EP0171558A2 - Heat-exchange apparatus - Google Patents

Heat-exchange apparatus Download PDF

Info

Publication number
EP0171558A2
EP0171558A2 EP85107952A EP85107952A EP0171558A2 EP 0171558 A2 EP0171558 A2 EP 0171558A2 EP 85107952 A EP85107952 A EP 85107952A EP 85107952 A EP85107952 A EP 85107952A EP 0171558 A2 EP0171558 A2 EP 0171558A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
gas
cooling
exchanger according
tube bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85107952A
Other languages
German (de)
French (fr)
Other versions
EP0171558B1 (en
EP0171558A3 (en
Inventor
Georg Hirschle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Priority to AT85107952T priority Critical patent/ATE46031T1/en
Publication of EP0171558A2 publication Critical patent/EP0171558A2/en
Publication of EP0171558A3 publication Critical patent/EP0171558A3/en
Application granted granted Critical
Publication of EP0171558B1 publication Critical patent/EP0171558B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1823Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines for gas-cooled nuclear reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1869Hot gas water tube boilers not provided for in F22B1/1807 - F22B1/1861
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/20Supporting arrangements, e.g. for securing water-tube sets
    • F22B37/205Supporting and spacing arrangements for tubes of a tube bundle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/40Shell enclosed conduit assembly
    • Y10S165/401Shell enclosed conduit assembly including tube support or shell-side flow director
    • Y10S165/405Extending in a longitudinal direction
    • Y10S165/414Extending in a longitudinal direction for supporting coil tubes

Definitions

  • the invention relates to a heat exchanger with a pressure vessel, in particular for the cooling of gas from a high-temperature reactor, wherein there is a cylindrical gas duct containing a bundle of cooling tubes in the pressure vessel, which leads a gas to be cooled from an inlet area to an outlet area and which is between itself and leaves the adjacent, outer tubes of the tube bundle an annular gap channel which is dimensioned such that at operating temperature the average temperature of the gas emerging from the gap channel is substantially equal to the average temperature of the gas emerging from the other tube bundle.
  • Such a heat exchanger is known in which a hot gas - for example helium - is cooled by water circulating in the cooling tubes, which evaporates in the process.
  • This heat exchanger has no particular problems at relatively low gas temperatures.
  • gas temperatures for example 900 0 C
  • the gas flue has a large diameter, for example more than 3.5 m, as occurs, for example, in heat exchangers for cooling helium from a high-temperature reactor, considerable so-called gap losses occur when flowing through the gap channel.
  • This object is achieved according to the invention in that means are provided by which the average heat flow density through the wall of the outer cooling tubes is kept substantially equal to the average heat flow density through the wall of the other tubes of the cooling tube bundle. Because the average heat flow density through the wall of the cooling tubes is kept the same in the entire cooling tube bundle with the means according to the invention, the gap losses can be avoided in a simple and reliable manner. This means that excess temperatures can no longer occur. Due to the omission of means that contain the gas flow through the gap channel, the behavior of the heat exchanger according to the invention can be determined particularly well by calculation.
  • the cooling of the inside of the throttle cable according to claim 7 represents a further advantageous embodiment of the invention, wherein in the case of further development according to Claim 14 an almost complete alignment of the fluidic and thermodynamic conditions in the gap channel to those in the cooling tube bundle is achieved.
  • the measure according to claim 11 enables the removal of additional heat from the gap channel without increasing the heat flow density through the tube walls of the outer cooling tubes.
  • deflecting means causes cooling of the gap channel, the heat from this area being distributed to at least part of the cooling tube bundle, so that the heat flow density in the bundle is evened out and excess temperatures are prevented.
  • the known heat exchanger according to Fig. 1 has a cylindrical pressure vessel 2, which is closed by a lower, outwardly curved bottom.
  • a gas inlet connection 3 is provided near the lower end of the pressure vessel 2, via which hot helium gas is supplied from a high-temperature reactor, not shown.
  • the container 2 In its upper region, the container 2 is provided with a gas outlet cover 4 which is curved downwards and has a central opening, which is supported on an edge 15 which projects into the interior of the pressure container 2 and is fastened to the latter by means of screws, not shown.
  • a tube bundle 5 is arranged, which consists of approximately 500 water or steam-carrying cooling tubes. The cooling tubes are bent over most of their length along helical lines, the tubes of the outermost tube cylinder of the tube bundle 5 being designated 7 and the remaining tubes of the tube bundle being designated 6.
  • the pressure vessel 2 has a steam outlet connector 10 and below this a water inlet connector 9. Both nozzles expand within the pressure vessel 2 and each end in a vertical tube plate 10 'or 9' with horizontal bores.
  • an essentially C-shaped tube box 11 is attached to the steam outlet nozzle 10, to which a central tube 12 connects coaxially to the pressure vessel 2, which extends to below the gas inlet nozzle 3.
  • the cooling pipes 6 and 7 are connected at their one ends to the pipe plate 9 'of the water inlet connector 9 and at their other ends to the pipe plate 10' of D ampfausbergsstutzens 10. 3ie spread, from the tube plate 9 'starting initially uniformly around the central tube 12 and then go around concentrically to the central pipe 12 in the helical shape about. Below the gas inlet connection 3, they are bent toward the central tube 12 and penetrate a horizontal end plate 12 'which is tightly inserted into the central tube at the bottom.
  • a cylindrical jacket 14 which is coaxial with the tank 2 and surrounds the tube bundle 5 and rests on an inner, horizontal flange 2 'of the pressure vessel 2 arranged below the water inlet connector 9, which forms the accelerator cable and extends to below the cooling tubes 6, 7.
  • the inside of the jacket 14 and a theoretical vertical cylinder on which the axes of the helically curved outer cooling tubes 7 lie define an annular gap channel 8 with a gap width d.
  • An inner flange 14 'near the lower end of the jacket 14 guides the cooling pipes 6, 7 in their course between the support plates 13 and the end plate 12'.
  • a plurality of perforated plates, not shown, are arranged within the central tube 12 and the tube box 11 and serve to support the cooling tubes laterally.
  • the width d of the gap channel 8 increases by a certain amount due to thermal expansion of the jacket 14 and the tube bundle 5, whereby - as already described above - the amount of helium gas flowing through the gap channel 8 increases disproportionately more than the gap width .
  • an increase in the gap width of 5 mm can increase the effective gas flow rate through the gap channel 8 by approximately 30%.
  • the temperature of the helium gas in the gap channel 8 also rises correspondingly strongly, since the amount of heat additionally entrained by the increased gas flow rate cannot easily be removed from the outer cooling tubes 7. With the assumed increase of 5 mm, the temperature increase is already more than 20 ° C.
  • the jacket 14 has eight vertical slots distributed over its circumference, of which FIG. 2 shows two. In the area of each slot, the jacket is cranked outwards - parallel to the slot. In each case the two end faces 24 '' of the cranks 24 'thus formed delimit a slot. Two adjacent cranks 24' are slidably guided between two metal strips 20 'which are held together by pins 21 which penetrate radially through the slot. Each pin 21 is by a spacer sleeve 22 surround, which determines the mutual distance between two sheet metal strips 20.
  • the surfaces of the cranks 24 'sliding on the sheet metal strips 20 are coated with a material which has good sliding properties, and the pins 21 are connected to the sheet metal strips 20 by welding the vertical length of the slots uniformly distributed tensioning cables 25, which are supported on the jacket 14 by cubes 27 and whose ends are connected to one another by means of tensioning sleeves 26.
  • the tensioning cables 25 are made of a material which has a smaller tangential thermal expansion than that of the jacket 14; they thus cause that with increasing temperature of the helium gas, the cranks 24 'between the sheet metal strips 20 slide tangentially against one another in pairs, the diameter of the jacket 14 remaining essentially the same and the gap width d decreasing as a result of the radial thermal expansion of the cooling tube bundle 5.
  • the support plates 13 have a smaller radial dimension than in FIG. 1, so that they only accommodate the cooling tubes 6 of the tube bundle 5.
  • the outer cooling tubes 7 of the tube bundle 5 are screwed into eight radial webs 140, each aligned with a support plate 13, which are made in one piece with the jacket 14 or are welded to the jacket in the form of strips.
  • the outer cooling tubes 7 are carried along by the jacket 14 when the diameter is increased, so that the gap width d - apart from a small radial thermal expansion of the cooling tubes 7 themselves and the linear thermal expansion of the webs 140 - remains practically constant at all temperatures.
  • the jacket 14 is cooled on the inside by means of additional helical cooling tubes 30.
  • the jacket cooling tubes 30 have the same diameter as the cooling tubes 6, 7 and also have the same pitch as this.
  • the horizontal distance between the jacket cooling tubes 30 and the outer cooling tubes 7 is approximately equal to the horizontal distance between the adjacent cooling tubes 6 and 7 in the cooling tube bundle 5.
  • helical sheet-metal strips 31 are provided, which have a plurality of pins welded to the jacket 14 32 are attached.
  • the strips 31 and the Pins 32 are connected to one another via welding bores 31 'which are provided in the strips.
  • Some strips 31 are welded in pairs of sheet-steel brackets 33, which are bent into a quarter-circle shape and which each abut a jacket cooling tube 30 and serve as tube holders.
  • Each pair of brackets 33 is fixed in position by a reinforcing plate 34 connecting them.
  • the sheet metal strips 31 delimit a cylindrical surface on which the helically bent tube axis of the jacket cooling tubes 30 lies and which is used to measure the width d of the gap channel 8, which in this case is equal to the horizontal distance between the cooling tubes 5 and 7.
  • This embodiment is particularly advantageous at very high operating temperatures because the jacket cooling tubes 30 are attached to the jacket 14 in a simple and inexpensive manner without weld seams.
  • the amount of cooling water flowing through the jacket cooling tubes 30 is adjusted by means of throttling elements, not shown, such that the cooling of the helium gas in the gap channel 8 is equal to the cooling in the tube bundle 5.
  • Another advantage of this embodiment is that the gas-side flow conditions in the gap channel 8 can be substantially matched to the gas-side flow conditions in the tube bundle 8.
  • the cooling of the jacket 14 can also be achieved with the embodiments according to FIGS. 7 to 12 while maintaining the adjusted flow conditions.
  • the jacket 14 is designed as a so-called membrane wall, in that the jacket cooling tubes 30 are welded to one another in a gas-tight manner by means of webs 141.
  • the jacket cooling tubes 30 are embedded in a groove which is worked into the jacket 14 according to a helical line.
  • the jacket cooling water circulates in a helical one Channel which is formed by half pipes 35 welded tightly to the smooth cylindrical inside of the jacket 14.
  • a corrugated sheet 36 or 36 ' is provided instead of the half-tubes 35. 10
  • the corrugated sheet 36 is in turn welded to the smooth, cylindrical inside of the casing 14, whereas in FIG.
  • the corrugated sheet 36 ' is welded together with webs 141' which together form the wall of the casing 14.
  • the jacket 14 is formed by tubes 37 which are welded to one another and are helically wound and which are produced in one piece with fins which are located on one side outside the tube axis.
  • horizontal, piston ring-like, flat steel rings 40 are clamped in suitable grooves on the inside of the jacket 14.
  • the steel rings 40 form a kind of labyrinth seal along the inside, which throttles the helium gas flow in the gap channel 8 and at the same time swirls it strongly. This reduces the flow rate and improves cooling in the gap channel 8.
  • the jacket 14 is designed such that the gap channel 8 has a variable gap width in the vertical direction, in that narrower gap cross sections alternate with further gap cross sections. This produces a similar effect to that of the steel rings 40 in FIG. 13. This embodiment is largely insensitive to manufacturing-related deviations in the gap width.
  • the outer cooling tubes 7 according to FIG. 15 have a larger diameter than the cooling tubes 6 of the tube bundle 5 and have the same wall thickness as these. There through, the outer cooling tubes 7, when the gap width is larger at operating temperature, can dissipate more heat from the correspondingly larger amount of gas flowing through the gap channel 8 without the heat flow density through their walls exceeding the heat flow density through the walls of the other cooling tubes 6.
  • a temperature sensor 60 monitors the temperature of the helium gas in the gap channel 8 and controls a control valve 62, which is provided for each outer cooling tube 7, via a signal line 61 in a manner known per se.
  • the amount of cooling water through the outer cooling tubes 7 is regulated so that the average temperature of the helium gas in the gap channel 8 remains the same as the average temperature of the helium gas in the area of the cooling tubes 6 of the tube bundle 5 and that the average heat flow density through the wall of the cooling tubes 6, on the one hand, and the outside Cooling tubes 7, on the other hand, is also kept the same.
  • a plurality of ring-shaped baffle plates 50 of different diameters are staggered in the tube bundle 5 in such a way that they conduct helium gas from the interior of the tube bundle in the direction of the gap channel 8 and also enable helium gas from the gap channel 8 back into the interior of the tube bundle 5 is pushed. This results in a uniformization of the temperatures of the gas in the gap channel 8 and in the remaining area of the cooling tube bundle 5.
  • the baffle plates 50 are connected to the support plates 13, so that the heat absorbed by the baffle plates flows through the support plates to the cooling tubes 6, 7, whereby the Cooling of the baffles is guaranteed.
  • the outer cooling tubes 7 can be provided with a larger slope than the other cooling tubes 6, so that cooler cooling water is available in the area of the gap channel 8 for each height level than in the other areas of the tube bundle 5.
  • the greater slope of the outer cooling tubes 7 allows relatively large amounts of heat to be removed from the gap duct 8 without excessive temperatures occurring in the gas flue.
  • the invention can e.g. also apply to heat exchangers with straight or meandering cooling tubes. It is also possible to arrange the cylindrical throttle cable horizontally or otherwise inclined.
  • control of the temperature in the gap channel 8 according to FIG. 15 can be used in all embodiments of the invention.

Abstract

The heat exchanger is constructed in various embodiments such that the crevice duct between the outermost coil of tubes and the jacket defining the crevice duct is maintained at a constant width during operation. In some embodiments, the outermost coil tubes is carried on the jacket to maintain a constant width of the crevice duct. In other embodiments, a separate set of cooling tubes in provided to maintain the jacket cool. In other embodiments, the amount of heat drawn off through the outermost coil of tubes is increased.

Description

Die Erfindung betrifft einen Wärmeübertrager mit einem Druckbehälter, insbesondere für die Kühlung von Gas aus einem Hochtemperaturreaktor, wobei sich in dem Druckbehälter ein zylindrischer, ein Kühlrohrbündel enthaltender Gaszug befindet, der ein zu kühlendes Gas von einem Eintrittsbereich zu einem Austrittsbereich führt und der zwischen sich und den benachbarten,äusseren Rohren des Rohrbündels einen ringförmigen Spaltkanal freilässt, der so bemessen ist, dass bei Betriebstemperatur die durchschnittliche Temperatur des aus dem Spaltkanal austretenden Gases im wesentlichen gleich der durchschnittlichen Temperatur des aus dem übrigen Rohrbündel austretenden Gases ist.The invention relates to a heat exchanger with a pressure vessel, in particular for the cooling of gas from a high-temperature reactor, wherein there is a cylindrical gas duct containing a bundle of cooling tubes in the pressure vessel, which leads a gas to be cooled from an inlet area to an outlet area and which is between itself and leaves the adjacent, outer tubes of the tube bundle an annular gap channel which is dimensioned such that at operating temperature the average temperature of the gas emerging from the gap channel is substantially equal to the average temperature of the gas emerging from the other tube bundle.

Es ist ein solcher Wärmeübertrager bekannt, in dem ein heisses Gas - z.B. Helium - von in den Kühlrohren zirkulierendem Wasser gekühlt wird, das dabei verdampft. Bei relativ niedrigen Gastemperaturen weist dieser Wärmeübertrager keine besonderen Probleme auf. Bei höheren Gastemperaturen jedoch, z.B. 9000C, und vor allem bei grossem Durchmesser des Gaszuges, z.B. mehr als 3,5 m, wie sie z.B. bei Wärmeübertragern zur Kühlung von Helium aus einem Hochtemperaturreaktor vorkommen, treten beim Durchströmen des Spaltkanals beachtliche, sogenannte Spaltverluste auf. Ursache dafür ist die beim Uebergang zur Betriebstemperatur grössere radiale Wärmedehnung des zylindrischen Gaszuges gegenüber der radialen Wärmedehnung des Kühlrohrbündels, wodurch der Spaltkanal eine unverhältnismässig grosse Querschnittszunahme aufweist, so dass dann eine beträchtliche, ungenügend gekühlte Gasmenge durch den Spaltkanal strömt. Zusätzlich entsteht - über den Umfang des Spaltkanals gesehen - infolge unvermeidlicher Herstellungsungenauigkeiten des Wärmeübertragers eine schlechte Gasverteilung im Spaltkanal, wodurch heisse Gassträhnen im Austrittsbereich des Wärmeübertragers gebildet werden. Wegen der hohen Temperaturen vollziehen sich Wärmeübertragungsvorgänge so intensiv, dass in kürzester Zeit wesentlicheUebertemperaturen und damit zusammenhängende Festigkeitsverminderungen sowie Wärmespannungen bzw. Verformungen auftreten können. Somit können die Spaltverluste unter Umständen die Anwendbarkeit des bekannten Wärmeübertragers für hohe Temperaturen in Frage stellen.Such a heat exchanger is known in which a hot gas - for example helium - is cooled by water circulating in the cooling tubes, which evaporates in the process. This heat exchanger has no particular problems at relatively low gas temperatures. At higher gas temperatures, however, for example 900 0 C, and before Especially when the gas flue has a large diameter, for example more than 3.5 m, as occurs, for example, in heat exchangers for cooling helium from a high-temperature reactor, considerable so-called gap losses occur when flowing through the gap channel. The reason for this is the greater radial thermal expansion of the cylindrical gas flue at the transition to the operating temperature compared to the radial thermal expansion of the cooling tube bundle, as a result of which the gap duct has a disproportionately large increase in cross section, so that a considerable, insufficiently cooled gas flow then flows through the gap duct. In addition, as seen over the circumference of the gap channel, poor gas distribution in the gap channel arises as a result of inevitable manufacturing inaccuracies of the heat exchanger, as a result of which hot gas streaks are formed in the outlet area of the heat exchanger. Because of the high temperatures, heat transfer processes take place so intensely that significant excess temperatures and associated reductions in strength as well as thermal stresses or deformations can occur in the shortest possible time. Under certain circumstances, the gap losses can question the applicability of the known heat exchanger for high temperatures.

Die bisherigen Versuche, das Problem der Spaltverluste zu lösen, sind davon ausgegangen, den Gasstrom im Spaltkanal einzudämmen, z.B. mittels Füllkörpern, quer zum Gasstrom gestellten, in das Rohrbündel ragenden Rippen und dgl. Solche Massnahmen sind jedoch bei hohen Temperaturen nicht anwendbar, da sie wegen der Materialanhäufungen zu Uebertemperaturen im Bereich des Spaltkanals führen. Darüber hinaus ergibt sich ein thermodynamisch sehr komplexes Verhalten, das sowohl rechnerisch als auch versuchsmässig schwer erfassbar ist. Es ist Aufgabe der Erfindung, beim Wärmeübertrager der obigen Gattung auf sichere, einfache und kostengünstige Weise unter Vermeidung von Uebertemperaturen die beim Uebergang zur Betriebstemperatur zunehmenden Spaltverluste weitgehend zu eliminieren, so dass der Wärmeübertrager insbesondere für hohe Gastemperaturen und grosse Durchmesser angewendet werden kann.The previous attempts to solve the problem of gap losses have assumed that the gas flow in the gap channel is contained, for example by means of packing elements, ribs placed transversely to the gas flow and protruding into the tube bundle, and the like.However, such measures cannot be used at high temperatures because they lead to excess temperatures in the area of the gap channel due to the material accumulation. In addition, there is a thermodynamically very complex behavior that is difficult to ascertain both mathematically and experimentally. It is an object of the invention to largely eliminate the gap losses increasing at the transition to the operating temperature in the heat exchanger of the above type in a safe, simple and inexpensive manner while avoiding excess temperatures, so that the heat exchanger can be used in particular for high gas temperatures and large diameters.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass Mittel vorgesehen sind, durch die die durchschnittliche Wärmestromdichte durch die Wand der äusseren Kühlrohre im wesentlichen gleich der durchschnittlichen Wärmestromdichte durch die Wand der übrigen Rohre des Kühlrohrbündels gehalten wird. Dadurch, dass mit den erfindungsgemässen Mitteln die durchschnittliche Wärmestromdichte durch die Wand der Kühlrohre im ganzen Kühlrohrbündel gleich gehalten wird, lassen sich die Spaltverluste auf einfache und sichere Weise vermeiden. Damit können keine Uebertemperaturen mehr auftreten. Wegen des Verzichts auf Mittel, die den Gasstrom durch den Spaltkanal eindämmen, wird das Verhalten des erfindungsgemässen Wärmeübertragers rechnerisch besonders gut erfassbar.This object is achieved according to the invention in that means are provided by which the average heat flow density through the wall of the outer cooling tubes is kept substantially equal to the average heat flow density through the wall of the other tubes of the cooling tube bundle. Because the average heat flow density through the wall of the cooling tubes is kept the same in the entire cooling tube bundle with the means according to the invention, the gap losses can be avoided in a simple and reliable manner. This means that excess temperatures can no longer occur. Due to the omission of means that contain the gas flow through the gap channel, the behavior of the heat exchanger according to the invention can be determined particularly well by calculation.

Durch die Ausbildung der Mittel nach Anspruch 2 wird auf die Ursache der Spaltverluste direkt eingewirkt, um ihre Entstehung zu verhindern. Die Ansprüche 3, 4 und 6 kennzeichnen drei verschiedene Ausführungsformen, wobei die Wirksamkeit der Ausführungsform nach Anspruch 4 durch die Weiterbildung nach Anspruch 5 wesentlich erhöht wird.The formation of the means according to claim 2 acts directly on the cause of the gap losses in order to prevent their occurrence. Claims 3, 4 and 6 characterize three different embodiments, the effectiveness of the embodiment according to claim 4 being substantially increased by the further development according to claim 5.

Die Kühlung der Innenseite des Gaszuges gemäss Anspruch 7 stellt eine weitere vorteilhafte Ausführungsform der Erfindung dar, wobei im Falle der Weiterbildung gemäss Anspruch 14 eine nahezu komplette Angleichung der strömungstechnischen und thermodynamischen Verhältnisse im Spaltkanal an diejenigen im Kühlrohrbündel erreicht wird.The cooling of the inside of the throttle cable according to claim 7 represents a further advantageous embodiment of the invention, wherein in the case of further development according to Claim 14 an almost complete alignment of the fluidic and thermodynamic conditions in the gap channel to those in the cooling tube bundle is achieved.

Die Weiterbildungen nach den Ansprüchen 8 und 9 bewirken durch Vergrössern der Druckverluste des Gases eine Verringerung der Durchflussmenge durch den Spaltkanal, und die in diesem Kanal entstehende Turbulenz verbessert sowohl den Wärmeübergang als auch die Temperaturverteilung im Bereich des Spaltkanals. Bei engem Spalt wird die Variante nach Anspruch 8,bei einem grösseren spalt diejenige nach Anspruch 9 bevorzugt. Die letztgenannte Variante kann so ausgelegt werden, dass im Spaltkanal auch Strömungen quer zur Längsachse des Gaszuges entstehen.The developments according to claims 8 and 9 bring about a reduction in the flow rate through the gap channel by increasing the pressure losses of the gas, and the turbulence arising in this channel improves both the heat transfer and the temperature distribution in the area of the gap channel. With a narrow gap, the variant according to claim 8 is preferred, with a larger gap that according to claim 9 is preferred. The latter variant can be designed so that currents also arise in the gap channel transverse to the longitudinal axis of the throttle cable.

Die Gestaltung der Innenseite des Gaszuges gemäss Anspruch 10 hat ähnliche Wirkungen wie diejenigen nach den Ansprüchen 8 und 9, hat jedoch - bei manchen Anwendungsfällen - Vorteile in bezug auf die Herstellung.The design of the inside of the throttle cable according to claim 10 has similar effects as those according to claims 8 and 9, but has - in some applications - advantages in terms of manufacture.

Die Massnahme nach Anspruch 11 ermöglicht die Abfuhr von zusätzlicher Wärme aus dem Spaltkanal, ohne Zunahme der Wärmestromdichte durch die Rohrwände der äusseren Kühlrohre.The measure according to claim 11 enables the removal of additional heat from the gap channel without increasing the heat flow density through the tube walls of the outer cooling tubes.

Die Anordnung von Umlenkmitteln gemäss Anspruch 12 bewirkt eine Kühlung des Spaltkanals, wobei die Wärme aus diesem Bereich auf mindestens einen Teil des Kühlrohrbündels verteilt wird, so dass die Wärmestromdichte im Bündel vergleichmässigt und Uebertemperaturen verhindert werden.The arrangement of deflecting means according to claim 12 causes cooling of the gap channel, the heat from this area being distributed to at least part of the cooling tube bundle, so that the heat flow density in the bundle is evened out and excess temperatures are prevented.

Einige Ausführungsbeispiele der Erfindung werden in der folgenden Beschreibung anhand der Zeichnung näher erläutert und ihre Vorteile deutlicher hervorgehoben. Es zeigen:

  • Fig. 1 einen schematischen Längsschnitt durch einen bekannten, vertikal angeordneten Wärmeübertrager zur Kühlung von Helium aus einem Hochtemperaturreaktor,
  • Fig. 2 eine Draufsicht auf das Detail A der Fig. 1 bei einem nach der Erfindung ausgebildeten Wärmeübertrager, in grösserem Massstab als Fig. l,
  • Fig. 3 einen Schnitt nach der Ebene III - III in Fig. 2, jedoch in kleinerem Massstab als Fig. 2,
  • Fig. 4 eine Draufsicht des Details A der Fig. 1 bei einer anderen Ausführungsform der Erfindung, in vergrössertem Massstab,
  • Fig. 5 einen Schnitt nach der Ebene IV - IV in Fig. 5,
  • Fig. 6 einen vertikalen Schnitt des Details A in Fig. 1 bei einer weiteren Ausführungsform der Erfindung, in vergrössertem Massstab,
  • Fig. 7 bis 12 je ein weiteres Ausführungsbeispiel in kleinerem Massstab als Fig. 6 und
  • Fig. 13 bis 16 je einen vertikalen Schnitt des Details A in Fig. 1 bei weiteren Ausführungsformen der Erfindung.
Some embodiments of the invention are in the following description explained in more detail with reference to the drawing and their advantages highlighted more clearly. Show it:
  • 1 shows a schematic longitudinal section through a known, vertically arranged heat exchanger for cooling helium from a high-temperature reactor,
  • 2 is a plan view of detail A of FIG. 1 in a heat exchanger designed according to the invention, on a larger scale than FIG. 1,
  • 3 shows a section along the plane III-III in FIG. 2, but on a smaller scale than FIG. 2,
  • 4 is a plan view of detail A of FIG. 1 in another embodiment of the invention, on an enlarged scale,
  • 5 shows a section along the plane IV-IV in FIG. 5,
  • 6 shows a vertical section of detail A in FIG. 1 in a further embodiment of the invention, on an enlarged scale,
  • 7 to 12 each another embodiment on a smaller scale than Fig. 6 and
  • 13 to 16 each a vertical section of the detail A in Fig. 1 in further embodiments of the invention.

Der bekannte Wärmeübertrager nach Fig. 1 weist einen zylindrischen Druckbehälter 2 auf, der durch einen unteren, nach aussen gewölbten Boden geschlossen ist. Nahe dem unteren Ende des Druckbehälters 2 ist ein Gaseintrittsstutzen 3 vorgesehen, über den heisses Heliumgas aus einem nicht gezeigten Hochtemperaturreaktor_zugeführt wird. In seinem oberen Bereich ist der Behälter 2 mit einem nach unten gewölbten, eine zentrale Oeffnung aufweisenden Gasaustrittsdeckel 4 versehen, der sich auf einem in das Innere des Druckbehälters 2 vorstehenden Rand 15 abstützt und an diesem mittels nicht gezeichneter Schrauben befestigt ist. In der unteren Partie des Druckbehälters 2 ist ein Rohrbündel 5 angeordnet, das aus ca. 500 wasser- bzw. dampfführenden Kühlrohren besteht. Die Kühlrohre sind über den grössten Teil ihrer Länge nach Schraubenlinien gebogen, wobei die Rohre des äussersten Rohrzylinders des Rohrbündels 5 mit 7 und die übrigen Rohre des Rohrbündels mit 6 bezeichnet sind.The known heat exchanger according to Fig. 1 has a cylindrical pressure vessel 2, which is closed by a lower, outwardly curved bottom. A gas inlet connection 3 is provided near the lower end of the pressure vessel 2, via which hot helium gas is supplied from a high-temperature reactor, not shown. In its upper region, the container 2 is provided with a gas outlet cover 4 which is curved downwards and has a central opening, which is supported on an edge 15 which projects into the interior of the pressure container 2 and is fastened to the latter by means of screws, not shown. In the lower part of the pressure vessel 2, a tube bundle 5 is arranged, which consists of approximately 500 water or steam-carrying cooling tubes. The cooling tubes are bent over most of their length along helical lines, the tubes of the outermost tube cylinder of the tube bundle 5 being designated 7 and the remaining tubes of the tube bundle being designated 6.

Nahe unterhalb des Gasaustrittsdeckels 4 weist der Druckbehälter 2 einen Dampfaustrittsstutzen 10 und unterhalb von diesem einen Wassereintrittsstutzen 9 auf. Beide Stutzen erweitern sich innerhalb des Druckbehälters 2 und enden in je einer vertikalen, horizontale Bohrungen aufweisenden Rohrplatte l0' bzw. 9'. Im Innern des Druckbehälters 2 ist an dem Dampfaustrittsstutzen 10 ein im wesentlichen C-förmiger Rohrkasten 11 befestigt, an dem sich ein Zentralrohr 12 koaxial zum Druckbehälter 2 anschliesst, das bis unterhalb des Gaseintrittsstutzens 3 reicht.Close below the gas outlet cover 4, the pressure vessel 2 has a steam outlet connector 10 and below this a water inlet connector 9. Both nozzles expand within the pressure vessel 2 and each end in a vertical tube plate 10 'or 9' with horizontal bores. In the interior of the pressure vessel 2, an essentially C-shaped tube box 11 is attached to the steam outlet nozzle 10, to which a central tube 12 connects coaxially to the pressure vessel 2, which extends to below the gas inlet nozzle 3.

Die Kühlrohre 6 und 7 sind mit ihren einen Enden an der Rohrplatte 9' des Wassereintrittsstutzens 9 angeschlossen und mit ihren anderen Enden an der Rohrplatte 10' des Dampfaustrittsstutzens 10. 3ie verteilen sich, von der Rohrplatte 9' ausgehend, zunächst gleichmässig um das Zentralrohr 12 herum und gehen dann konzentrisch zum Zentralrohr 12 in die schraubenlinienförmige Gestalt über. Unterhalb des Gaseintrittsstutzens 3 sind sie zum Zentralrohr 12 hin umgebogen und durchstossen eine in das Zentralrohr unten dicht eingesetzte, horizontale Abschlussplatte 12'. Die an der Durchstossstelle dicht eingeschweissten Kühlrohre 6, 7 erstrecken sich dann vertikal innerhalb des Zentralrohres 12 nach oben, verlaufen innerhalb des Rohrkastens 11 etwa C-förmig gebogen bis zur Rohrplatte 10'. Im Bereich ihres schraubenlinienförmigen Verlaufes sind die Kühlrohre 6, 7 in acht gleichmässig über den Umfang des Rohrbündels 5 verteilten Tragplatten 13 eingeschraubt, die am Zentralrohr 12 befestigt sind.The cooling pipes 6 and 7 are connected at their one ends to the pipe plate 9 'of the water inlet connector 9 and at their other ends to the pipe plate 10' of D ampfaustrittsstutzens 10. 3ie spread, from the tube plate 9 'starting initially uniformly around the central tube 12 and then go around concentrically to the central pipe 12 in the helical shape about. Below the gas inlet connection 3, they are bent toward the central tube 12 and penetrate a horizontal end plate 12 'which is tightly inserted into the central tube at the bottom. The cooling tubes 6, 7, which are welded in tightly at the piercing point, then extend vertically upward within the central tube 12, run inside the tube box 11 in an approximately C-shaped manner up to the tube plate 10 '. In the area of their helical course, the cooling tubes 6, 7 are screwed into eight support plates 13, which are evenly distributed over the circumference of the tube bundle 5 and are fastened to the central tube 12.

Auf einem inneren, unterhalb des Wassereintrittsstutzens 9 angeordneten, horizontalen Flansch 2' des Druckbehälters 2 ruht ein zylindrischer, zum Behälter 2 koaxialer und das Rohrbündel 5 umgebender Mantel 14, der den Gaszug bildet und sich bis unterhalb der Kühlrohre 6, 7 erstreckt. Die Innenseite des Mantels 14 und ein theoretischer vertikaler Zylinder, auf dem die Achsen der schraubenlinienförmig gebogenen, äusseren Kühlrohre 7 liegen, definieren einen ringförmigen Spaltkanal 8 mit einer Spaltbreite d. Ein Innenflansch 14' nahe dem unteren Ende des Mantels 14 führt die Kühlrohre 6, 7 in ihrem Verlauf zwischen den Tragplatten 13 und der Abschlussplatte 12'. Innerhalb des Zentralrohres 12 und des Rohrkastens 11 sind mehrere, nicht gezeigte Lochplatten angeordnet, die zum seitlichen Abstützen der Kühlrohre dienen.A cylindrical jacket 14, which is coaxial with the tank 2 and surrounds the tube bundle 5 and rests on an inner, horizontal flange 2 'of the pressure vessel 2 arranged below the water inlet connector 9, which forms the accelerator cable and extends to below the cooling tubes 6, 7. The inside of the jacket 14 and a theoretical vertical cylinder on which the axes of the helically curved outer cooling tubes 7 lie define an annular gap channel 8 with a gap width d. An inner flange 14 'near the lower end of the jacket 14 guides the cooling pipes 6, 7 in their course between the support plates 13 and the end plate 12'. A plurality of perforated plates, not shown, are arranged within the central tube 12 and the tube box 11 and serve to support the cooling tubes laterally.

Der Wärmeübertrager nach Fig. 1 funktioniert wie folgt:

  • Durch den Gaseintrittsstutzen 3 fliesst heisses Helium mit ca. 7000C und einem Druck von etwa 65 bar in den Druckbehälter 2, wo es sich in dem Ringraum zwischen dem Druckbehälter und dem Mantel 14 verteilt. Es strömt in dem Zwischenraum abwärts und fliesst dann innerhalb des Mantels 14 durch das Rohrbündel 5 nach oben und verlässt den Wärmeübertrager - immer noch einen Druck von ca. 65 bar, aber eine Temperatur von nur noch 280°C aufweisend - über die zentrale Oeffnung des Gasaustrittsdeckels 4. Das zur Kühlung des Heliumgases dienende Wasser tritt über den Wassereintrittsstutzen 9 mit ca. 200°C in die Kühlrohre 6, 7 ein, durchströmt deren schraubenlinienförmig gewickelten Abschnitte, wobei es verdampft und verlässt als Dampf mit etwa 530°C und 185 bar den Dampfaustrittsstutzen 10.
The heat exchanger according to Fig. 1 works as follows:
  • Hot helium flows at approximately 700 ° C. and a pressure of approximately 65 bar through the gas inlet nozzle 3 into the pressure vessel 2, where it is distributed in the annular space between the pressure vessel and the jacket 14. It flows downwards in the intermediate space and then flows upwards within the jacket 14 through the tube bundle 5 and leaves the heat exchanger - still at a pressure of approx. 65 bar, but at a temperature of only 280 ° C - via the central opening of the Gas outlet cover 4. The water used to cool the helium gas enters the cooling pipes 6, 7 via the water inlet connection 9 at approximately 200 ° C., flows through the helically wound sections thereof, evaporating and leaving as steam at approximately 530 ° C. and 185 bar the steam outlet connection 10.

Bei steigender Temperatur des Heliums bis zur Betriebstemperatur nimmt infolge Wärmedehnung des Mantels 14 und des Rohrbündels 5 die Breite d des Spaltkanals 8 um einen bestimmten Betrag zu, wobei - wie bereits oben beschrieben - die durch den Spaltkanal 8 fliessende Heliumgasmenge unverhältnismässig stärker zunimmt als die Spaltbreite. So kann eine Zunahme der Spaltbreite von 5 mm die effektive Gasdurchflussmenge durch den Spaltkanal 8 um etwa 30 % anwachsen lassen. Entsprechend stark nimmt auch die Temperatur des Heliumgases im Spaltkanal 8 zu, da die von der vergrösserten Gasdurchflussmenge zusätzlich mitgeführte Wärmemenge nicht ohne weiteres von den äusseren Kühlrohren 7 abgenommen werden kann. Bei der angenommenen Zunahme von 5 mm beträgt die Temperaturzunahme schon mehr als 20°C.When the temperature of the helium rises to the operating temperature, the width d of the gap channel 8 increases by a certain amount due to thermal expansion of the jacket 14 and the tube bundle 5, whereby - as already described above - the amount of helium gas flowing through the gap channel 8 increases disproportionately more than the gap width . Thus, an increase in the gap width of 5 mm can increase the effective gas flow rate through the gap channel 8 by approximately 30%. The temperature of the helium gas in the gap channel 8 also rises correspondingly strongly, since the amount of heat additionally entrained by the increased gas flow rate cannot easily be removed from the outer cooling tubes 7. With the assumed increase of 5 mm, the temperature increase is already more than 20 ° C.

Infolge von unvermeidlichen Herstellungsungenauigkeiten hinsichtlich der Form und der Abmessung des Gaszuges kann zusätzlich innerhalb des Spaltkanals 8 noch eine ungleichmässige Massenstrom- unc Temperaturverteilung auftreten, die dann zu den bereits erwähnten heissen Gasstränen führt.As a result of inevitable manufacturing inaccuracies with regard to the shape and dimension of the throttle cable, an additional one can also occur within the gap channel 8 uneven mass flow and temperature distribution occur, which then leads to the hot gas streams already mentioned.

Mit den in den Fig. 2 bis 16 gezeigten Ausführungsbeispielen der Erfindung kann den Spaltverlusten entgegengewirkt werden. Gemäss Fig. 2 und 3 weist der Mantel 14 acht über seinen Umfang verteilte, vertikale Schlitze auf, von denen Fig. 2 zwei zeigt. Im Bereich jedes Schlitzes ist der Mantel - parallel zum Schlitz - nach aussen gekröpft. Jeweils die beiden Stirnflächen 24" der so gebildeten Kröpfungen 24' begrenzen einen Schlitz. Je zwei benachbarte Kröpfungen 24' sind zwischen zwei Blechstreifen 20'gleitbar geführt, die mittels den Schlitz radial durchdringenden Stiften 21 zusammengehalten werden. Jeder Stift 21 ist von einer Distanzhülse 22 umgeben, die den gegenseitigen Abstand zweier Blechstreifen 20 bestimmt. Die auf den Blechstreifen 20 gleitenden Flächen der Kröpfungen 24' sind mit einem gute Gleiteigenschaften aufweisenden Material beschichtet. Die Stifte 21 sind mit den Blechstreifen 20 durch Schweissen verbunden. Um den Mantel 14 herum verlaufen über die vertikale Länge der Schlitze gleichmässig verteilte Spannkabel 25, die sich auf dem Mantel 14 über Würfel 27 abstützen und deren Enden mittels Spannhülsen 26 miteinander verbunden sind. Die Spannkabel 25 bestehen aus einem Werkstoff, der eine kleinere tangentiale Wärmedehnung aufweist als der des Mantels 14; sie bewirken somit, dass bei zunehmender Temperatur des Heliumgases die Kröpfungen 24' zwischen den Blechstreifen 20 paarweise tangential gegeneinander gleiten, wobei der Durchmesser des Mantels 14 im wesentlichen gleich bleibt und die Spaltbreite d infolge der radialen Wärmedehnung des Kühlrohrbündels 5 abnimmt. Dadurch wird die Gasdurchflussmenge im Spaltkanal 8 klein genug gehalten und eine unzulässige Zunahme der Temperatur im Spaltkanal 8 verhindert. Prinzipiell arbeitet diese Variante auch ohne Spannkabel 25; diese bieten jedoch eine zusätzliche Sicherheit gegen eventuelle Verklemmungen - beispielsweise infolge von Verschmutzung - der Kröpfungen 24' zwischen den Blechstreifen 20.With the embodiments of the invention shown in FIGS. 2 to 16, the gap losses can be counteracted. 2 and 3, the jacket 14 has eight vertical slots distributed over its circumference, of which FIG. 2 shows two. In the area of each slot, the jacket is cranked outwards - parallel to the slot. In each case the two end faces 24 '' of the cranks 24 'thus formed delimit a slot. Two adjacent cranks 24' are slidably guided between two metal strips 20 'which are held together by pins 21 which penetrate radially through the slot. Each pin 21 is by a spacer sleeve 22 surround, which determines the mutual distance between two sheet metal strips 20. The surfaces of the cranks 24 'sliding on the sheet metal strips 20 are coated with a material which has good sliding properties, and the pins 21 are connected to the sheet metal strips 20 by welding the vertical length of the slots uniformly distributed tensioning cables 25, which are supported on the jacket 14 by cubes 27 and whose ends are connected to one another by means of tensioning sleeves 26. The tensioning cables 25 are made of a material which has a smaller tangential thermal expansion than that of the jacket 14; they thus cause that with increasing temperature of the helium gas, the cranks 24 'between the sheet metal strips 20 slide tangentially against one another in pairs, the diameter of the jacket 14 remaining essentially the same and the gap width d decreasing as a result of the radial thermal expansion of the cooling tube bundle 5. As a result, the gas flow rate in the gap channel 8 kept small enough and an inadmissible increase in the temperature in the gap channel 8 prevented. In principle, this variant also works without tension cable 25; However, these offer additional security against possible jamming of the crankings 24 ′ between the metal strips 20, for example as a result of contamination.

Im Ausführungsbeispiel gemäss Fig. 4 und 5 weisen die Tragplatten 13 ein kleineres radiales Mass als in Fig. 1 auf, so dass sie nur die Kühlrohre 6 der Rohrbündel 5 aufnehmen. Die äusseren Kühlrohre 7 des Rohrbündels 5 sind in acht radialen, mit jeweils einer Tragplatte 13 fluchtenden Stegen 140 eingeschraubt, die einstückig mit dem Mantel 14 hergestellt sind oder in Form von Leisten am Mantel angeschweisst sind. Hierbei werden also bei steigender Temperatur die äusseren Kühlrohre 7 vom Mantel 14 bei dessen Durchmesservergrösserung mitgenommen, so dass die Spaltbreite d - abgesehen von einer kleinen radialen Wärmeausdehnung der Kühlrohre 7 selbst und der linearen Wärmeausdehnung der Stege 140 - praktisch bei allen Temperaturen konstant bleibt.In the exemplary embodiment according to FIGS. 4 and 5, the support plates 13 have a smaller radial dimension than in FIG. 1, so that they only accommodate the cooling tubes 6 of the tube bundle 5. The outer cooling tubes 7 of the tube bundle 5 are screwed into eight radial webs 140, each aligned with a support plate 13, which are made in one piece with the jacket 14 or are welded to the jacket in the form of strips. Thus, as the temperature rises, the outer cooling tubes 7 are carried along by the jacket 14 when the diameter is increased, so that the gap width d - apart from a small radial thermal expansion of the cooling tubes 7 themselves and the linear thermal expansion of the webs 140 - remains practically constant at all temperatures.

Gemäss Fig. 6 wird der Mantel 14 innen mittels zusätzlicher, helissenförmiger Kühlrohre 30 gekühlt. Die Mantelkühlrohre 30 haben den gleichen Durchmesser wie die Kühlrohre 6, 7 und weisen auch die gleiche Steigung wie diese auf. Der horizontale Abstand zwischen den Mantelkühlrohren 30 und den äusseren Kühlrohren 7 ist etwa gleich dem horizontalen Abstand zwischen den benachbarten Kühlrohren 6 und 7 im Kühlrohrbündel 5. Zwischen den Mantelkühlrohren 30 sind schraubenlinienförmig verlaufende Blechstreifen 31 vorgesehen, die über eine Vielzahl von am Mantel 14 angeschweissten Zapfen 32 befestigt sind. Die Streifen 31 und die Zapfen 32 sind über Schweissbohrungen 31', die in den Streifen vorgesehen sind, miteinander verbunden. An einigen Streifen 31 sind paarweise etwa viertelkreisförmiggebogene Klammern 33 aus Stahlblech angeschweisst, die an je einem Mantelkühlrohr 30 anliegen und als Rohrhalterungen dienen. Jedes Paar von Klammern 33 ist durch ein sie verbindendes Verstärkungsblech 34 in seiner Lage fixiert. Die Blechstreifen 31 begrenzen eine Zylinderfläche, auf der die schraubenlinienförmig gebogene Rohrachse der Mantelkühlrohre 30 liegt und die zur Bemessung der Breite d des Spaltkanals 8 dient, die in diesem Fall gleich dem horizontalen Abstand zwischen den Kühlrohren 5 und 7 ist. Diese Ausführungsform ist besonders bei sehr hohen Betriebstemperaturen von Vorteil, weil dabei die Mantelkühlrohre 30 auf einfache und kostengünstige Weise schweissnahtfrei am Mantel 14 befestigt sind. Die durch die Mantelkühlrohre 30 fliessende Kühlwassermenge wird mittels nicht gezeigter Drosselorgane so eingestellt, dass die Kühlung des Heliumgases im Spaltkanal 8 gleich der Kühlung im Rohrbündel 5 ist. Ein weiterer Vorteil dieser Ausführungsform besteht darin, dass die gasseitigen Strömungsverhältnisse im Spaltkanal 8 an die gasseitigen Strömungsverhältnisse im Rohrbündel 8 im wesentlichen angeglichen werden können.6, the jacket 14 is cooled on the inside by means of additional helical cooling tubes 30. The jacket cooling tubes 30 have the same diameter as the cooling tubes 6, 7 and also have the same pitch as this. The horizontal distance between the jacket cooling tubes 30 and the outer cooling tubes 7 is approximately equal to the horizontal distance between the adjacent cooling tubes 6 and 7 in the cooling tube bundle 5. Between the jacket cooling tubes 30, helical sheet-metal strips 31 are provided, which have a plurality of pins welded to the jacket 14 32 are attached. The strips 31 and the Pins 32 are connected to one another via welding bores 31 'which are provided in the strips. Some strips 31 are welded in pairs of sheet-steel brackets 33, which are bent into a quarter-circle shape and which each abut a jacket cooling tube 30 and serve as tube holders. Each pair of brackets 33 is fixed in position by a reinforcing plate 34 connecting them. The sheet metal strips 31 delimit a cylindrical surface on which the helically bent tube axis of the jacket cooling tubes 30 lies and which is used to measure the width d of the gap channel 8, which in this case is equal to the horizontal distance between the cooling tubes 5 and 7. This embodiment is particularly advantageous at very high operating temperatures because the jacket cooling tubes 30 are attached to the jacket 14 in a simple and inexpensive manner without weld seams. The amount of cooling water flowing through the jacket cooling tubes 30 is adjusted by means of throttling elements, not shown, such that the cooling of the helium gas in the gap channel 8 is equal to the cooling in the tube bundle 5. Another advantage of this embodiment is that the gas-side flow conditions in the gap channel 8 can be substantially matched to the gas-side flow conditions in the tube bundle 8.

Die Kühlung des Mantels 14 lässt sich unter Beibehaltung der angeglichenen Strömungsverhältnisse auch mit den Ausführungsformen nach Fig. 7 bis 12 erreichen. Bei Fig. 7 ist der Mantel 14 als sogenannte Membranwand ausgebildet, indem die Mantelkühlrohre 30 mittels Stegen 141 miteinander gasdicht verschweisst sind. Bei Fig. 8 sind die Mantelkühlrohre 30 in einer Rille eingebettet, die nach einer Schraubenlinie in den Mantel 14 eingearbeitet ist. Gemäss Fig. 9 zirkuliert das Mantelkühlwasser in einem schraubenlinienförmig verlaufenden Kanal, der durch an der glatten zylindrischen Innenseite des Mantels 14 dicht angeschweisste Halbrohre 35 gebildet ist. In Fig. 10 und 11 ist anstelle der Halbrohre 35 ein Wellblech 36 bzw. 36' vorgesehen. Im Falle der Fig. 10 ist das Wellblech 36 wiederum an die glatte, zylindrische Innenseite des Mantels 14 angeschweisst, wogegen bei Fig. 11 das Wellblech 36' mit Stegen 141' zusammengeschweisst ist, die zusammen die Wand des Mantels 14 bilden. Gemäss Fig. 12 wird der Mantel 14 durch miteinander verschweisste, schraubenlinienförmig gewickelte Rohre 37 gebildet, die einstückig mit Flossen hergestellt sind, die einseitig ausserhalb der Rohrachse liegen.The cooling of the jacket 14 can also be achieved with the embodiments according to FIGS. 7 to 12 while maintaining the adjusted flow conditions. 7, the jacket 14 is designed as a so-called membrane wall, in that the jacket cooling tubes 30 are welded to one another in a gas-tight manner by means of webs 141. 8, the jacket cooling tubes 30 are embedded in a groove which is worked into the jacket 14 according to a helical line. According to FIG. 9, the jacket cooling water circulates in a helical one Channel which is formed by half pipes 35 welded tightly to the smooth cylindrical inside of the jacket 14. 10 and 11, a corrugated sheet 36 or 36 'is provided instead of the half-tubes 35. 10, the corrugated sheet 36 is in turn welded to the smooth, cylindrical inside of the casing 14, whereas in FIG. 11 the corrugated sheet 36 'is welded together with webs 141' which together form the wall of the casing 14. According to FIG. 12, the jacket 14 is formed by tubes 37 which are welded to one another and are helically wound and which are produced in one piece with fins which are located on one side outside the tube axis.

In der Ausführungsform nach Fig. 13 sind horizontale, kolbenringartige, flache Stahlringe 40 in passenden Nuten auf der Innenseite des Mantels 14 eingespannt. Die Stahlringe 40 bilden entlang der Innenseite eine Art Labyrinthdichtung, die die Heliumgasströmung im Spaltkanal 8 drosselt und gleichzeitig stark verwirbelt. Dadurch wird die Durchflussmenge verringert und die Kühlung im Spaltkanal 8 verbessert.In the embodiment according to FIG. 13, horizontal, piston ring-like, flat steel rings 40 are clamped in suitable grooves on the inside of the jacket 14. The steel rings 40 form a kind of labyrinth seal along the inside, which throttles the helium gas flow in the gap channel 8 and at the same time swirls it strongly. This reduces the flow rate and improves cooling in the gap channel 8.

Im Ausführungsbeispiel nach Fig. 14 ist der Mantel 14 so ausgebildet, dass der Spaltkanal 8 in vertikaler Richtung eine variable Spaltbreite aufweist, indem engere Spaltquerschnitte mit weiteren Spaltquerschnitten abwechseln. Dadurch entsteht eine ähnliche Wirkung wie durch die Stahlringe 40 in Fig. 13. Diese Ausführungsform ist weitgehend unempfindlich auf herstellungsbedingte Abweichungen der Spaltbreite.In the exemplary embodiment according to FIG. 14, the jacket 14 is designed such that the gap channel 8 has a variable gap width in the vertical direction, in that narrower gap cross sections alternate with further gap cross sections. This produces a similar effect to that of the steel rings 40 in FIG. 13. This embodiment is largely insensitive to manufacturing-related deviations in the gap width.

Die äusseren Kühlrohre 7 gemäss Fig. 15 weisen einen grösseren Durchmesser auf als die Kühlrohre 6 des Rohrbündels 5 und haben gleiche Wanddicke wie diese. Dadurch können die äusseren Kühlrohre 7, wenn bei Betriebstemperatur die Spaltbreite grösser ist, mehr Wärme aus der entsprechend grösseren,durch den Spaltkanal 8 strömenden Gasmenge abführen, ohne dass die Wärmestromdichte durch ihre Wände die Wärmestromdichte durch die Wände der übrigen Kühlrohre 6 übersteigt. Ein Temperaturmessfühler 60 überwacht die Temperatur des Heliumgases im Spaltkanal 8 und steuert über eine Signalleitung 61 auf an sich bekannte Weise ein Steuerventil 62, das je äusseres Kühlrohr 7 vorgesehen ist. Die Kühlwassermenge durch die äusseren Kühlrohre 7 wird so geregelt, dass die durchschnittliche Temperatur des Heliumgases im Spaltkanal 8 gleich der durchschnittlichen Temperatur des Heliumgases im Bereich der Kühlrohre 6 des Rohrbündels 5 bleibt und dass die durchschnittliche Wärmestromdichte durch die Wand der Kühlrohre 6 einerseits und der äusseren Kühlrohre 7 andererseits ebenfalls gleich gehalten wird.The outer cooling tubes 7 according to FIG. 15 have a larger diameter than the cooling tubes 6 of the tube bundle 5 and have the same wall thickness as these. There through, the outer cooling tubes 7, when the gap width is larger at operating temperature, can dissipate more heat from the correspondingly larger amount of gas flowing through the gap channel 8 without the heat flow density through their walls exceeding the heat flow density through the walls of the other cooling tubes 6. A temperature sensor 60 monitors the temperature of the helium gas in the gap channel 8 and controls a control valve 62, which is provided for each outer cooling tube 7, via a signal line 61 in a manner known per se. The amount of cooling water through the outer cooling tubes 7 is regulated so that the average temperature of the helium gas in the gap channel 8 remains the same as the average temperature of the helium gas in the area of the cooling tubes 6 of the tube bundle 5 and that the average heat flow density through the wall of the cooling tubes 6, on the one hand, and the outside Cooling tubes 7, on the other hand, is also kept the same.

Beim Ausführungsbeispiel nach Fig. 16 sind mehrere ringförmige Umlenkbleche 50 von unterschiedlichem Durchmesser so gestaffelt im Rohrbündel 5 angeordnet, dass sie Heliumgas aus dem Inneren des Rohrbündels in Richtung auf den Spaltkanal 8 leiten und ausserdem ermöglichen, dass Heliumgas aus dem Spaltkanal 8 wieder in das Innere des Rohrbündels 5 gedrängt wird. Daraus resultiert eine Vergleichmässigung der Temperaturen des Gases im Spaltkanal 8 und im übrigen Bereich des Kühlrohrbündels 5. Die Umlenkbleche 50 sind mit den Tragplatten 13 verbunden, so dass die von den Umlenkblechen aufgenommene Wärme über die Tragplatten zu den Kühlrohren 6, 7 fliesst, wodurch die Kühlung der Umlenkbleche gewährleistet ist.In the exemplary embodiment according to FIG. 16, a plurality of ring-shaped baffle plates 50 of different diameters are staggered in the tube bundle 5 in such a way that they conduct helium gas from the interior of the tube bundle in the direction of the gap channel 8 and also enable helium gas from the gap channel 8 back into the interior of the tube bundle 5 is pushed. This results in a uniformization of the temperatures of the gas in the gap channel 8 and in the remaining area of the cooling tube bundle 5. The baffle plates 50 are connected to the support plates 13, so that the heat absorbed by the baffle plates flows through the support plates to the cooling tubes 6, 7, whereby the Cooling of the baffles is guaranteed.

Abweichend von den bisher beschriebenen Ausführungsformen können die äusseren Kühlrohre 7 mit einer grösseren Steigung versehen sein als die übrigen Kühlrohre 6, wodurch für jede Höhenebene kühleres Kühlwasser im Bereich des Spaltkanals 8 zur Verfügung steht als in den übrigen Bereichen des Rohrbündels 5. Kombiniert man diese Ausführungsform z.B. mit jener gemäss Fig. 15 oder Fig. 16, so erlaubt die grössere Steigung der äusseren Kühlrohre 7 das Abführen von relativ grossen Wärmemengen aus dem Spaltkanal 8, ohne dass Uebertemperaturen im Gaszug zustandekommen.Deviating from the previously described execution shapes, the outer cooling tubes 7 can be provided with a larger slope than the other cooling tubes 6, so that cooler cooling water is available in the area of the gap channel 8 for each height level than in the other areas of the tube bundle 5. Combine this embodiment, for example, with that according to FIG 15 or 16, the greater slope of the outer cooling tubes 7 allows relatively large amounts of heat to be removed from the gap duct 8 without excessive temperatures occurring in the gas flue.

Die Erfindung lässt sich z.B. auch auf Wärmeübertrager mit geraden oder mäanderartigen Kühlrohren anwenden. Es ist ferner möglich, den zylindrischen Gaszug horizontal oder sonst irgendwie geneigt anzuordnen.The invention can e.g. also apply to heat exchangers with straight or meandering cooling tubes. It is also possible to arrange the cylindrical throttle cable horizontally or otherwise inclined.

Die Steuerung der Temperatur im Spaltkanal 8 gemäss Fig. 15 kann bei allen Ausführungsformen der Erfindung angewendet werden.The control of the temperature in the gap channel 8 according to FIG. 15 can be used in all embodiments of the invention.

Claims (14)

1-. Wärmeübertrager mit einem Druckbehälter, insbesondere für die Kühlung von Gas aus einem Hochtemperaturreaktor, wobei sich in dem Druckbehälter ein zylindrischer, ein Kühlrohrbündel enthaltender Gaszug befindet, der ein zu kühlendes Gas von einem Eintrittsbereich zu einem Austrittsbereich führt und der zwischen sich und den benachbarten.äusseren Rohren des Rohrbündels einen ringförmigen Spaltkanal freilässt, der so bemessen ist, dass bei Betriebstemperatur die durchschnittliche Temperatur des aus dem Spaltkanal austretenden Gases im wesentlichen gleich der durchschnittlichen Temperatur des aus dem übrigen Rohrbündel austretenden Gases ist, dadurch gekennzeichnet, dass Mittel vorgesehen sind, durch die die durchschnittliche Wärmestromdichte durch die Wand der äusseren Kühlrohre im wesentlichen gleich der durchschnittlichen Wärmestromdichte durch die Wand der übrigen Rohre des Kühlrohrbündels gehalten wird.1-. Heat exchanger with a pressure vessel, in particular for the cooling of gas from a high-temperature reactor, wherein there is a cylindrical gas duct containing a bundle of cooling tubes in the pressure vessel, which leads a gas to be cooled from an inlet area to an outlet area and which is between itself and the neighboring ones . outer tubes of the tube bundle leaves an annular gap channel, which is dimensioned such that at operating temperature the average temperature of the gas emerging from the gap channel is substantially equal to the average temperature of the gas emerging from the remaining tube bundle, characterized in that means are provided by which the average heat flow density through the wall of the outer cooling tubes is kept substantially equal to the average heat flow density through the wall of the other tubes of the cooling tube bundle. 2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel eine Vergrösserung der Breite des Spaltkanals bei zunehmender Temperatur des Gases verhindern.2. Heat exchanger according to claim 1, characterized in that the means prevent an increase in the width of the gap channel with increasing temperature of the gas. 3. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass das Material des Gaszuges einen kleineren Wärmedehnungskoeffizienten aufweist als das Material des Kühlrohrbündels.3. Heat exchanger according to claim 2, characterized in that the material of the gas flue has a smaller coefficient of thermal expansion than the material of the cooling tube bundle. 4. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass der Gaszug mindestens im Bereich der Gaseintrittsseite des Kühlrohrbündels mindestens einen etwa auf einer Mantellinie verlaufenden Schlitz aufweist.4. Heat exchanger according to claim 2, characterized in that the gas flue has at least one slot extending approximately on a surface line at least in the region of the gas inlet side of the cooling tube bundle. 5. Wärmeübertrager nach Anspruch 4, dadurch gekennzeichnet, dass Spannelemente vorhanden sind, die in Richtung einer Verkleinerung des Durchmessers des Gaszuges wirken.5. Heat exchanger according to claim 4, characterized in that clamping elements are present which act in the direction of a reduction in the diameter of the throttle cable. 6. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass die äusseren Kühlrohre an der inneren Wand des Gaszuges befestigt sind.6. Heat exchanger according to claim 2, characterized in that the outer cooling tubes are attached to the inner wall of the throttle cable. 7. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass zur Kühlung des Gaszuges auf dessen Innenseite Rohre angeordnet sind, die unabhängig von den Kühlrohren des Rohrbündels mit Kühlmittel beschickt werden.7. Heat exchanger according to claim 1, characterized in that for cooling the gas flue pipes are arranged on the inside, which are charged with coolant independently of the cooling tubes of the tube bundle. 8. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass im Bereich des Spaltkanals die Innenseite des Gaszuges und/oder die äussere Oberfläche der äusseren Kühlrohre stark aufgerauht sind bzw. ist.8. Heat exchanger according to claim 1, characterized in that in the area of the gap channel, the inside of the throttle cable and / or the outer surface of the outer cooling tubes are or are heavily roughened. 9. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die Innenseite des Gaszuges nach der Art einer Labyrinthdichtung ausgebildet ist.9. Heat exchanger according to claim 1, characterized in that the inside of the throttle cable is designed in the manner of a labyrinth seal. 10. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass durch entsprechende Formgebung der Innenseite des Gaszuges - in Längsrichtung des Gaszuges gesehen - die Breite des Spaltkanals abwechselnd kleiner und grösser ist.10. Heat exchanger according to claim 1, characterized in that the width of the gap channel is alternately smaller and larger by appropriate shaping of the inside of the throttle cable - seen in the longitudinal direction of the gas cable. 11. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche der äusseren Kühlrohre grösser ist als die der übrigen Kühlrohre des Kühlrohrbündels.11. Heat exchanger according to claim 1, characterized in that the surface of the outer cooling tubes is larger than that of the other cooling tubes of the cooling tube bundle. 12. Wärmeübertrager nach Anspruch l, dadurch gekennzeichnet, dass im Kühlrohrbündel verteilt Umlenkbleche angeordnet sind, die Gas aus dem Kühlrohrbündel zum Spaltkanal führen.12. Heat exchanger according to claim l, characterized in that baffles are arranged distributed in the cooling tube bundle, which lead gas from the cooling tube bundle to the gap channel. 13. Wärmeübertrager nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Rohrbündel aus schraubenlinienförmig gebogenen Rohren besteht.13. Heat exchanger according to one of claims 1 to 12, characterized in that the tube bundle consists of helically bent tubes. 14. Wärmeübertrager nach Anspruch 13, dadurch gekennzeichnet, dass zur Kühlung des Gaszuges mindestens ein schraubenlinienförmig entlang der Innenseite des Gaszuges geführter, von einem Kühlmittel durchströmter und mit diesem fest verbundener Kanal vorgesehen ist.14. Heat exchanger according to claim 13, characterized in that for cooling the throttle cable at least one helically guided along the inside of the throttle cable, through which a coolant flows and which is firmly connected to it, is provided.
EP85107952A 1984-08-15 1985-06-27 Heat-exchange apparatus Expired EP0171558B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85107952T ATE46031T1 (en) 1984-08-15 1985-06-27 HEAT EXCHANGER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3912/84A CH665020A5 (en) 1984-08-15 1984-08-15 HEAT EXCHANGER.
CH3912/84 1984-08-15

Publications (3)

Publication Number Publication Date
EP0171558A2 true EP0171558A2 (en) 1986-02-19
EP0171558A3 EP0171558A3 (en) 1987-01-07
EP0171558B1 EP0171558B1 (en) 1989-08-30

Family

ID=4266173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85107952A Expired EP0171558B1 (en) 1984-08-15 1985-06-27 Heat-exchange apparatus

Country Status (6)

Country Link
US (1) US4784219A (en)
EP (1) EP0171558B1 (en)
JP (1) JPS6159189A (en)
AT (1) ATE46031T1 (en)
CH (1) CH665020A5 (en)
DE (1) DE3572722D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280651A (en) * 2021-07-22 2021-08-20 四川空分设备(集团)有限责任公司 Coiled pipe type heat exchanger

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890380A (en) * 1997-07-18 1999-04-06 Beech Island Knitting Company, Inc. Elastic knitted band having stretch woven band feel and appearance and method of making same
GB201401092D0 (en) * 2014-01-23 2014-03-12 Rolls Royce Plc Heat exchanger support
CN108885065B (en) * 2016-04-14 2020-12-01 林德股份公司 Spiral coil type heat exchanger
WO2020007502A1 (en) * 2018-07-04 2020-01-09 Linde Aktiengesellschaft Directed decoupling between bundle and core tube in wound heat exchangers
CN110779374B (en) * 2019-11-18 2020-11-24 兰州理工大学 Heat exchange pipeline diverging device
US11561049B2 (en) * 2020-05-05 2023-01-24 Air Products And Chemicals, Inc. Coil wound heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1093878A (en) * 1954-02-25 1955-05-10 Olier Sa Ets A Improvements to fluid heaters
GB810900A (en) * 1956-03-22 1959-03-25 Vorkauf Heinrich Improvements in steam generators with pressure-resistant, cylindrical casings
FR1267133A (en) * 1958-06-09 1961-07-21 Process for the arrangement of multi-stage temperature exchange elements and exchange elements thus obtained
US3163153A (en) * 1962-03-30 1964-12-29 Foster Wheeler Corp Waste heat recovery apparatus with integral fired heater
DE1501684A1 (en) * 1964-05-20 1969-06-26 Waagner Biro Ag Heat exchanger
FR2351373A1 (en) * 1976-05-11 1977-12-09 Sulzer Ag HEAT TRANSFER ELEMENT FOR HIGH TEMPERATURES
FR2371656A1 (en) * 1976-11-17 1978-06-16 Sulzer Ag HEAT EXCHANGER WITH A BEAM OF PROPELLERED TUBES
US4427058A (en) * 1982-12-13 1984-01-24 General Electric Company HRSG Sidewall baffle
WO1984000415A1 (en) * 1982-07-16 1984-02-02 Babcock & Wilcox Co Heat exchangers and methods of construction thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2469487A (en) * 1942-08-25 1949-05-10 Limahamilton Corp Tube securing means for locomotive and other boilers
US2508247A (en) * 1945-09-25 1950-05-16 Research Corp Heat interchanger
US2833526A (en) * 1955-06-22 1958-05-06 Griscom Russell Co Steam generator head construction
GB810349A (en) * 1956-09-17 1959-03-11 Brown Fintube Co Improvements in and relating to heat exchangers
US3286767A (en) * 1964-10-01 1966-11-22 Babcock & Wilcox Co Tube support arrangement
US3871444A (en) * 1971-08-02 1975-03-18 Beckman Instruments Inc Water quality analysis system with multicircuit single shell heat exchanger
FR2404187A1 (en) * 1977-09-23 1979-04-20 Quiri & Cie Usines Central heating steam heat exchanger - has tube nest around tube between end plates at steam feed and delivery
US4267020A (en) * 1978-08-14 1981-05-12 Westinghouse Electric Corp. Nuclear steam generator wrapper and shell assembly and method for assembling
US4588024A (en) * 1982-03-09 1986-05-13 Phillips Petroleum Company Indirect heat exchanger with baffles
CH645713A5 (en) * 1982-04-22 1984-10-15 Sulzer Ag HEAT EXCHANGER.
CH662638A5 (en) * 1982-11-24 1987-10-15 Sulzer Ag HEAT TRANSFER SYSTEM, PREFERRED FOR A PROCESS GAS.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1093878A (en) * 1954-02-25 1955-05-10 Olier Sa Ets A Improvements to fluid heaters
GB810900A (en) * 1956-03-22 1959-03-25 Vorkauf Heinrich Improvements in steam generators with pressure-resistant, cylindrical casings
FR1267133A (en) * 1958-06-09 1961-07-21 Process for the arrangement of multi-stage temperature exchange elements and exchange elements thus obtained
GB916972A (en) * 1958-06-09 1963-01-30 Legrand Pierre Improvements in or relating to vapour generating apparatus
US3163153A (en) * 1962-03-30 1964-12-29 Foster Wheeler Corp Waste heat recovery apparatus with integral fired heater
DE1501684A1 (en) * 1964-05-20 1969-06-26 Waagner Biro Ag Heat exchanger
FR2351373A1 (en) * 1976-05-11 1977-12-09 Sulzer Ag HEAT TRANSFER ELEMENT FOR HIGH TEMPERATURES
FR2371656A1 (en) * 1976-11-17 1978-06-16 Sulzer Ag HEAT EXCHANGER WITH A BEAM OF PROPELLERED TUBES
CH613274A5 (en) * 1976-11-17 1979-09-14 Sulzer Ag
WO1984000415A1 (en) * 1982-07-16 1984-02-02 Babcock & Wilcox Co Heat exchangers and methods of construction thereof
US4427058A (en) * 1982-12-13 1984-01-24 General Electric Company HRSG Sidewall baffle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280651A (en) * 2021-07-22 2021-08-20 四川空分设备(集团)有限责任公司 Coiled pipe type heat exchanger

Also Published As

Publication number Publication date
ATE46031T1 (en) 1989-09-15
JPS6159189A (en) 1986-03-26
CH665020A5 (en) 1988-04-15
EP0171558B1 (en) 1989-08-30
US4784219A (en) 1988-11-15
DE3572722D1 (en) 1989-10-05
EP0171558A3 (en) 1987-01-07

Similar Documents

Publication Publication Date Title
DE3930205A1 (en) TUBE BUNCH HEAT EXCHANGER
DE3039787A1 (en) HEAT EXCHANGER
DE1601215B2 (en) PLATE HEAT EXCHANGER IN PARTICULAR AS NITROGEN GAS COOLER
EP2976589A1 (en) Pipe bundle recuperator on a sintering furnace and thermal transfer method having a sintering furnace and having a pipe bundle recuperator
DE1924462C3 (en) Pressure vessel
CH667521A5 (en) SUSSBLAESER.
EP0171558A2 (en) Heat-exchange apparatus
DE2631884A1 (en) STEAM HYDROCARBON REFORMING DEVICE
DE2734922A1 (en) METHOD AND DEVICE FOR COOLING EXHAUST MANIFOLD
DE2103508A1 (en) Heat exchanger
DE3436549C1 (en) Heat exchanger, in particular for cooling gas from a high-temperature reactor
EP0128463A2 (en) Space heating apparatus for small spaces
DE3538515C2 (en)
DE3045731A1 (en) Flow regulator for heat exchanger tube - is plastics insert to restrict flow to outer zone for improved heat transfer
DE2441706A1 (en) HEATING BOILER WITH CAST-IRON RIBBED PIPES
DE10138626A1 (en) Device for the entry of hot gas into a heating surface tube of a waste heat boiler
DE1009647B (en) Tube heat exchanger
EP0369556B1 (en) Process and apparatus for indirectly heating a process gas stream in a reaction space for an endothermal reaction
DE3100252C2 (en)
DE3516958C2 (en)
DE1501621B2 (en) HEAT TRANSFER ARRANGED IN A PRESSURE VESSEL
DE19604747A1 (en) Heat exchanger for heating or cooling gases
DE2651940A1 (en) DOUBLE PIPE HEAT TRANSFER
WO2018184737A1 (en) Heat exchanger, use of a heat exchanger and method for producing a heat exchanger
DE1601167C3 (en) Mixed heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT

17P Request for examination filed

Effective date: 19870625

17Q First examination report despatched

Effective date: 19880115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 46031

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3572722

Country of ref document: DE

Date of ref document: 19891005

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910612

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910619

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910723

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920627

Ref country code: AT

Effective date: 19920627

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST