EP0179555B1 - Photographic elements sensitive to near infrared - Google Patents
Photographic elements sensitive to near infrared Download PDFInfo
- Publication number
- EP0179555B1 EP0179555B1 EP85306175A EP85306175A EP0179555B1 EP 0179555 B1 EP0179555 B1 EP 0179555B1 EP 85306175 A EP85306175 A EP 85306175A EP 85306175 A EP85306175 A EP 85306175A EP 0179555 B1 EP0179555 B1 EP 0179555B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- particles
- photographic element
- near infrared
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 76
- 239000000839 emulsion Substances 0.000 claims description 62
- 229910052709 silver Inorganic materials 0.000 claims description 31
- 239000004332 silver Substances 0.000 claims description 31
- -1 silver halide Chemical class 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000007788 roughening Methods 0.000 claims description 24
- 239000011230 binding agent Substances 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000005855 radiation Effects 0.000 claims description 14
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 13
- 230000003746 surface roughness Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 239000010410 layer Substances 0.000 description 99
- 239000000975 dye Substances 0.000 description 23
- 238000000576 coating method Methods 0.000 description 21
- 229920000159 gelatin Polymers 0.000 description 18
- 235000019322 gelatine Nutrition 0.000 description 18
- 108010010803 Gelatin Proteins 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 17
- 239000008273 gelatin Substances 0.000 description 17
- 235000011852 gelatine desserts Nutrition 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 14
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 12
- 229920000728 polyester Polymers 0.000 description 12
- 238000011160 research Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000006224 matting agent Substances 0.000 description 11
- CODNYICXDISAEA-UHFFFAOYSA-N bromine monochloride Chemical compound BrCl CODNYICXDISAEA-UHFFFAOYSA-N 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- AOMUHOFOVNGZAN-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)dodecanamide Chemical compound CCCCCCCCCCCC(=O)N(CCO)CCO AOMUHOFOVNGZAN-UHFFFAOYSA-N 0.000 description 6
- 239000004848 polyfunctional curative Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 239000000080 wetting agent Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000001235 sensitizing effect Effects 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 229920002554 vinyl polymer Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- CBEQRNSPHCCXSH-UHFFFAOYSA-N iodine monobromide Chemical compound IBr CBEQRNSPHCCXSH-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- FZQDYEPVHITTBB-UHFFFAOYSA-N Cl[Br][I][Ag] Chemical compound Cl[Br][I][Ag] FZQDYEPVHITTBB-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- BIRGHMODZNQTSI-UHFFFAOYSA-N IBr.[Ag].ClBr.[Ag] Chemical compound IBr.[Ag].ClBr.[Ag] BIRGHMODZNQTSI-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- UIZLQMLDSWKZGC-UHFFFAOYSA-N cadmium helium Chemical compound [He].[Cd] UIZLQMLDSWKZGC-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002508 contact lithography Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229920003146 methacrylic ester copolymer Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/775—Photosensitive materials characterised by the base or auxiliary layers the base being of paper
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C5/00—Photographic processes or agents therefor; Regeneration of such processing agents
- G03C5/16—X-ray, infrared, or ultraviolet ray processes
- G03C5/164—Infrared processes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/825—Photosensitive materials characterised by the base or auxiliary layers characterised by antireflection means or visible-light filtering means, e.g. antihalation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/95—Photosensitive materials characterised by the base or auxiliary layers rendered opaque or writable, e.g. with inert particulate additives
Definitions
- This invention relates to photographic elements sensitive to light emitted in the near-infrared portion of the spectrum, from 750 nm and above, especially 750 to 1500 nm, and in particular to photographic elements adapted to provide a high quality recording medium for laser diode scanning systems.
- a widely used image processing technique is to convert a visible image into electronic data by encoding the brightness of adjacent small areas of the visible image.
- Such electronic encoding is advantageous for manipulation, transmission and storage of images. It is known to reconvert electronic data into visible images by means of a so-called "scanner system" whereby a finely focussed beam of light is rapidly scanned across a light sensitive medium in a succession of abutting raster lines, whilst modulating the intensity of light so as to reproduce the required image densities, based on the electronic signals.
- Lasers especially those using argon, krypton, helium-neon or helium-cadmium mixtures as the gas lasing media, have been used as sources of high intensity light for this imaging technique.
- the lasers all suffer the disadvantage of requiring an additional, complex device to modulate the intensity of light emitted, and to a greater or lesser extent, from large physical bulk, mechanical fragility and expense of manufacture.
- Semiconductor laser diodes are potentially highly suitable as light sources for scanner systems in that their light output can be directly modulated by the electrical signal input, and that they are very compact and physically durable.
- NIR near-infrared
- NIR sensitised photographic films especially those having silver halide grains of mean diameter less than 0.4 um, when supported by the edges in a glassless holder, to prevent contact with other surfaces, and given a uniform overall exposure from a laser diode scanner system emitting at 820 nm, produce images covered with broad swirling interference patterns, referred to hereinafter as "non-contact scanner fringes". These fringes are believed to arise as a result of the reflection of the exposing light from the two interfaces of the film element with surrounding air.
- the path difference between the rays reflected from the top surface of the film and the bottom surface is controlled by the thickness of the film at a given point, and the net phase diference causes either destructive or constructive interference, causing either diminished or increased exposure to be transmitted into the light sensitive emulsion layer at that given point.
- the fringes therefore follow contours of microscopic thickness variation in the film element itself, and cover the whole of the image area with broad lines usually about 1 mm apart and often several centimetres in length.
- Non-contact interference fringes have not previously been reported in the literature in relation to silver halide emulsion materials. This phenomenon does not occur under the normal conditions of exposure with visible light because the turbidity of the photosensitive emulsion layer is sufficient to scatter the reflections from the back of the film element. However, because of its longer wavelength, infrared light is able to pass without serious scattering through small-grained photographic emulsions, and the coherence of the laser diode output enhances the tendency to form interference patterns. Thus, a photographic emulsion having silver halide grains of mean diameter 0.28um, with a coating weight of silver of 3 g/m 2 , shows detectable fringes. Lowering the grain size to 0.23 um or reducing the coating weight causes more noticeable patterns, whilst emulsions of mean grain diameter 0.20 um or less exhibit severe fringes after non-contact laser diode scanning.
- Non-contact scanner fringes seriously degrade the quality of scanner images, especially those having continuous tone gradation. They are not only aesthetically displeasing but they also obscure important information conveyed by small density differences in the image. It is desirable to be able to use photographic emulsions having grains of mean diameter less than 0.4 um preferably less than 0.30 um. Fine grain emulsions having a grain size of 0.4 um or less are advantageous in permitting high spatial resolution, and in having high covering power, permitting a lower coating weight of silver to produce a given maximum optical density after development. Accordingly, photographic elements for use with laser diode scanning systems must be capable of suppressing non-contact interference fringes.
- matting particles in the outer surface of films.
- matting particles include silica, poly-methyl methacrylate (PMMA), other polyvinyl compounds including copolymers, starch or inorganic salts.
- PMMA poly-methyl methacrylate
- the density of matting coverage varies from a relatively small number (e.g. applied at less than 0.1 g/m 2 ) of fairly large particles usually 5 to 10 ⁇ m in diameter as disclosed in United States Patent Specification Nos. 4 235 959, 4 022 622, 3 754 924 and 2 322 037, to a particle weight of greater than up to 1 g/m 2 or 50% of the topcoat binders as disclosed in British Patent Specification Nos. 2 077 935 and 2 033 596 and United States Patent Specification Nos. 3 507 678 and 2 992 101 utilizing smaller particle sizes.
- United States Patent Specification No. 4 343 873 discloses a photographic element designed to minimise such fringes which includes a light-scattering layer through which the light-sensitive layer is exposed to laser light.
- the light-scattering particles have a diameter of from 50 to 150% of the wavelength of the illuminating laser.
- the light scattering layer may be coated as an outer layer on the photographic element or beneath other layers.
- matting agents in photographic elements for non-optical properties, such as resistance to adhesion, abrasion resistance, retouchability, good draw-down in vacuum frames, and reduced static effects.
- An example of the use of a matting agent is an infrared sensitive film is disclosed in United States Patent Specification No. 4 266 010 which describes an emulsion topcoat containing PMMA of size in the range 0.2 to 10 pm in an acid-processed gelatin binder, stating this to be suitable for all types of photographic materials including infrared films.
- a further example is disclosed in United States Patent Specification No.
- 3 695 888 which describes a photographic emulsion sensitised to infrared light by cyanine dyes with mesoalkylamino substituents and specific supersensitisers, stating that such elements can contain matting agents such as starch, titanium dioxide, zinc oxide, silica, polymeric beads, including 1 to 4 ⁇ m beads of a methacrylic acid-methyl methacrylate copolymer disclosed in United States Patent Specification No. 2 992 101 and 1 to 20 ⁇ .Lm poly-methyl methacrylate beads formed by emulsion polymerisation as disclosed in United States Patent Specification No. 2 701 245.
- matting agents such as starch, titanium dioxide, zinc oxide, silica, polymeric beads, including 1 to 4 ⁇ m beads of a methacrylic acid-methyl methacrylate copolymer disclosed in United States Patent Specification No. 2 992 101 and 1 to 20 ⁇ .Lm poly-methyl methacrylate beads formed by emulsion polymerisation as disclosed in United States
- a photographic element comprising a support transparent to near infrared radiation above 750 nm, generally in the range 750 to 1500 nm, one or more layers of a silver halide emulsion having grains of an average diameter of not more than 0.4 pm, sensitised to near infrared radiation, characterised in that the element comprises one or more of:
- a photographic element in accordance with the invention is resistant to the formation of internal optical interference patterns which cause unprotected fine grain near-infrared films to become covered in broad swirling fringes when processed after scanning with a laser diode NIR light source, despite non-contact of the film with other surfaces during exposure.
- a microscopic surface roughness having 200,000 protrusions per square millimetre provides a marked reduction in the formation of interference fringes and a surface roughness on the backside of the film having 250,000 protrusions per square millimetre will substantially completely eliminate interference fringes, as will a surface roughness of more than 250,000, preferably, 450,000 protrusions per square millimetre on the top surface.
- a second technique of inhibiting the formation of interference fringes is to provide a backing or subbing layer containing a dye absorbing light in the wavelength range of the exposing source.
- a layer is used alone as fringe suppression layers of the invention means the layer should have a peak transmission optical density of at least 0.75; when such a layer is used in combination with other fringe suppression means an optical density of at least 0.3 will make a significant contribution to the fringe reduction.
- the third technique for reducing fringe formation employs a backing and/or topcoat layer comprising a binder containing particles having a high refractive index substantially preferably greater than 0.3 larger than that of the binder, e.g., desensitised silver halide particles in gelatin.
- the use of silver halide particles is advantageous as the halide may be removed during the processing of the photographic element.
- the high refractive index layer may desirably be removed subsequent to exposure, such as by applying a solvent for the binder.
- non-contact interference fringes may be suppressed in such photographic elements incorporating one or more of the methods in the following constructions:
- the microscopic roughness of the photographic element markedly affects the propensity of the element to form non-contact interference fringes when imaged with a scanning laser.
- an outer backing layer providing a microscopic roughness having at least 250,000 protrusions per square millimetre above the average level of the surface will prevent fringe formation, assuming irradiation takes place from the other side of the element.
- fringe formation can be prevented by provision of a topcoat layer the microscopic surface roughness providing at least 250,000 preferably 450,000 protrusions per square millimetre assuming the element is irradiated from the same side as this layer.
- Combinations of surface roughening layers and antihalation layers may be employed as described above in which case the critical parameters of surface roughening and optical density for each individual layer may be reduced compared to that required when such layers are used as the only means for reducing fringe formation since the effect of the combination of layers is additive. It has been found that a suitable microscopic surface roughness for an outer layer to be used in combination with a further fringe suppressing layer is 200,000 protrusions per square millimetre. The optical density required by an antihalation layer to be used in combination with a surface roughening layer is at least 0.3.
- Particle-containing surface layers described above are preferably used on the back surfaces of the elements, or on both outermost surfaces, rather than as topcoats on the photosenstive emulsion side only, since, surprisingly, the suppression of non-contact laser scanner fringes by surface roughened backings is superior to that by similar topcoats on the emulsion side assuming the exposure is from the emulsion side.
- Advantageous surface roughening agents for use in such layers are particles of organic polymers, particularly of polymethyl methacrylate or developer-soluble polymers such as methacrylic acid- methacrylic ester copolymers, e.g. as described in United States Patent Specification No. 2 992 101.
- suitable organic polymers when used in the particle size range, and loading needed to give the matting properties specified above, are other polyvinyl compounds or vinyl compound copolymers, e.g. as described in British Patent Specification Nos. 2 078 992 and 2 033 596 and United States Patent Specification Nos. 4 287 299 and 3 079 257.
- Other suitable materials include silicaa or composites of silica with polymer, e.g.
- matting agent known in the art consists of very small particles of silica, typically of diameter 0.1 um or less. On dispersion in coating binders such as aqueous gelatine, these small particles form tightly-bound aggregates, typically of 1 pm or greater in diameter, which behave as though they were a single particle.
- the matting properties required for the purposes of this invention may be obtained either by the use of single particles in the required size range, or equally by use of aggregates, the overall size of which falls in the same required range.
- Suitable materials of high refractive index include non-photosensitive silver halide crystals, which are readily produced in uniform sizes and removed by photographic fixers. Silver halides generally have a refractive index in the range 2.0 to 2.2. Other suitable materials of high refractive index include zinc oxide and calcium carbonate.
- Gelatin is a suitable binder for all these layers and has a refractive index of about 1.5.
- the photographic element can contain small quantities (less than 0.1 g/m 2 ) of larger polymer, silica or other matting agent with particles of mean diameter 5 pm and greater, to improve mechanical properties such as adhesion and abrasion resistance.
- Silver halide emulsions useful in the photographic elements of this invention may comprise silver bromide, silver chloride, silver chlorobromide silver bromoiodide or silver chlorobromiodide, and can be prepared by any of the well known procedures, e.g. as described in Research Disclosure 17643, December 1978, par. II and III.
- the emulsions have a particle size of not more than 0.4 um, generally in the range 0.05 to 0.4 pm.
- the emulsions can be sensitised to near-infrared using the dyes disclosed in European Patent Application Publication No. 0 088 595, or using any of the other spectral sensitising dyes known in the art to give sensitivity to radiation of wavelength 750 to 1500 nm, preferably 750 to 900 nm, e.g. as described in Mees and James, The Theory of the Photographic Process, 3rd Ed., pp. 198-199.
- Silver halide emulsions present in the photographic element of this invention can be protected against the production of fog and can be stabilised against loss of sensitivity during keeping.
- Suitable antifoggants and stabilisers are described, for example, in Research Disclosure 17643, December 1978, par. VI.
- Silver halide emulsions present in the photographic elements of this invention can employ optical brightening agents as described, for example, in Research Disclosure 17643, December 1978, par. V.
- the spectrally sensitised silver halide emulsions used in the invention can contain speed increasing compounds, e.g. those described in Research Disclosure 17643, December 1978, par. XXI.
- the layers of the photographic elements can contain various colloids as vehicles or binding agents, e.g. those described in Research Disclosure 17643, December 1978, par. IX. Such colloids can be hardened by various organic and inorganic hardeners, e.g. those described in Research Disclosure 17643, December 1978, par. X.
- the photographic elements of the invention can contain antistatic or conducting layers, plasticisers and lubricants, surfactants, as described, for example, in Research Disclosure 17643, December 1978, par. XI, XII and XIII.
- Photographic emulsions used in the invention can be coated on a wide variety pftransparentsupports, e.g. those described in Research Disclosure 17643, December 1978, par. XVIII.
- the sensitising dyes and other emulsion addenda can be incorporated into the layers of the photographic elements by various methods known in the photographic elements by various methods known in the art, e.g. those described in Research Disclosure 17643, December 1978, par. XIV.
- the photographic elements can be coated on photographic supports by various procedures. Supports and coating procedures are described, for example, in Research Disclosure 17643, December 1978, par. XVV and XVII.
- the sensitised silver halide emulsions used in this invention can be processed after exposure to form a visible silver and/or dye image by associating the silver halide with an aqueous alkaline medium in the presence of a developing agent as described, for example, in Research Disclosure 17643, December 1978, par. XIX.
- the invention Whilst the invention is described in detail for elements containing silver halide grains below 0.4 pm in diameter; the methods for fringe suppression are equally applicable to elements containing other photosensitive silver halide crystals which may permit formation of scanner fringes due to low turbidity.
- the invention is applicable to elements containing tabular grains of silver halide exceeding 0.4 um in diameter, but of high aspect ratio, especially if these are present as a low overall fraction of the silver halide grains in the element, the remainder being comprised of fine grains.
- the photographic elements of this invention can be useful in physical development systems, image transfer systems, dry development systems, diffusion transfer systems, printing and lithography, print-out and direct-print systems as, described, for example, in Research Disclosure 17643, December 1978, par. XXII, XXIII, XXIV, XXV, XXVI and XXVII.
- the invention will now be illustrated by the following Examples.
- Samples were evaluated by uniform exposure in a scanner system in which the radiation from a Hitachi HLP 1400 laser diode emitting at 815 nm was focused to a circular spot of 50 um diameter on the surface of the sample.
- the focused spot was scanned in raster pattern of 200 lines/cm over the sample by means of an oscillating galvanometer mirror in path of the infrared beam.
- the intensity of the exposure was increased stepwise to produce after processing a scale from minimum to maximum density on the sample.
- the samples were then developed using an automatic roller processor 3M type XP507 utilising Eastman Kodak RP X-Omat processing solutions. A visual inspection for fringe patterns was made, and these assessed using the following ranking order:
- the fringe patterns were quantitatively evaluated by tracing with a Joyce-Loebl MDM6 microdensitometer using a small (2.0 x 0.25 mm) slit aperture.
- the maximum transmission optical density difference (O.D.) thus measured between light and dark fringes is given in the Examples.
- the O.D. was measured in areas scanned to mean optical density of between 1.0 and 2.0, in which region the emulsion had contrast values of from 2.5 to 3.5.
- Samples were prepared prior to testing by physical removal of the photosensitive emulsion layer, and by application of a densely I.R. absorbing, non-reflective layer in its place.
- the untreated side of the samples was then irradiated at an angle of 10° to the normal with a collimated beam of known energy, of 5 mm diameter, from a laser diode emitting at 815 nm.
- a radiometric detector was used to monitor the reflected energy at a total angle of 20° to the incident beam (Optronics model 730A). This detector was sited at a distance of 30 cm from the test surface, and admitted light through a circular aperture of 1 cm diameter.
- a sample (approximately 1 cm 2 ) of the film was bonded to a pin stub, with the surface to be examined uppermost.
- a gold coating, approximately 25 nm thick, was applied, using an International Scientific Instruments Inc. (ISI) PS-2 coating unit, at 1.2 kVand 10 mA for 2 minutes.
- the samples were examined in an ISI Super IIIA scanning electron microscope, operating at 10 kV.
- the samples were angled at +20°. In each case a photograph was taken at a print magnification of 5000X, using an internal calibration marker. Particle counts were made within a grid representing an area of 10 um x 10 ⁇ m.
- Particles were counted if they appeared to extend above the average surface level by at least 30% of their diameter, or 0.2 um, whichever was smaller. In samples where only large, infrequent particles were present, photographs at 2000X or lower magnification were taken, and counts made over a more extensive area.
- the back surface of the film base was left uncoated.
- Superamide L9C is a high activity lauric acid-diethanolamine condensate commercially available from Millmaster-Onyx UK.
- Teepol 610 is a sodium salt of a secondary alkyl sulphate commercially available from Shell Chemicals UK Ltd.
- This Example demonstrates the increasing severity of scanner fringes with decreasing silver halide grain size.
- Photographic elements according to the invention having backing layers containing PMMA particles, and resistant to scanner fringes
- Emulsions were prepared, NIR sensitised and coated as in Example 1, but using an 0.18 mm subbed polyester base provided with a backing layer containing 0.3 g/m 2 of poly(methyl methacrylate) particles of mean diameter 0.5 pm in a gelatin binder (1.3 g/m 2 ), which was coated from an aqueous solution also containing as in Example 1 Superamide L9C and Teepol 610 wetting agents, and formaldehyde hardener. Immediately after coating onto the film base, the wet backing layer was passed briefly through a chill zone, at 13°C and 30% relative humidity, causing the gel to set, drying was then brought about at 30°C and 30% relative humidity, and appeared to be complete within 1 minute. The samples were tested in the laser diode scanner system as described above and the results reported in Table 2.
- the coatings of the same grain size emulsions in Example 1 act as control standards.
- Photographic elements according to the invention having backing layers containing non-photosensitive silver halide grains
- Example 3 An 0.16 ⁇ m chlorobromide emulsion was coated as in Example 1, but using a 0.18 mm polyester base provided with a backing layer containing silver halide grains, insensitive to NIR light, in a gelatin binder (1.3 g/m 2 ). The effect on scanner fringes of different sizes and loadings of backing grains is reported in Table 3.
- a 0.16 um chlorobromide emulsion was coated as in Example 1, but on a 0.18 mm subbed polyester base having a backing containing particles (mean grain size of 0.5 to 2.0 pm) of alkali-soluble methacrylic acid-ethyl methacrylate copolymer, in a gelatin binder (1.3 g/m 2 ), which was coated from an aqueous solution containing as in example 1 Superamide L9C or Teepol 610 wetting agents, and formaldehyde hardener as in Example 1.
- An otherwise identical sample was prepared in which the polymer particles were replaced by a lower loading of silica particles of mean diameter 5 um. These samples were tested in comparison with an unbacked one, and the results are reported in Table 4.
- a 0.16 um chlorobromide emulsion was coated as in Example 1, but on a 0.18 mm subbed polyester base having a backing consisting of gelatin 5 g/m 2 , containing an antihalation dye absorbing strongly between 750 and 900 nm, (Dye 29 in European Patent Application Publication No. 0 01 646) with an optical density of 0.40 at 820 nm.This was tested in comparison with an unbacked sampled in the laser diode scanner system, and the results are reported in Table 5.
- a 3% iodobromide emulsion of average grain size 0.21 um was prepared, chemically sensitized, stabilised, spectrally sensitised, and coated on transparent 0.18 mm subbed polyester base, in accordance with Example 17A of European Patent Application Publication No 0 088 595.
- a topcoat of 1.3 g/m 2 of gelatin was simultaneously applied.
- the antihalation layers clearly aid the suppression of fringes.
- Example 2 A 0.16 ⁇ m chlorobromide emulsion was coated as in Example 1, but using 0.18 ⁇ m subbed polyester bases provided with backing layers containing a series of concentrations of PMMA particles of mean diameter 0.5 pm, coated in a gelatin binder (1.3 g/m 2 ) as in Example 2. These samples were tested in a laser diode scanner system and the effect on fringe formation is reported in Table 6.
- a chlorobromide emulsion of grain size 0.26 um was prepared and sensitized using the methods of Example 1.
- the emulsion was coated on a 0.18mm polyester base, at 2.4 g/m 2 silver coverage, simultaneously applying a thin gelatin (1.3 g/m 2 ) topcoat containing 0.036 g/m 2 of PMMA particles of 2.5 ⁇ m mean diameter.
- the opposite side of the base was provided with a layer of gelatin (5 g/m 2 ) containing an infrared absorbing dye (Dye 17 in European Patents Application Publication No.
- Sample (a) was found to give distinctly visible, non-contact scanner fringes whereas Sample (b) did not give any non-contact scanner fringes under the most stringent conditions a laser diode scanner testing.
- Photographic elements having outer matting layers containing particles of an alkali-soluble copolymer
- a 0.16 ⁇ m chlorobromide emulsion was coated as in Example 1, but on a 0.18 mm polyester base having a backing containing particles of alkali-soluble methacrylic acid-ethyl methacrylate copolymer, in a gelatin binder (1.3g/m 2 ), which was coated from an aqueous solution containing Superamide L9C and Teepol 610 wetting agents, and formaldehyde hardener as in Example 1.
- the copolymer particles were of mean diameter 0.75 pm but included a broad range of diameters up to 2 pm. Samples containing different densities of this matting agent were tested for fringe formation in comparison with an unbacked one, and the results are reported in Table 8.
- the degree to which fringes are suppressed is dependent on the type of construction, and on the surface density of protruding particles produced by the matting agent. Further coatings were made in a similar manner using the same 0.16 pm chlorobromide emulsion and suspensions of copolymer matting agent, but using a 0.18 mm polyester base having applied to one side an infra-red absorbing antihalation layer, as in Example 5. The matting layers were applied directly over the antihalation layer, and the photosensitive emulsion to the opposite side of the film base.
- a third set of coatings has made of the same chlorobromide emulsion on an unbacked 0.18 mm polyester base, as in Example 1, except that the usual emulsion supercoat was replaced by the matting suspensions of copolymer particles as described above.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Photoreceptors In Electrophotography (AREA)
- Materials For Photolithography (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB848422069A GB8422069D0 (en) | 1984-08-31 | 1984-08-31 | Photographic elements |
GB8422069 | 1984-08-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0179555A1 EP0179555A1 (en) | 1986-04-30 |
EP0179555B1 true EP0179555B1 (en) | 1988-03-23 |
Family
ID=10566097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85306175A Expired EP0179555B1 (en) | 1984-08-31 | 1985-08-30 | Photographic elements sensitive to near infrared |
Country Status (12)
Country | Link |
---|---|
EP (1) | EP0179555B1 (es) |
JP (1) | JPH0610735B2 (es) |
KR (1) | KR930010215B1 (es) |
AR (1) | AR245992A1 (es) |
AU (1) | AU575983B2 (es) |
BR (1) | BR8504071A (es) |
CA (1) | CA1294478C (es) |
DE (1) | DE3561978D1 (es) |
ES (1) | ES8800759A1 (es) |
GB (1) | GB8422069D0 (es) |
MX (1) | MX159941A (es) |
ZA (1) | ZA856085B (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998126A (en) * | 1996-05-20 | 1999-12-07 | Fuji Photo Film Co., Ltd. | Photothermographic material |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2681629B2 (ja) * | 1986-06-10 | 1997-11-26 | コニカ株式会社 | ハロゲン化銀写真感光材料 |
JPS6388547A (ja) * | 1986-10-01 | 1988-04-19 | Konica Corp | ハロゲン化銀写真感光材料 |
JPH07109490B2 (ja) * | 1987-08-11 | 1995-11-22 | コニカ株式会社 | ハロゲン化銀写真感光材料 |
JPH0239042A (ja) * | 1988-07-28 | 1990-02-08 | Fuji Photo Film Co Ltd | ハロゲン化銀写真感光材料 |
JPH0268544A (ja) * | 1988-09-02 | 1990-03-08 | Konica Corp | ハロゲン化銀写真感光材料 |
EP0360616B1 (en) * | 1988-09-22 | 1995-02-01 | Konica Corporation | Light-sensitive silver halide photographic material causing less curvature and feasible for rapid processing |
AT394634B (de) * | 1989-12-20 | 1992-05-25 | Raganitsch Gmbh | Druckverfahren |
US5698380A (en) * | 1994-11-07 | 1997-12-16 | Fuji Photo Film Co., Ltd. | Method of forming images |
GB9423571D0 (en) | 1994-11-22 | 1995-01-11 | Minnesota Mining & Mfg | Antihalation/acutance system for photographic materials |
EP0724192A1 (en) * | 1995-01-25 | 1996-07-31 | Eastman Kodak Company | Photographic film element for recording overlapping digital and pictorial images |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2391127A (en) * | 1942-02-17 | 1945-12-18 | Eastman Kodak Co | Antihalation coatings |
US2992101A (en) * | 1957-02-18 | 1961-07-11 | Eastman Kodak Co | Suppression of newton's rings in printing color films |
US3523022A (en) | 1965-05-24 | 1970-08-04 | Eastman Kodak Co | Photographic element containing a protective matte layer |
FR1527270A (fr) * | 1967-05-30 | 1968-05-31 | Eastman Kodak Co | Nouvelles émulsions photographiques à pouvoir résolvant élevé |
US3690891A (en) * | 1970-07-20 | 1972-09-12 | Eastman Kodak Co | Infrared-sensitized silver halide systems |
FR2308128A1 (fr) * | 1975-04-15 | 1976-11-12 | Agfa Gevaert | Perfectionnements relatifs a des ecrans renforcateurs de radiographie |
US4028104A (en) * | 1975-04-21 | 1977-06-07 | Hughes Aircraft Company | Infrared hologram recording method |
JPS537231A (en) * | 1976-07-08 | 1978-01-23 | Fuji Photo Film Co Ltd | Image formation |
JPS53123916A (en) * | 1977-04-05 | 1978-10-28 | Fuji Photo Film Co Ltd | Improving method for adhesion resistance of photographic material |
US4172731A (en) * | 1978-04-03 | 1979-10-30 | Eastman Kodak Company | Photographic element containing a light absorbing matting agent |
JPS5655939A (en) * | 1979-10-15 | 1981-05-16 | Fuji Photo Film Co Ltd | Silver halide photographic material |
IT1171550B (it) * | 1981-09-23 | 1987-06-10 | Minnesota Mining & Mfg | Procedimento per rendere matt la superficie di un materiale fotografico e materiale fotografico ottenuto con detto procedimento |
EP0101646B1 (en) * | 1982-08-20 | 1988-02-17 | Minnesota Mining And Manufacturing Company | Photographic elements incorporating antihalation and/or acutance dyes |
JPS6080841A (ja) * | 1983-10-11 | 1985-05-08 | Fuji Photo Film Co Ltd | ハロゲン化銀写真感光材料 |
-
1984
- 1984-08-31 GB GB848422069A patent/GB8422069D0/en active Pending
-
1985
- 1985-08-06 AU AU45832/85A patent/AU575983B2/en not_active Ceased
- 1985-08-12 CA CA000488545A patent/CA1294478C/en not_active Expired - Lifetime
- 1985-08-12 ZA ZA856085A patent/ZA856085B/xx unknown
- 1985-08-22 MX MX206386A patent/MX159941A/es unknown
- 1985-08-26 BR BR8504071A patent/BR8504071A/pt not_active IP Right Cessation
- 1985-08-28 ES ES546480A patent/ES8800759A1/es not_active Expired
- 1985-08-30 EP EP85306175A patent/EP0179555B1/en not_active Expired
- 1985-08-30 DE DE8585306175T patent/DE3561978D1/de not_active Expired
- 1985-08-30 KR KR1019850006294A patent/KR930010215B1/ko not_active IP Right Cessation
- 1985-08-30 JP JP60191829A patent/JPH0610735B2/ja not_active Expired - Fee Related
- 1985-08-30 AR AR85301477A patent/AR245992A1/es active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998126A (en) * | 1996-05-20 | 1999-12-07 | Fuji Photo Film Co., Ltd. | Photothermographic material |
Also Published As
Publication number | Publication date |
---|---|
AU4583285A (en) | 1986-03-06 |
DE3561978D1 (en) | 1988-04-28 |
EP0179555A1 (en) | 1986-04-30 |
JPS6170550A (ja) | 1986-04-11 |
ES8800759A1 (es) | 1987-11-16 |
KR930010215B1 (ko) | 1993-10-15 |
AU575983B2 (en) | 1988-08-11 |
ZA856085B (en) | 1987-03-25 |
JPH0610735B2 (ja) | 1994-02-09 |
BR8504071A (pt) | 1986-06-10 |
ES546480A0 (es) | 1987-11-16 |
KR860002035A (ko) | 1986-03-24 |
MX159941A (es) | 1989-10-06 |
CA1294478C (en) | 1992-01-21 |
GB8422069D0 (en) | 1984-10-31 |
AR245992A1 (es) | 1994-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4711838A (en) | Photographic elements sensitive to near infrared | |
CA1199212A (en) | Roomlight-stable ultraviolet-response photothermographic imaging material | |
EP0179555B1 (en) | Photographic elements sensitive to near infrared | |
EP0119830B1 (en) | Photothermographic element having topcoat bleachable antihalation layer | |
US4921781A (en) | Silver halide photographic material | |
US4229525A (en) | Process for improving image-sharpness of photographic silver halide material | |
GB1560459A (en) | Thermally developable light-sensitive material | |
JPS5848357B2 (ja) | 反射性デ−タ−記録用媒体およびその製造方法 | |
US4343873A (en) | Photographic light-sensitive silver halide elements | |
JP2875831B2 (ja) | ハレーション防止染料およびまたはアキュータンス染料を配合した赤外線感光性写真材料 | |
CA1108915A (en) | Thermally-developable light-sensitive element with a subbing layer containing a vinyl or vinylidene chloride copolymer | |
EP0577189B1 (en) | Radiation sensitive element with absorber dye to enhance spectral sensitivity range | |
JPH0378614B2 (es) | ||
US5641617A (en) | Photographic material for laser scan exposure | |
US4093463A (en) | Water soluble binder overcoat on vesicular element containing N2 -releasing agent | |
US3885968A (en) | Thermally developable light-sensitive material | |
US4092164A (en) | Reflectance probe | |
JPS63115160A (ja) | ハロゲン化銀写真感光材料 | |
US5213954A (en) | White light handleable negative-acting silver halide photographic elements | |
US4971899A (en) | Direct positive films | |
JP3460393B2 (ja) | レーザー走査用写真感光材料 | |
Bishop | Covering power and speed characteristics of silver bromide core/shell emulsions etched with sodium thiosulfate solution | |
JPH08262608A (ja) | 写真フィルムの感光度曲線のトウ領域の低減 | |
JP2522679B2 (ja) | 鮮鋭性に優れたハロゲン化銀写真感光材料 | |
KR910005871B1 (ko) | 사진 감광제용 할레이션 방지제 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19861024 |
|
17Q | First examination report despatched |
Effective date: 19870616 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 3561978 Country of ref document: DE Date of ref document: 19880428 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732 |
|
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 85306175.2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970625 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970717 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19970908 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980831 |
|
BERE | Be: lapsed |
Owner name: MINNESOTA MINING AND MFG CY Effective date: 19980831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 85306175.2 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19990301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010629 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020830 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020830 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030804 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030829 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050429 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |