EP0174222B1 - Procédé de détermination de spectre de masse par temps de vol et spectromètre mettant en oeuvre ce procédé - Google Patents

Procédé de détermination de spectre de masse par temps de vol et spectromètre mettant en oeuvre ce procédé Download PDF

Info

Publication number
EP0174222B1
EP0174222B1 EP85401488A EP85401488A EP0174222B1 EP 0174222 B1 EP0174222 B1 EP 0174222B1 EP 85401488 A EP85401488 A EP 85401488A EP 85401488 A EP85401488 A EP 85401488A EP 0174222 B1 EP0174222 B1 EP 0174222B1
Authority
EP
European Patent Office
Prior art keywords
time
source
flight
electrons
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401488A
Other languages
German (de)
English (en)
Other versions
EP0174222A1 (fr
Inventor
Serge Della Negra
Yvon Le Beyec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0174222A1 publication Critical patent/EP0174222A1/fr
Application granted granted Critical
Publication of EP0174222B1 publication Critical patent/EP0174222B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention relates to the determination of mass spectrum by time of flight.
  • ions are extracted from a source containing a product to be analyzed and their mass is determined by measuring their time of flight to a detection device.
  • the ion source is for example constituted by a solid surface from which the ions are released by desorption.
  • the solid surface can be bombarded by primary ions accelerated by cyclotron or be subjected to high energy radiation.
  • a radioactive source 252Cf which emits two fission fragments in opposite directions, one being directed towards the solid surface to release ions and the other towards a metallic foil to eject electrons whose detection provides the time reference (start signal): see “Nuclear Instruments and Methods •, vol. 188 (1981) p. 99-104.
  • the object of the present invention is to provide a method allowing a determination of mass spectrum by time of flight by means of a source comprising a solid surface subjected to the action of a constant electric field under conditions much simpler than those prevailing with currently known methods.
  • This object is achieved by the fact that the electric field causes the simultaneous emission, on the one hand, of electrons and, on the other hand, of negative ions released from said surface by spontaneous desorption, and that the spectrum of mass is determined from the differences in time of flight of electrons and negative ions between the source and a detection device.
  • the present invention is based on the finding that, unexpectedly, the application of a constant electric field causes the time correlated emission of electrons and negative ions.
  • the reception of electrons by the detection device then provides the time reference for the measurement of the flight times of the negative ions arriving on this detection device.
  • the method according to the invention has the advantage of being non-destructive with respect to the ion source.
  • Spontaneous desorption does not require an electric field of very high intensity.
  • a constant intensity field between 1 and 3MV / m may be sufficient.
  • the present invention also aims to provide a time-of-flight mass spectrometer allowing the implementation of the method defined above.
  • a spectrometer comprising: an enclosure which can be connected to a vacuum source, means for liberating ions by desorption from a source formed by a solid surface placed in the enclosure, a detection device comprising means for detecting ions from the source, a measuring device for determining the desired mass spectrum from quantities representative of time of flight of the ions between the source and the detection device, and means provided for establishing a field constant electric between the solid surface and an electrode, characterized in that said electrode is in the form of a grid placed in front of this surface in order to cause the simultaneous emission, on the one hand, of electrons and, on the other hand negatives released from said surface by spontaneous desorption; and in that the measuring device comprises means for developing quantities representative of the time intervals separating the reception of electrons and the reception of negative ions by the detection device.
  • the spectrometer shown in Figure 1 essentially comprises a tube 10 connected to a vacuum source (not shown) for establishing a high vacuum, for example 10- 6-1 0-7 Torr inside the tube 10.
  • An ion source 11 is arranged in the vicinity of a first end, or rear end, of the tube 10, inside the latter.
  • the source 11 is constituted by a metallic sheet 11a, in the form of a flat disc, on the front face of which is disposed a thin uniform layer 11b of a compound to be analyzed in mass, in particular an organic compound.
  • the sheet 11a is for example an aluminum sheet of thickness equal to 5 microns.
  • the compound to be analyzed is deposited on the sheet 11a, for example by electrostatic spraying, the mass of compound deposited being for example of the order of a few micrograms.
  • the tube 10 contains a detection device 12 which is formed from micro-channel pancake detectors and which is connected to a measuring device 13 outside the tube.
  • a simultaneous emission of electrons and negative ions from the source 10 is caused by subjecting the latter to the action of a constant electric field.
  • a grid-shaped electrode 15 is placed in front of the sheet 11a, parallel to this sheet and spaced from it, and a potential difference is established between the metal sheet 11a and the grid. 15.
  • the gate 15 is brought to the reference potential (mass) while a constant negative voltage V- supplied by a voltage generator 16 is applied to the sheet 11a by means of a conductor passing through the wall of the tube. 10.
  • the electrons and negative ions emitted under the action of the electric field are accelerated by it and "fly" to the detection device 12 by passing through the electrode 15 which is preferably formed by a very fine grid with a high transparency rate (eg 90%).
  • Electrons and ions are emitted simultaneously and received successively in order of increasing mass.
  • the detection device 12 produces an electrical signal sd which is applied to the measurement device 13. Since there is a time correlation between emission of electrons and emission of ions, and the flight time of an electron is known, the reception of an electron by the detection device can be used as a time reference for measuring the times of flight of the negative ions subsequently received.
  • the measuring device 13 comprises a discriminator circuit of constant fraction 21, a digital time converter 22 and a data acquisition circuit 23.
  • the circuit 21 transforms each signal sd into a pulse calibrated at a level compatible with the circuits used downstream.
  • a constant fraction discriminator circuit is known per se; we can in particular use the circuit marketed under the reference 7174 by the French company ENERTEC (SCHLUMBERGER).
  • circuit 21 is, on the one hand, directly connected to a start control input 22d of the time-digital converter 22 and, on the other hand, connected by a constant delay circuit 24 to an input 22s of control d 'shutdown of the same converter.
  • the circuit whose principle is described by E. Festa and R. Sellem in the publication of the United States of America "Nuclear Instruments and Methods vol. 188 (1981) page 99.
  • a start signal such a converter can accept, in a predetermined limited time interval (for example 16 or 32 microseconds) several stop signals (for example 32) and provides, in response to each stop signal, a digital word representing the time elapsed between the reception of the start signal and the reception of this stop signal.
  • an operating cycle of the converter 22 is initiated in response to the reception of an electron.
  • the same signal, delayed by circuit 24 provides a first counting result, which allows, on the one hand, a visualization and an accounting of the electrons received and, on the other hand, to have a precise reference for the measurement of the reception time of negative ions since the corresponding signals are also routed to the stop command input 22s through the delay circuit 24.
  • FIG. 2A shows the mass spectrum of the organic compound valine (of molecular weight 117) obtained by means of a spectrometer such as that of FIG. 1, the tube 10 having a length of 0.3 m and a diameter of 0, 1 m. A voltage of -9kV was applied to sheet 11a. the grid 15 being spaced therefrom by 5 mm.
  • the first peak in FIG. 2A is produced by the reception of electrons delayed by circuit 24.
  • This first peak provides an offset origin for the measurement of flight times, and its integral gives the total number of ne- electrons which have generated a start signal.
  • FIG. 2B shows the mass spectrum of the same compound obtained by means of a spectrometer in which a conventional radioactive source of 252Cf is used to release the ions by desorption. It will be noted that the spectrum obtained with the spectrometer according to the invention differs from that of FIG. 2B by the presence of more marked peaks for the masses corresponding to C-, CH-, 0- and OH-.
  • the invention is of course not limited to the determination of mass spectra of organic compounds. Measurements can be carried out, for example, on metallic sources consisting directly of a sheet of the metal or alloy to be examined brought to the desired potential.
  • the intensity of the electric field to be established to carry out the spontaneous desorption of negative ions simultaneously with the emission of electrons is to a certain extent chosen according to the nature of the molecular deposit 11b and the performance of the measurement device. Indeed, the emission begins when the intensity of the electric field exceeds a certain threshold. In addition, as the emission increases when the intensity of the field increases, the number of electrons can become such that the acquisition capacity of the measuring device is saturated and a part of the events is lost for intensity values. exceeding a certain threshold.
  • the emission begins when the voltage applied to the sheet 11a becomes, in absolute value, greater than 3 or 4 kV.
  • the number of electrons counted in one second is less than 10,000.
  • the number of electrons has become such that the acquisition capacity of the measuring device used in this example is saturated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

  • La présente invention concerne la détermination de spectre de masse par temps de vol.
  • Dans un spectromètre de masse à temps de vol, des ions sont extraits d'une source contenant un produit à analyser et leur masse est déterminée par mesure de leur temps de vol jusqu'à un dispositif de détection.
  • La source d'ions est par exemple constituée par une surface solide d'où les ions sont libérés par désorption. Plusieurs techniques sont utilisées à cet effet. Ainsi, la surface solide peut être bombardée par des ions primaires accélérés par cyclotron ou être soumise à un rayonnement à haute énergie. Il est également bien connu de faire appel à une source radioactive 252Cf qui émet deux fragments de fission en directions opposées, l'un étant dirigé vers la surface solide pour libérer des ions et l'autre vers une feuille métallique pour éjecter des électrons dont la détection fournit la référence de temps (signal de départ) : voir « Nuclear Instruments and Methods •, vol. 188 (1981) p. 99-104.
  • La présente invention a pour but de fournir un procédé permettant une détermination de spectre de masse par temps de vol au moyen d'une source comprenant une surface solide soumise à l'action d'un champ électrique constant dans des conditions beaucoup plus simples que celles régnant avec les procédés actuellement connus.
  • Ce but est atteint par le fait que le champ électrique, provoque l'émission simultanée, d'une part, d'électrons et, d'autre part, d'ions négatifs libérés de ladite surface par désorption spontanée, et que le spectre de masse est déterminé à partir des différences de temps de vol des électrons et des ions négatifs entre la source et un dispositif de détection.
  • La présente invention est basée sur la constatation que, d'une façon inattendue, l'application d'un champ électrique constant provoque l'émission corrélée dans le temps d'électrons et d'ions négatifs. La réception des électrons par le dispositif de détection fournit alors la référence de temps pour la mesure des temps de vol des ions négatifs parvenant sur ce dispositif de détection. En plus de la simplicité de mise en oeuvre, le procédé selon l'invention présente l'avantage d'être non destructif vis-à-vis de la source d'ions.
  • La désorption spontanée ne nécessite pas de champ électrique d'intensité très élevée. A titre indicatif, un champ d'intensité constante comprise entre 1 et 3MV/m peut suffire.
  • La présente invention a aussi pour but dé fournir un spectromètre de masse à temps de vol permettant la mise en oeuvre du procédé défini ci-avant.
  • Ce but est atteint grâce à un spectromètre comportant : une enceinte pouvant être reliée à une source de vide, des moyens pour libérer par désorption des ions d'une source formée par une surface solide placée dans l'enceinte, un dispositif de détection comprenant des moyens de détection d'ions issus de la source, un dispositif de mesure pour déterminer le spectre de masse recherché à partir de grandeurs représentatives de temps de vol des ions entre la source et le dispositif de détection, et des moyens prévus pour établir un champ électrique constant entre la surface solide et une électrode, caractérisé en ce que ladite électrode est en forme de grille placée devant cette surface afin de provoquer l'émission simultanée, d'une part, d'électrons et, d'autre part d'ions négatifs libérés de ladite surface par désorption spontanée ; et en ce que le dispositif de mesure comprend des moyens pour élaborer des grandeurs représentatives des intervalles de temps séparant la réception d'électrons et la réception d'ions négatifs par le dispositif de détection.
  • D'autres particularités du procédé et du spectromètre conformes à l'invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
    • - la figure 1 est une vue très schématique d'un mode de réalisation d'un spectromètre de masse à temps de vol conforme à l'invention, et
    • - les figures 2A et 2B sont des spectres obtenus pour un même composé organique respectivement avec le procédé conforme à l'invention et avec un procédé de l'art antérieur.
  • Le spectromètre représenté sur la figure 1 comprend essentiellement un tube 10 connecté à une source de vide (non représentée) permettant d'établir un vide poussé, par exemple 10-6 à 10-7 Torr à l'intérieur du tube 10.
  • Une source d'ions 11 est disposée au voisinage d'une première extrémité, ou extrémité arrière, du tube 10, à l'intérieur de celui-ci. Dans l'exemple illustré, la source 11 est constituée par une feuille métallique 11a, en forme de disque plan, sur la face avant de laquelle est disposée une mince couche uniforme 11 b d'un composé à analyser en masse, notamment un composé organique. La feuille 11a est par exemple une feuille d'aluminium d'épaisseur égale à 5 microns. Le composé à analyser est déposé sur la feuille 11a, par exemple par projection électrostatique, la masse de composé déposé étant par exemple de l'ordre de quelques microgrammes.
  • Au voisinage de sa deuxième extrémité, ou extrémité avant, le tube 10 renferme un dispositif de détection 12 qui est formé de détecteurs à galettes à micro-canaux et qui est relié à un dispositif de mesure 13 à l'extérieur du tube.
  • Selon une caractéristique essentielle de l'invention une émission simultanée d'électrons et d'ions négatifs à partir de la source 10 est provoquée en soumettant celle-ci à l'action d'un champ électrique constant. A cet effet, une électrode 15 en forme de grille est placée devant la feuille 11a, parallèlement à cette feuille et espacée de celle-ci, et une différence de potentiel est établie entre la feuille métallique 11a et la grille 15. Par exemple, la grille 15 est portée au potentiel de référence (masse) tandis qu'une tension négative constante V- fournie par un générateur de tension 16 est appliquée à la feuille 11a au moyen d'un conducteur traversant la paroi du tube 10.
  • Les électrons et ions négatifs émis sous l'action du champ électrique sont accélérés par celui-ci et « volent » jusqu'au dispositif de détection 12 en passant à travers l'électrode 15 qui est formée de préférence par une grille très fine avec un taux de transparence élevé (par exemple 90 %).
  • Les électrons et les ions sont émis simultanément et reçus successivement dans l'ordre de masse croissante. A chaque électron ou ion reçu, le dispositif de détection 12 produit un signal électrique sd qui est appliqué au dispositif de mesure 13. Puisqu'il y a corrélation temporelle entre émission des électrons et émission des ions, et que le temps de vol d'un électron est connu, la réception d'un électron par le dispositif de détection peut être utilisée comme référence de temps pour la mesure des temps de vol des ions négatifs reçus ensuite.
  • Le dispositif de mesure 13 comprend un circuit discriminateur de fraction constante 21, un convertisseur temps numérique 22 et un circuit d'acquisition de données 23.
  • Le circuit 21 transforme chaque signal sd en une impulsion calibrée à un niveau compatible avec les circuits utilisés en aval. Un tel circuit discriminateur de fraction constante est connu en soi ; on pourra notamment utiliser le circuit commercialisé sous la référence 7174 par la société française ENERTEC (SCHLUMBERGER).
  • La sortie du circuit 21 est, d'une part, reliée directement à une entrée de commande de démarrage 22d du convertisseur temps-numérique 22 et, d'autre part, reliée par un circuit à retard constant 24 à une entrée 22s de commande d'arrêt de ce même convertisseur. Pour le convertisseur 22, on pourra utiliser par exemple le circuit dont le principe est décrit par E. Festa et R. Sellem dans la publication des Etats-Unis d'Amérique « Nuclear Instruments and Methods vol. 188 (1981) page 99. Après avoir reçu un signal de départ, un tel convertisseur peut accepter, dans un intervalle de temps limité prédéterminé (par exemple 16 ou 32 microsecondes) plusieurs signaux d'arrêt (par exemple 32) et fournit, en réponse à chaque signal d'arrêt, un mot numérique représentant le temps écoulé entre la réception du signal de départ et la réception de ce signal d'arrêt. Ces mots numériques sont enregistrés par l'intermédiaire du circuit 23 d'acquisition de données branché en sortie du convertisseur 22.
  • Un cycle de fonctionnement du convertisseur 22 est, pratiquement dans tous les cas, déclenché en réponse à la réception d'un électron. Le même signal, retardé par le circuit 24 fournit un premier résultat de comptage, ce qui permet, d'une part, une visualisation et une comptabilisation des électrons reçus et, d'autre part de disposer d'une référence précise pour la mesure des temps de réception des ions négatifs puisque les signaux correspondants sont acheminés également vers l'entrée de commande d'arrêt 22s à travers le circuit à retard 24.
  • Les résultats ou comptes obtenus aux mêmes instants relatifs de cycles successifs de fonctionnement du convertisseur 22, au cours d'une période d'observation, sont cumulés pour fournir le spectre de masse recherché. A titre indicatif, la durée d'une période d'observation est de quelques minutes.
  • La figure 2A montre le spectre de masse du composé organique valine (de poids moléculaire 117) obtenu au moyen d'un spectromètre tel que celui de la figure 1, le tube 10 ayant une longueur de 0,3 m et un diamètre de 0,1 m. Une tension de -9kV était appliquée à la feuille 11 a. la grille 15 étant distante de celle-ci de 5 mm.
  • Le premier pic sur la figure 2A est produit par la réception des électrons retardée par le circuit 24. Ce premier pic fournit une origine décalée pour la mesure des temps de vol, et son intégrale donne le nombre total d'électrons ne- qui ont engendré un signal de démarrage. Un rendement de désorption pour un ion négatif de masse n peut être défini comme étant le rapport entre le nombre de comptes dans le pic de masse m et le nombre ne-. Pour l'ion négatif valine- (m = 116-), le rendement de désorption spontanée ainsi calculé est de 1 % dans cet exemple.
  • A titre de comparaison, la figure 2B montre le spectre de masse du même composé obtenu au moyen d'un spectromètre dans lequel une source radioactive classique de 252Cf est utilisée pour libérer les ions par désorption. On notera que le spectre obtenu avec le spectromètre selon l'invention se distingue de celui de la figure 2B par la présence de pics plus marqués pour les masses correspondant à C-, CH-, 0- et OH-.
  • Bien que l'on ait décrit ci-avant un exemple de mise en oeuvre de l'invention pour l'obtention d'un spectre d'un composé organique de poids moléculaire relativement peu élevé, il est à noter que les ions moléculaires de masses allant de 2000 à 3000 ont été observés par cette technique de désorption spontanée.
  • Par ailleurs, l'invention n'est bien sûr pas limitée à la détermination de spectres de masse de composés organiques. Des mesures peuvent être effectuées par exemple sur des sources métalliques constituées directement d'une feuille du métal ou alliage à examiner portée au potentiel désiré.
  • L'intensité du champ électrique à établir pour réaliser la désorption spontanée d'ions négatifs simultanément avec l'émission d'électrons est dans une certaine mesure choisie en fonction de la nature du dépôt moléculaire 11b et des performances du dispositif de mesure. En effet, l'émission commence lorsque l'intensité du champ électrique dépasse un certain seuil. Par ailleurs, comme l'émission augmente lorsque l'intensité du champ croît, le nombre d'électrons peut devenir tel que la capacité d'acquisition du dispositif de mesure est saturée et une partie des événements est perdue pour des valeurs d'intensité dépassant un certain seuil.
  • Dans le cas de l'exemple de mise en oeuvre de l'invention décrit plus haut, avec un espace de 5 mm entre la feuille 11a et l'électrode 15, il a été noté que l'émission commence lorsque la tension appliquée à la feuille 11a devient, en valeur absolue, supérieure à 3 ou 4 kV. Pour une valeur de 10 kV sur 5 mm, le nombre d'électrons comptés en une seconde est inférieur à 10.000. A la valeur de 15 kV sur 5 mm, le nombre d'électrons est devenu tel que la capacité d'acquisition du dispositif de mesure utilisé dans cet exemple est saturée.
  • D'une façon générale, une valeur de champ comprise entre 1 et 3 MV/m semble devoir convenir, l'adaptation de cette valeur étant effectuée selon la nature du dépôt moléculaire. On remarquera que cette valeur reste très inférieure aux niveaux qui sont utilisés pour réaliser une désorption par effet de champ violent dans des spectromètres de masse de type magnétique. De plus, dans le cas de la présente invention, le champ électrique modéré est appliqué pendant toute la durée de l'observation et l'instant de son application ne constitue pas une référence de temps.

Claims (4)

1. Procédé de détermination de spectre de masse par temps de vol, au moyen d'une source comprenant une surface solide, soumise à l'action d'un champ électrique constant, caractérisé en ce que le champ électrique provoque l'émission simultanée, d'une part, d'électrons et, d'autre part, d'ions négatifs libérés de ladite surface par désorption spontanée, et en ce que le spectre de masse est déterminé à partir des différences de temps de vol des électrons et des ions négatifs entre la source et un dispositif de détection.
2. Procédé selon la revendication 1, caractérisé en ce que le champ électrique est produit par établissement d'une différence de potentiel entre la surface solide et une électrode en forme de grille parallèle à celle-ci.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'intensité du champ électrique est comprise entre 1 et 3 MV/m.
4. Spectromètre de masse à temps de vol, comportant une enceinte (10) pouvant être reliée à une source de vide, des moyens pour libérer par désorption des ions d'une source (11) formée par une surface solide placée dans l'enceinte, un dispositif de détection (12) comprenant des moyens de détection d'ions issus de la source, un dispositif de mesure (13) pour déterminer le spectre de masse recherché à partir de grandeurs représentatives de temps de vol des ions entre la source et le dispositif de détection et des moyens (16) prévus pour établir un champ électrique constant entre la surface solide et une électrode (15) caractérisé en ce que ladite électrode (15) est en forme de grille placée devant cette surface afin de provoquer l'émission simultanée, d'une part, d'électrons et, d'autre part d'ions négatifs libérés de ladite surface par désorption spontanée ; et en ce que le dispositif de mesure (13) comprend des moyens (21, 22) pour élaborer des grandeurs représentatives des intervalles de temps séparant la réception d'électrons et la réception d'ions négatifs par le dispositif de détection (12).
EP85401488A 1984-08-09 1985-07-19 Procédé de détermination de spectre de masse par temps de vol et spectromètre mettant en oeuvre ce procédé Expired EP0174222B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8412609 1984-08-09
FR8412609A FR2569009B1 (fr) 1984-08-09 1984-08-09 Procede de determination de spectre de masse par temps de vol et spectrometre mettant en oeuvre ce procede

Publications (2)

Publication Number Publication Date
EP0174222A1 EP0174222A1 (fr) 1986-03-12
EP0174222B1 true EP0174222B1 (fr) 1988-09-28

Family

ID=9306939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401488A Expired EP0174222B1 (fr) 1984-08-09 1985-07-19 Procédé de détermination de spectre de masse par temps de vol et spectromètre mettant en oeuvre ce procédé

Country Status (5)

Country Link
US (1) US4677295A (fr)
EP (1) EP0174222B1 (fr)
JP (1) JPS6147049A (fr)
DE (1) DE3565336D1 (fr)
FR (1) FR2569009B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003178A (en) * 1988-11-14 1991-03-26 Electron Vision Corporation Large-area uniform electron source
US5026988A (en) * 1989-09-19 1991-06-25 Vanderbilt University Method and apparatus for time of flight medium energy particle scattering
US5245192A (en) * 1991-10-07 1993-09-14 Houseman Barton L Selective ionization apparatus and methods
US5384713A (en) * 1991-10-23 1995-01-24 Lecroy Corp Apparatus and method for acquiring and detecting stale data
EP3130002A4 (fr) * 2014-04-11 2017-11-22 The University of Hong Kong Procédé et système de désorption-ionisation en champ électrostatique à megavolts de pression atmosphérique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1171641B (de) * 1961-08-11 1964-06-04 Telefunken Patent Nach dem Prinzip der Feldionenemission arbeitende Ionenquelle fuer Massenspektrometer und Verfahren zur Herstellung der Ionen-missionselektrode
US3868507A (en) * 1973-12-05 1975-02-25 Atomic Energy Commission Field desorption spectrometer

Also Published As

Publication number Publication date
DE3565336D1 (en) 1988-11-03
US4677295A (en) 1987-06-30
FR2569009A1 (fr) 1986-02-14
JPS6147049A (ja) 1986-03-07
EP0174222A1 (fr) 1986-03-12
FR2569009B1 (fr) 1987-01-09

Similar Documents

Publication Publication Date Title
EP0154590B1 (fr) Spectromètre de masse à temps de vol
EP2761644B1 (fr) Détection à plusieurs canaux pour un spectromètre de masse à temps de vol
Hsu et al. High resolution threshold and pulsed field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation
JP2016514260A (ja) タンデム質量分析のための方法及びシステム
EP0855086A1 (fr) Detecteur de position, a haute resolution, de hauts flux de particules ionisantes
Sun et al. Use of C60 cluster projectiles for sputter depth profiling of polycrystalline metals
FR2482404A1 (fr) Tube accelerateur source de neutrons a section cible perfectionnee
EP0174222B1 (fr) Procédé de détermination de spectre de masse par temps de vol et spectromètre mettant en oeuvre ce procédé
FR2550884A1 (fr) Analyseur de masse pour ions par mesure de leur temps de vol
US6982415B2 (en) Controlling ion populations in a mass analyzer having a pulsed ion source
EP0452767B1 (fr) Spectromètre de masse pour atomes neutres, pulvérisés cathodiquement et ionisés par laser
EP0362946A1 (fr) Dispositif d'extraction et d'accélération des ions limitant la réaccélération des électrons secondaires dans un tube neutronique scellé à haut flux
Sun et al. Energetic ion bombardment of Ag surfaces by C 60+ and Ga+ projectiles
Haberland et al. Experimental methods
FR2551614A1 (fr) Source intense de rayons x mous, a compression cylindrique de plasma, ce plasma etant obtenu a partir d'une feuille explosee
FR2895833A1 (fr) Procede et systeme de spectrometrie de masse en tandem sans selection de masse primaire et a temps de vol
FR2735241A1 (fr) Procede de controle en temps reel du debit de dose de rayonnements ionisants et dispositif pour sa mise en oeuvre
EP0018253B1 (fr) Dispositif de détection de particules
Tassotto et al. Ion scattering and recoiling from liquid surfaces
FR2481868A1 (fr) Tube accelerateur de neutrons a section d'ionisation perfectionnee
Franghiadakis et al. Monitoring of the ion energy and current density at the surface of films grown by excimer laser ablation
Shimizu et al. Detection of sputtered neutral atoms by nonresonant multiphoton ionization
Edmonson et al. Inelastic scattering of positive ions and electrons from water: The 4–6 eV energy loss region
Ehler et al. Origin of``energetic''ions from laser‐produced plasmas
Ray et al. Exit conditions for secondary ion emission induced by keV cluster bombardment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL SE

17P Request for examination filed

Effective date: 19860827

17Q First examination report despatched

Effective date: 19871117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL SE

REF Corresponds to:

Ref document number: 3565336

Country of ref document: DE

Date of ref document: 19881103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910712

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910722

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910723

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

EUG Se: european patent has lapsed

Ref document number: 85401488.3

Effective date: 19930204