EP0173235A2 - Lampe à halogénure métallique à basse puissance - Google Patents

Lampe à halogénure métallique à basse puissance Download PDF

Info

Publication number
EP0173235A2
EP0173235A2 EP85110460A EP85110460A EP0173235A2 EP 0173235 A2 EP0173235 A2 EP 0173235A2 EP 85110460 A EP85110460 A EP 85110460A EP 85110460 A EP85110460 A EP 85110460A EP 0173235 A2 EP0173235 A2 EP 0173235A2
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
metal halide
halide discharge
scandium
low wattage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85110460A
Other languages
German (de)
English (en)
Other versions
EP0173235A3 (en
EP0173235B1 (fr
Inventor
William M. Keeffe
Zeya K. Krasko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Sylvania Inc
Original Assignee
GTE Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Products Corp filed Critical GTE Products Corp
Publication of EP0173235A2 publication Critical patent/EP0173235A2/fr
Publication of EP0173235A3 publication Critical patent/EP0173235A3/en
Application granted granted Critical
Publication of EP0173235B1 publication Critical patent/EP0173235B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Definitions

  • This invention relates to low wattage metal halide lamps and more particularly to the configuration and chemical fill of low wattage metal halide lamps.
  • metal halide discharge lamps available in todays market are of the intermediate or high wattage variety. i.e.. 175 to 1500 watts for example. Also. these higher wattage metal halide lamps have the higher efficacy which is directly related to efficiency and conveniently defined as the ratio of total lumen output to input power as expressed in lumens per watt. Moreover, it is known that the efficacy of a lamp tends to decrease as the wattage decreases. Thus, it has been generally presupposed that low wattage metal halide lamps. wattages of 100-watts or less. would be entirely unsatisfactory in so far as efficacy is concerned.
  • the smallest known domestic commercialized metal halide discharge lamp is a Sylvania 175 watt lamp formed for horizontal operation only and having a color temperature of about 3000° K.
  • This lamp has a phosphor-coated outer envelope which transforms UV radiation into visible red radiation thereby creating a relatively warm color appearance.
  • the lamp undesirably requires a relatively large and cumbersome luminaire for adequate light distribution control, in addition, has the disadvantage of being operable in a horizontal position only.
  • An object of the present invention is to overcome the difficulties of the prior art. Another object of the invention is to provide an improved metal halide discharge lamp having relatively low wattage and reduced heat losses due to convection currents. Still another object of the invention is to provide a low wattage high efficiency metal halide discharge lamp of small size and having a color temperature of about 3000°K. A further object of the invention is to provide a chemical fill for a low wattage relatively high efficacy metal halide discharge lamp.
  • a low wattage metal halide discharge lamp having an outer glass envelope with a pair of electrical conductors sealed into and passing therethrough.
  • an arc tube disposed within the envelope and the arc tube having a pair of spaced electrodes with each of the electrodes electrically connected to one of the pair of electrical conductors and a chemical fill within the arc tube including sodium and scandium iodides of a molar ratio in the range of about 20:1 to 28:1.
  • a low wattage metal halide arc discharge lamp 5 importantly includes an evacuated outer envelope 7.
  • This evacuated outer envelope 7 is hermetically sealed to a glass stem member 9 having an external base member 11 affixed thereto.
  • a pair of electrical conductors 13 and 15 are sealed into and pass through the stem member 9 and provide access for energization of the discharge lamp 5 by an external source (not shown).
  • a support member 17 is affixed to one of the electrical conductors 13 and extends substantially parallel to the longitudinal axis of the lamp 5 and forms a circular configuration 19 near the upper portion of the envelope 7.
  • This circular configuration 19 in conjunction with the upper portion of the envelope 7 tends to maintain the support member 17 in proper alignment and resistant to deformation caused by external shock.
  • a first strap member 21 is welded to the support member 17 and extends therefrom in a direction normal to the longitudinal axis and the direction of the support member 17.
  • a domed quartz sleeve or temperature equalizing means 23 has a pair of oppositely disposed notches 25 and 27 on the end thereof 28 opposite to the dome portion. These notches 25 and 27 are formed to slip over the first strap member 21 which serves to support the domed quartz sleeve 23. Also. a substantially circular shaped strap 29 surrounds the domed quartz sleeve 23 near the domed portion thereof and is attached to the support member 17.
  • an arc tube 31 having a chemical fill including elemental scandium and mercury, sodium, scandium and cesium iodides and an inert gas.
  • the arc tube 31 has a pinch seal at opposite ends thereof. 33 and 35 respectively.
  • Metal foil members 37 and 39 are sealed into the press seals 33 and 35 and electrical conductors 41 and 43 are attached to the foil members 37 and 39 and extend outwardly from the press seals 33 and 35.
  • a flexible support member 45 is affixed to one of the electrical conductors 41 and to the support member 17.
  • lead 47 is affixed to the other electrical conductor 43 which passes through the domed portion of the domed quartz sleeve 23.
  • a flexible spring-like member 49 connects the lead 47 to the other one 15 of the pair of electrical conductors 13 and 15.
  • a pair of getters 51 and 53 are affixed to the electrical conductors 13 and 15 and serve to provide and maintain the vacuum within the evacuated outer envelope 7 and the domed quartz sleeve 23.
  • a preferred configuration. suitable for use in a metal halide lamp of a size in the range of about 40 to 150 watts for example, would have an inner diameter of about 10mm and an arc length between the electrodes 41 and 43 of about 14mm.
  • each of the ends of the arc tube 31 immediately adjacent and including the press seals 33 and 35 is coated with a white zirconium oxide paint in order to provide a wall temperature of increased uniformity.
  • a wall loading in the range of about 14 to 17 watts/cm 2 is preferable and now attainable in metal halide lamps of a size in the range of about 40 to 150-watts, and of the above-mentioned configuration.
  • the comparison graph of FIG. 2 illustrates various ratios of sodium and scandium iodides as plotted on chromaticity coordinates (x and y) of a standard chromaticity chart.
  • the molar ratio of sodium to scandium iodide which most closely approaches the highly desirable black body (BB) curve representative of the output of an incandescent lamp is a molar ratio in the range of about 20:1 to 28:1. More specifically, a sodium to scandium iodide molars ratio of about 24:1 appears to be a highly desirable fill condition for metal halide discharge lamps.
  • the above-mentioned highly desirable sodium to scandium iodide molar ratios are biased toward the red side (below the BB curve) which is preferable in terms of general illumination applications.
  • the color temperatures (Tc) and general color rendering index (CRI) for the above-mentioned lamps having various molar ratios is illustrated in FIG. 3.
  • Tc color temperatures
  • CRI general color rendering index
  • FIG. 3 the previously-mentioned desirable molar range of about 20:1 to 28:1 of sodium to scandium iodides provides a desired color temperature of about 3000°K within a range of not more or less than about 200°K.
  • the sodium to scandium iodide molar ratio of about 24:1 appears to very closely approach the desired 3000°K color temperature.
  • comparison graph of FIG. 3 also illustrates the constant color rendering index (CRI) at various molar ratios of sodium to scandium iodide.
  • CRI constant color rendering index
  • the lamp efficiency at the above-mentioned varying molar ratios of sodium to scandium iodides is illustrated in FIG. 4.
  • a sodium to scandium iodide molar ratio of about 24:1 provides a desirable efficiency of about 100 lumens per watt (LPW).
  • LPW lumens per watt
  • this desirable 100 LPW capability remains substantially constant over a sodium to scandium iodide molar ratio in the range of about 20:1 to 28:1.
  • cesium iodide into the lamp dosage enhances the starting time of the discharge lamp.
  • cesium iodide in the range of about 0.3 to 1.0 mg in the above-mentioned lamps. It was found that the lamp starting could be reduced from an average of about one to one and one-half (1-1 1/2) minutes without the cesium iodide to virtual instantaneous starting (less than 1-sec) when a dosage of about 0.5 mg was employed. Lesser amounts of cesium iodide provide much smaller improvements in starting time while greater amounts tended to degrade lamp efficiency and warm color characteristics. Thus.
  • the preferred dosage for a metal halide discharge lamp having a volume of about 1 cm 3 and a wattage in the range of about 40 to 150 watts includes about 12mg of sodium, scandium and cesium iodides in the molar ratio of about 24:1 : 0.6.

Landscapes

  • Discharge Lamp (AREA)
EP19850110460 1984-08-20 1985-08-20 Lampe à halogénure métallique à basse puissance Expired EP0173235B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64200984A 1984-08-20 1984-08-20
US642009 1984-08-20

Publications (3)

Publication Number Publication Date
EP0173235A2 true EP0173235A2 (fr) 1986-03-05
EP0173235A3 EP0173235A3 (en) 1988-10-19
EP0173235B1 EP0173235B1 (fr) 1991-06-26

Family

ID=24574787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850110460 Expired EP0173235B1 (fr) 1984-08-20 1985-08-20 Lampe à halogénure métallique à basse puissance

Country Status (4)

Country Link
EP (1) EP0173235B1 (fr)
JP (1) JPS6164060A (fr)
CA (1) CA1246653A (fr)
DE (1) DE3583314D1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359200A2 (fr) * 1988-09-12 1990-03-21 Gte Products Corporation Lampe à décharge à halogénures métalliques à rendu de couleurs amélioré
EP0535311A1 (fr) * 1991-09-30 1993-04-07 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à haute pression de faible puissance
EP0616358A1 (fr) * 1993-03-19 1994-09-21 Osram Sylvania Inc. Lampe à arc à halogénure métallique avec une gaine de rétention de verre
US5576591A (en) * 1993-05-24 1996-11-19 Blv Licht-Und Vakuumtechnik Gmbh Gas discharge lamp having a transparent envelope bulk and a bursting guard

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510274Y2 (ja) * 1990-01-25 1996-09-11 カルソニック株式会社 自動車用空気調和装置の配管用継手
US6376988B1 (en) 1998-08-28 2002-04-23 Matsushita Electric Industrial Co., Ltd. Discharge lamp for automobile headlight and the automobile headlight

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923961A (en) * 1958-05-06 1963-04-18 A E I Lamp And Lighting Compan Improvements relating to electric discharge lamps

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725946B2 (fr) * 1973-07-19 1982-06-01
JPS57197740A (en) * 1982-05-14 1982-12-04 Hitachi Ltd Metal halide lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923961A (en) * 1958-05-06 1963-04-18 A E I Lamp And Lighting Compan Improvements relating to electric discharge lamps

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE ILLUMINATING ENGINEERING SOCIETY, vol. 11, no. 2, January 1982, pages 66-72, New York, US; W.H. LAKE et al.: "Low wattage metal halide lamps" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359200A2 (fr) * 1988-09-12 1990-03-21 Gte Products Corporation Lampe à décharge à halogénures métalliques à rendu de couleurs amélioré
EP0359200A3 (fr) * 1988-09-12 1991-05-08 Gte Products Corporation Lampe à décharge à halogénures métalliques à rendu de couleurs amélioré
EP0535311A1 (fr) * 1991-09-30 1993-04-07 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à haute pression de faible puissance
US5363007A (en) * 1991-09-30 1994-11-08 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Low-power, high-pressure discharge lamp, particularly for general service illumination use
EP0616358A1 (fr) * 1993-03-19 1994-09-21 Osram Sylvania Inc. Lampe à arc à halogénure métallique avec une gaine de rétention de verre
US5576591A (en) * 1993-05-24 1996-11-19 Blv Licht-Und Vakuumtechnik Gmbh Gas discharge lamp having a transparent envelope bulk and a bursting guard

Also Published As

Publication number Publication date
DE3583314D1 (de) 1991-08-01
EP0173235A3 (en) 1988-10-19
JPS6164060A (ja) 1986-04-02
EP0173235B1 (fr) 1991-06-26
CA1246653A (fr) 1988-12-13

Similar Documents

Publication Publication Date Title
US4709184A (en) Low wattage metal halide lamp
US5057743A (en) Metal halide discharge lamp with improved color rendering properties
US3979624A (en) High-efficiency discharge lamp which incorporates a small molar excess of alkali metal halide as compared to scandium halide
US6833677B2 (en) 150W-1000W mastercolor ceramic metal halide lamp series with color temperature about 4000K, for high pressure sodium or quartz metal halide retrofit applications
US5708328A (en) Universal burn metal halide lamp
JPH1050256A (ja) 高効率放電ランプ
JPH0565977B2 (fr)
US3786297A (en) Discharge lamp which incorporates cerium and cesium halides and a high mercury loading
US6844676B2 (en) Ceramic HID lamp with special frame wire for stabilizing the arc
KR101445122B1 (ko) 높은 색 온도를 가진 방전 램프
US4978884A (en) Metal halide discharge lamp having low color temperature and improved color rendition
JP2003016998A (ja) メタルハライドランプ
US4757236A (en) High pressure metal halide arc lamp with xenon buffer gas
JP3965948B2 (ja) メタルハライドランプ
EP0173235B1 (fr) Lampe à halogénure métallique à basse puissance
EP0183247A2 (fr) Lampe à arc à haute pression à halogène de métal à xénon comme gaz tampon
EP0359200B1 (fr) Lampe à décharge à halogénures métalliques à rendu de couleurs amélioré
US5225733A (en) Scandium halide and alkali metal halide discharge lamp
US5334906A (en) Metal halide arc discharge lamp having short arc length
EP0784334A1 (fr) Lampe à halogénures métalliques
US5192891A (en) Metal halide lamp
US20030025455A1 (en) Ceramic HID lamp with special frame for stabilizing the arc
JP3159594B2 (ja) メタルハライドランプ
CA1246132A (fr) Positionnment d'electrodes de lampes a halogenure metallise
EP0583113B1 (fr) Tube à arc pour lampe à décharge et méthode de fabrication d'un tube à arc pour lampe à décharge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850820

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

17Q First examination report despatched

Effective date: 19890726

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3583314

Country of ref document: DE

Date of ref document: 19910801

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920729

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920817

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920827

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920831

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920930

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930831

BERE Be: lapsed

Owner name: GTE PRODUCTS CORP.

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST