, contact ou induction ou bien chauffage par brûleur à gaz ou à fuel.The upper part of the cell is provided with external heating means of the electric heating type by radiation, contact or induction or else heating by gas or oil burner.

Les figures 1 et 2 illustrent deux modes de réalisations particuliers de la zone de soutirage.Figures 1 and 2 illustrate two particular embodiments of the withdrawal zone.

Sur la figure 1, la zone ou conduite de soutirage 3 est constituée de trois zones distinctes, une zone de raccordement 5, une zone centrale 6 et une zone externe 7. La zone centrale 6 est séparée des deux autres par des vannes 8 et 9 à ouverture totale et commandées à distance. Cette zone 6 ainsi délimitée forme un espace de décantation. Les zones 5 et 6 sont chacune munies de moyens de chauffage du type chauffage électrique par exemple.In FIG. 1, the withdrawal zone or pipe 3 consists of three distinct zones, a connection zone 5, a central zone 6 and an external zone 7. The central zone 6 is separated from the other two by valves 8 and 9 fully open and remotely controlled. This zone 6 thus delimited forms a settling space. Zones 5 and 6 are each provided with heating means of the electric heating type for example.

En ce qui concerne les dimensions, on peut noter que le diamètre et la hauteur de la zone 6 est fonction de la fréquence de soutirage. Généralement, on peut prévoir une hauteur de la zone 6 compris entre 2,5 fois et 6 fois celle de la zone 5.With regard to the dimensions, it can be noted that the diameter and the height of the zone 6 is a function of the racking frequency. Generally, one can provide a height of zone 6 between 2.5 times and 6 times that of zone 5.

La zone de soutirage 3 de la figure 2 est elle aussi constituée de trois zones, une zone de raccordement 10, une zone centrale 11 dont la particularité est de présenter une section transversale inférieure à celle du reste de la zone 3 et notamment de la zone 10 et une zone externe 12. Cette même zone 12 est elle-même divisée en deux parties: une partie 13 adjacente à la zone 11 et une partie externe 14. Ces deux parties se distinguent essentiellement l'une de l'autre par le fait qu'elles comportent des moyens de chauffage indépendants.The draw-off zone 3 in FIG. 2 is also made up of three zones, a connection zone 10, a central zone 11, the particularity of which is to have a cross section smaller than that of the rest of zone 3 and in particular of the zone 10 and an external zone 12. This same zone 12 is itself divided into two parts: a part 13 adjacent to the zone 11 and an external part 14. These two parts are essentially distinguished from each other by the fact that they include independent heating means.

La zone 11 est munie elle aussi de moyens de chauffage. On préfère utiliser pour les parties 13 et 14 des moyens de chauffage électriques par contact ou par rayonnement et en ce qui concerne la partie 14 par induction éventuellement et pour la zone 11 des moyens de chauffage très souples par exemple du type brûleur à fuel ou à gaz.Zone 11 is also provided with heating means. It is preferable to use for parts 13 and 14 electrical heating means by contact or by radiation and with regard to part 14 by induction optionally and for zone 11 very flexible heating means, for example of the oil or gas burner type. gas.

Les dimensions de la zone de soutirage sont là aussi fonction de la fréquence de soutirage. De préférence, les diamètres des zones 10 et 12 sont identiques et sont dans un rapport de 2 à 4 environ avec celui de la zone 11. En ce qui concerne les hauteurs, on peut prévoir des hauteurs sensiblement voisines pour les zones 10 et 11 et la partie 14, celle de la partie 3 étant 3 à 5 fois plus importante.The dimensions of the racking area are also a function of the racking frequency. Preferably, the diameters of the zones 10 and 12 are identical and are in a ratio of 2 to 4 approximately with that of the zone 11. With regard to the heights, it is possible to provide substantially similar heights for the zones 10 and 11 and part 14, that of part 3 being 3 to 5 times larger.

L'ensemble de la cellule d'électrolyse est réalisé en un matériau susceptible de résister à la température du bain et à la corrosion due aux différents produits mis en oeuvre. On peut citer comme matériau convenable la fonte, notamment la fonte grise à graphite lamellaire ou sphéroïdal. On peut aussi utiliser de la fonte alliée au chrome ou au nickel ou de préférence au molybdène-silicium.The entire electrolysis cell is made of a material capable of withstanding the temperature of the bath and corrosion due to the various products used. Mention may be made, as suitable material, of cast iron, in particular gray cast iron with lamellar or spheroidal graphite. It is also possible to use cast iron alloyed with chromium or nickel or preferably with molybdenum-silicon.

Différentes formes et disposition d'électrode peuvent être utilisées dans le cadre de la cellule de l'invention.Different shapes and arrangement of electrodes can be used within the scope of the cell of the invention.

On utilise généralement une anode en graphite. En ce qui concerne la cathode, la nature de celle-ci dépend du type de produit préparé comme cela a été vu plus haut: tungstène pour un métal de terre rare pure, cathode consommable en métal de transition ou en alliages métal terre rare-métal de transition pour les alliages.A graphite anode is generally used. With regard to the cathode, the nature thereof depends on the type of product prepared as has been seen above: tungsten for a pure rare earth metal, consumable cathode in transition metal or in rare earth metal-metal alloys transition for alloys.

Généralement, on utilise une cathode cylindrique, placée verticalement dans la cuve, de préférence au centre. En particulier dans le cas où la zone de soutirage de la cellule est constituée par une conduite cylindrique, il est avantageux de disposer la cathode à la verticale de cette conduite.Generally, a cylindrical cathode is used, placed vertically in the tank, preferably in the center. In particular in the case where the withdrawal zone of the cell is constituted by a cylindrical pipe, it is advantageous to have the cathode vertical to this pipe.

Selon un mode de réalisation préféré de l'invention, la cathode est creuse et cylindrique. On peut prévoir ainsi l'alimentation de la cellule en chlorure de terre rare par la partie centrale creuse de la cathode.According to a preferred embodiment of the invention, the cathode is hollow and cylindrical. It is thus possible to provide the cell with rare earth chloride through the hollow central part of the cathode.

Enfin il est aussi possible d'utiliser une cathode horizontale.Finally it is also possible to use a horizontal cathode.

Différentes formes d'anodes peuvent être utilisées:Different forms of anodes can be used:

Comme cela apparaît sur la figure 1, l'anode peut être constituée par un ou plusieurs cylindres 15 verticaux disposés autour de la cathode 16. On peut utiliser par exemple six cylindres 15.As shown in FIG. 1, the anode can consist of one or more vertical cylinders 15 arranged around the cathode 16. Six cylinders 15 can be used, for example.

Selon le mode de réalisation de la figure 2, l'anode peut être aussi constituée par une couronne circulaire 17 centrée autour de la cathode 16. Au lieu d'une couronne on pourrait utiliser aussi des secteurs de couronne.According to the embodiment of FIG. 2, the anode can also be constituted by a circular crown 17 centered around the cathode 16. Instead of a crown, crown sectors could also be used.

Enfin, il est à noter que l'on dispose avantageusement dans la cellule les électrodes de manière que l'extrémité inférieure de la cathode soit plus proche du fond de la cuve que les extrémités inférieures de ou des anodes.Finally, it should be noted that the electrodes are advantageously placed in the cell so that the lower end of the cathode is closer to the bottom of the tank than the lower ends of one or more anodes.

Le fonctionnement des dispositifs décrits ci-dessus va maintenant être donné.The operation of the devices described above will now be given.

On alimente en continu la cellule en chlorure de terre rare par une trémie. Dans le cas d'une cathode creuse du type décrit plus haut, le chlorure est introduit dans la partie centrale de cette électrode.The cell is continuously supplied with rare earth chloride through a hopper. In the case of a hollow cathode of the type described above, the chloride is introduced into the central part of this electrode.

Le métal ou l'alliage formé pendant l'électrolyse tombe au fond de la cuve et est récupéré dans la zone de soutirage d'une manière cyclique.The metal or alloy formed during the electrolysis falls to the bottom of the tank and is recovered in the withdrawal zone in a cyclic manner.

Dans le cas du dispositif de la figure 1, la vanne 8 étant ouverte, la vanne 9 fermée, on laisse le métal ou l'alliage remplir totalement la zone 6. Une fois le remplissage terminé, on ferme la vanne 8 et on ouvre la vanne 9 de manière à permettre ainsi l'écoulement du produit dans la zone externe 7.In the case of the device of FIG. 1, the valve 8 being open, the valve 9 closed, the metal or the alloy is allowed to completely fill the zone 6. Once the filling is completed, the valve 8 is closed and the valve 9 so as to allow the product to flow into the external zone 7.

Avec le dispositif de la figure 2, on procède de la manière suivante. La partie 14 de la zone 12 est maintenue froide, c'est-à-dire à une température inférieure à la température de fusion du bain et on laisse décanter le métal ou l'alliage dans la partie 13, les zones 10, 11 et 13 étant chauffées. On refroidit ensuite très rapidement la zone 11 et il s'y forme un bouchon de sel. On chauffe ensuite rapidement la partie externe 14 de la zone 12 pour couler le produit recueilli en 13. On laisse ensuite refroidir les parties 13 et 14 pour former un nouveau bouchon de sel dans la zone 12 et on réchauffe progressivement la zone 11.With the device of Figure 2, we proceed as follows. Part 14 of zone 12 is kept cold, that is to say at a temperature below the melting temperature of the bath and the metal or the alloy is allowed to settle in part 13, the zones 10, 11 and 13 being heated. Zone 11 is then very quickly cooled and a salt plug is formed there. The external part 14 of the zone 12 is then rapidly heated to pour the product collected at 13. The parts 13 and 14 are then allowed to cool to form a new salt plug in the zone 12 and the zone 11 is gradually reheated.

Naturellement, le dispositif qui a été décrit ci-dessus peut s'appliquer à tout type d'électrolyse en bain de sels fondus dans lequel on recueille par décantation un produit final. Son application ne se limite donc pas aux bains qui ont été décrits plus particulièrement dans la présente description.Naturally, the device which has been described above can be applied to any type of electrolysis in a bath of molten salts in which a final product is collected by decantation. Its application is therefore not limited to the baths which have been described more particularly in the present description.

Bien entendu, l'invention n'est nullement limitée aux modes de réalisation décrits qui n'ont été donnés qu'à titre d'exemples. En particulier, elle comprend tous les moyens constituant des équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont mises en ceuvre dans le cadre de la protection revendiquée.Of course, the invention is in no way limited to the embodiments described which have been given only by way of examples. In particular, it includes all the means constituting technical equivalents of the means described as well as their combinations if these are implemented as part of the claimed protection.

Claims (23)

1. A process for the preparation of a rare earth metal or an alloy of rare earth metal with at least one metal selected from the group consisting of rare earths and transition metals by electrolysis in a bath of molten salts, characterised by effecting on solid electrodes the electrolysis of at least one chloride of a rare earth in a bath of salts essentially comprising lithium chloride and lithium fluoride; the cathode being a cathode of tungsten or formed by at least one rare earth metal when preparing a rare earth metal or an alloy of rare earth metals, the cathode being formed by a transition metal or an alloy of a rare earth metal and a transition metal when preparing an alloy of at least one rare earth metal and at least one transition metal.
2. A process according to claim 1 characterised in that the anode used is a graphite anode.
3. A process accordinq to one of claims 1 and 2 characterised by using a bath comprising neodymium chloride.
4. A process according to one of claims 1 and 2 characterised by using a bath comprising a neodymium chloride and characterised in that the transition metal selected is iron.
5. A process according to claim 1 characterised by effecting on an anode of graphite and on a cathode of tungsten or of neodymium, electrolysis of a bath comprising neodymium chloride, lithium chloride and lithium fluoride.
6. A process according to claim 1 characterised by effecting on an anode of graphite and a con- summable iron cathode, the electrolysis of a bath comprising neodymium chloride, lithium chloride and lithium fluoride.
7. A process according to one of the preceding claims characterised b'/ using a bath in which the proportion by weight as between the lithium chloride and the lithium fluoride varies between 1.5:1 and 3:1.
8. A process according to one of the preceding claims characterised by using a bath having a lithium fluoride content of at least 15%.
9. A process according to one of the preceding claims characterised by using a bath having a content of one or more rare earth chlorides of between 10 and 70% by weight.
10. A process according to one of the preceding claims characterised by effecting the electrolysis operation at a temperature of between 650 °C and 1100 °C.
11. A process according to any one of the preceding claims characterised by effecting electrolysis under conditions such that the partial chlorine pressure is at least 1.01.104Pa (0.1 atmosphere).
12. A cell for electrolysis in a bath of molten salts, which can be used for carrying out the process according to any one of the preceding claims, comprising a tank provided with heating means, and solid electrodes disposed in said tank, characterised in that the bottom of the tank is prolonged vertically by a drain zone formed by a conduit of cross-section that is smaller than that of the tank, and that the anode is formed by a ring which is centered around the cathode.
13. A cell for electrolysis in a bath of molten salts, which can be used for carrying out the process according to any one of the preceding claims, comprising a tank provided with heating means, and solid electrodes disposed in said tank, characterised in that the bottom of the tank is prolonged vertically by a drain zone formed by a conduit of cross-section that is smaller than that of the tank, which zone opens at the bottom of the tank and forms a settlement space for the molten bath collected in said zone.
14. A cell according to one of claims 12 and 13 characterised in that said conduit opens at the centre of the bottom of the tank.
15. A cell according to one of claims 12 to 14 characterised in that it is provided with a cylindrical cathode.
16. A cell according to claim 15 characterised in that said cathode is hollow.
17. A cell according to one of claims 13 to 16 characterised in that the anode is formed by one or more cylinders disposed around the cathode.
18. A cell according to one of claims 13 to 16 characterised in that the anode is formed by a ring centered around the cathode.
19. A cell according to one of claims 12 to 18 characterised in that the cathode is disposed in vertical alignment with said conduit.
20. A cell according to one of claims 12 to 19 characterised in that said drain conduit is provided with two longitudinally spaced valves defining a settlement space.
21. A cell according to claim 20 characterised in that the connecting zone (5) and the central settlement zone (6) are provided with heating means.
22. A cell according to one of claims 12 to 21 characterised in that the drain zone is formed by a conduit of internal cross-section that is smaller than that of the tank and comprising a part (11) which is of smaller cross-section than that of the remainder of the zone.
23. A cell according to claim 22 characterised in that the central zone (11) and the parts (13) and (14) of the external zone are provided with heating means.
EP85402404A 1984-12-07 1985-12-04 Process for the electrolytic preparation of rare-earth elements or their alloys, and apparatus for carrying out the process Expired EP0184515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85402404T ATE45597T1 (en) 1984-12-07 1985-12-04 PROCESS FOR THE ELECTROLYTIC PRODUCTION OF RARE EARTH OR THEIR ALLOYS AND DEVICE FOR CARRYING OUT THIS PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8418700A FR2574434B1 (en) 1984-12-07 1984-12-07 PROCESS FOR THE ELECTROLYTIC PREPARATION OF RARE EARTHS OR THEIR ALLOYS AND DEVICE FOR CARRYING OUT SAID METHOD
FR8418700 1984-12-07

Publications (2)

Publication Number Publication Date
EP0184515A1 EP0184515A1 (en) 1986-06-11
EP0184515B1 true EP0184515B1 (en) 1989-08-16

Family

ID=9310347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402404A Expired EP0184515B1 (en) 1984-12-07 1985-12-04 Process for the electrolytic preparation of rare-earth elements or their alloys, and apparatus for carrying out the process

Country Status (13)

Country Link
EP (1) EP0184515B1 (en)
JP (1) JPS61159593A (en)
KR (1) KR910009402B1 (en)
CN (1) CN85108786A (en)
AT (1) ATE45597T1 (en)
AU (1) AU591080B2 (en)
CA (2) CA1276585C (en)
DE (1) DE3572371D1 (en)
ES (1) ES8705050A1 (en)
FR (1) FR2574434B1 (en)
MY (1) MY102430A (en)
NO (1) NO172989C (en)
ZA (1) ZA859360B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966661A (en) * 1986-12-23 1990-10-30 Showa Denko Kabushiki Kaisha Process for preparation of neodymium or neodymium alloy
WO1993013247A1 (en) * 1986-12-23 1993-07-08 Hideo Tamamura Process for producing neodymium or alloy thereof
JPH0243391A (en) * 1988-08-01 1990-02-13 Japan Metals & Chem Co Ltd Production of nd-fe mother alloy
FR2661425B1 (en) * 1990-04-27 1992-12-04 Pechiney Recherche PROCESS FOR THE ELECTROLYTIC PREPARATION IN THE MEDIUM OF MOLTEN FLUORIDES, LANTHANE OR ITS ALLOYS WITH NICKEL.
DE112010004425T5 (en) * 2009-05-26 2012-11-29 Sumitomo Chemical Co., Ltd. Process for the preparation of purified metal or semi-metal
CN103572329B (en) * 2012-07-31 2016-01-20 有研稀土新材料股份有限公司 A kind of fusion electrolysis prepares the method for rare earth alloys
CN113430579B (en) * 2016-12-16 2023-07-14 包头稀土研究院 Preparation method of lanthanum-iron alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR430116A (en) * 1911-04-01 1911-10-09 Anton Kratky Process for the preparation of cerium and similar metals and their alloys
US2961387A (en) * 1957-09-18 1960-11-22 Timax Corp Electrolysis of rare-earth elements and yttrium
US3729397A (en) * 1970-09-25 1973-04-24 Molybdenum Corp Method for the recovery of rare earth metal alloys
JPS4843774A (en) * 1971-10-07 1973-06-23
US4139427A (en) * 1977-09-09 1979-02-13 Th. Goldschmidt Ag Europium chloride enrichment process

Also Published As

Publication number Publication date
FR2574434A1 (en) 1986-06-13
KR910009402B1 (en) 1991-11-15
JPH0440435B2 (en) 1992-07-02
KR860005054A (en) 1986-07-16
FR2574434B1 (en) 1989-04-21
AU591080B2 (en) 1989-11-30
JPS61159593A (en) 1986-07-19
NO172989C (en) 1993-10-06
ES8705050A1 (en) 1987-04-16
NO854899L (en) 1986-06-09
NO172989B (en) 1993-06-28
DE3572371D1 (en) 1989-09-21
CN85108786A (en) 1986-11-05
CA1276585C (en) 1990-11-20
MY102430A (en) 1992-06-30
CA1318882C (en) 1993-06-08
EP0184515A1 (en) 1986-06-11
AU5085085A (en) 1986-06-12
ZA859360B (en) 1986-08-27
ES549652A0 (en) 1987-04-16
ATE45597T1 (en) 1989-09-15

Similar Documents

Publication Publication Date Title
US3729397A (en) Method for the recovery of rare earth metal alloys
US5024737A (en) Process for producing a reactive metal-magnesium alloy
US8460535B2 (en) Primary production of elements
EP0570308B1 (en) Alloys of metals with high melting points, suitable for transformation into homogeneous and pure ingost, and preparation process of these alloys
WO2003046258A3 (en) A method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state
CH643000A5 (en) PROCESS FOR PRODUCING EXTREMELY PURE ALUMINUM.
JP2005199354A (en) Apparatus for production or refining of metal, and related process
EP0184515B1 (en) Process for the electrolytic preparation of rare-earth elements or their alloys, and apparatus for carrying out the process
CA1251160A (en) Process for the production of a metal by way of halogen electrolysis in a molten salt bath, including double simultaneous and continuous deposition, and devices used in said process
ZHANG et al. Preparation of Mg–Li—La alloys by electrolysis in molten salt
JPH10176296A (en) Electrolytic formation of neodymium without being companied with perfluorocarbon compound in waste gas
FR2559473A1 (en) Process for the production of purified silicon
CA2539697C (en) Device and method for connecting inert anodes for the production of aluminium by fused-salt electrolysis
González et al. Transition between two dendritic growth mechanisms in electrodeposition
CA1202596A (en) Continuous process for the preparation of lithium through electrolysis of its chloride in a mix of melted salts, and apparatus used in said process
CH451637A (en) Process for the deposition of refractory metals by electrolytic means
WO2012143719A2 (en) Methods and apparatus for the production of metal
EP0394154B1 (en) Apparatus for the continuous production of a multivalent metal by electrolysis of a halide thereof dissolved in a molten bath
EP4321652A1 (en) Device for extracting a metal deposited electrolytically on a cathode
RU2326469C1 (en) Method of alloy preparation on basis of magnesium for anodes of water activated chemical sources of current
Kurata et al. Sequential process test for metal pyro-processing using U, Pu, and Am
JPH05295583A (en) Manufacture of samarium metal or samarium alloy
Takenaka et al. Anodic Dissolution and Chemical Reduction of Noble Metals in LiCl-KCl Melt
FR2797891A1 (en) Production of calcium and its alloys involves dissolving calcium carbide in anhydrous calcium chloride, contacting obtained solution with molten metal phase, and decomposing formed alloy by physical or electrochemical refining
Dimitrov The electrolytic deposition of carbon from molten Li 2 CO 3

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860624

17Q First examination report despatched

Effective date: 19870429

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHONE-POULENC CHIMIE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 45597

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3572371

Country of ref document: DE

Date of ref document: 19890921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941202

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941208

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941229

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950101

Year of fee payment: 10

EAL Se: european patent in force in sweden

Ref document number: 85402404.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951204

Ref country code: GB

Effective date: 19951204

Ref country code: AT

Effective date: 19951204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

Ref country code: BE

Effective date: 19951231

BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST