EP0170154B1 - Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites - Google Patents

Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites Download PDF

Info

Publication number
EP0170154B1
EP0170154B1 EP85108872A EP85108872A EP0170154B1 EP 0170154 B1 EP0170154 B1 EP 0170154B1 EP 85108872 A EP85108872 A EP 85108872A EP 85108872 A EP85108872 A EP 85108872A EP 0170154 B1 EP0170154 B1 EP 0170154B1
Authority
EP
European Patent Office
Prior art keywords
reflector
network
antenna according
networks
same area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85108872A
Other languages
German (de)
French (fr)
Other versions
EP0170154A1 (en
Inventor
Gilles Duret
Daniel Renaud
Hubert Diez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0170154A1 publication Critical patent/EP0170154A1/en
Application granted granted Critical
Publication of EP0170154B1 publication Critical patent/EP0170154B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S343/00Communications: radio wave antennas
    • Y10S343/02Satellite-mounted antenna

Definitions

  • the present invention relates to a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites, allowing coverage of identical areas on the surface of the earth for two electromagnetic waves orthogonally polarized to one another.
  • the radiation diagram of the primary source has an opening which varies according to the frequency of the radiated electromagnetic wave, the efficiency of the antenna is not the same for one and the other of the waves reflected by the reflector and to obtain signals of the same energy on the surface of the terrestrial globe, the primary source must be adapted to compensate for the loss of energy undergone by one of the waves relative to the other, this compensation involving oversizing of the satellite transmitter supply devices.
  • the known antennas formed by a single reflector do not make it possible to preserve, after reflection, perfect orthogonality of the electric fields of each of their plane of polarization so that the isolation between the transmission channels formed by the frequency waves cannot be fully guaranteed.
  • US-A-2 991 473 describes a scanning antenna system for horizontally and vertically polarized waves, in which a reflector, making it possible to focus waves, can be constructed using two sets of conductors parallel to each other; the first assembly being perpendicular to the electric vector of the wave emanating from a first radiating element and the second being perpendicular to the vector of the wave emanating from a second radiating element, these two assemblies being perpendicular to each other; each of these two sets reflecting the wave whose magnetic vector is perpendicular to the direction of the conductors which compose it.
  • the subject of the invention is a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites of the type comprising a reflector of parabolic shape which comprises two networks of conductive wires in orthogonal directions, and a primary source.
  • these two networks arranged on the concave face of the reflector, being made up of wires located at the intersection of planes, parallel to each other and parallel to the main axis of the reflector, with said concave face, characterized in that the edges of each network respectively delimit a first and a second elliptical surface whose centers are combined and whose dimensions are determined to obtain the same area coverage for the two frequencies, and in that the second network is arranged inside the area formed by the first network.
  • the parabolic antenna shown in FIG. 1 comprises a parabolic reflector 1 with apex S and a primary source 2.
  • the primary source 2 is constituted, for example, by means of a horn with rectangular section, and is mounted at the focal point of the reflector at using support arms 3, 4 and 5 resting on the edge 6 delimiting the concave and convex surfaces of the reflector.
  • the reflector 1 comprises a rigid parabolic structure made of synthetic material, for example kevlar fiber, or any other equivalent dielectric material.
  • a first polarization grid 7, electrically conductive, is disposed directly on the concave parabolic face of the reflector directly opposite the primary source 2 and a second polarization grid 8, orthogonal to the first grid 7 is located in the central part. of the reflector.
  • the first grid 7 is formed by a network of conductive wires extending over the entire surface of the reflector opposite the primary source at the intersection of planes parallel to each other and to the direction of the main axis AA ′ of the paraboloid, the axis AA 'passing in FIG. 1 through the vertex S and the focal point F of the paraboloid.
  • the second grid 8 also consists of a network of conductors also located at the intersection of planes parallel to each other as well as to the direction of the axis AA 'and orthogonal to the previous planes defining the first network of conductors of the first grid 7.
  • the reflector is oriented relative to the primary source 2 so that the parallel wires of the grids 7 and 8 are also parallel respectively to the two electric fields of the two electromagnetic waves polarized orthogonally to each other to allow the reflection of each wave by only one of the two grids.
  • the realization of the conductors forming the grids 7 and 8 can be obtained using metallic wires embedded in a dielectric fabric or by overall etching using a mask in contact with the surface of the reflector, or by local etching in laser form, or by etching on the developed flat surface of the reflector according for example to the process described in French patent application 2,302,603.
  • the reflector according to the invention which has just been described has the advantage that it allows the reflection of two electromagnetic waves of different frequencies polarized orthogonally to one another while ensuring the same geographic coverage on the surface of the globe. earthly.
  • the central part of the reflector formed by the space common to the two orthogonal grids 7 and 8 reflects the two orthogonally polarized waves while the peripheral part external to the central grid 8 reflects only the polarized wave of low frequency.
  • the same area coverage is obtained by determining the area and the geometry of the central grid to obtain the same area coverage for the high frequency wave and its method of obtaining is explained below with reference to the front view representation of the reflector of FIG. 2.
  • the reflector 1 covers an elliptical surface with a long axis DX 1 and a small axis DY 1 with an ellipticity ratio close to that of the desired cover, the grid 8 disposed in the central part, also covers an elliptical area of major axis Dx 2 and minor axis Dy 2 .
  • the centers of the ellipses delimiting the surfaces of the grids 7 and 8 are combined.
  • the spherical wave of low frequency coming from the primary source 2 is transformed into a plane wave by all the surface of the reflector 1.
  • the secondary diagram obtained has in these conditions a width with three decibels which is worth in the principal planes and where ⁇ x 1 and ⁇ Y1 denote the beam opening angles in the corresponding main planes.
  • K 11 is a weighting coefficient for a section orthogonal to the electric field
  • K 12 is a weighting coefficient for a section parallel to the electric field and ⁇ 1 the wavelength of the low frequency wave.
  • the spherical wave of high frequency is also transformed by the grid 8 inside the reflector into a plane wave whose radiation diagram has a width at 3 dB which is valid in the main planes where ex 2 and ey 2 denote the beam opening angles in the corresponding main planes.
  • K 21 is a weighting coefficient for a section orthogonal to the electric field
  • K 22 is a weighting coefficient for a cut parallel to the electric field
  • X 2 is the wavelength of the highest frequency wave.
  • the same area coverage for the two waves of wavelength ⁇ 1 and X 2 is achieved when and is and
  • the beam opening for the high frequency is very close to the opening obtained for the low frequency and the area coverage is ensured with the same gain for the two frequencies.
  • the invention is not limited to the embodiment of the double reflector which has just been described. It goes without saying that other embodiments are also possible depending in particular on the primary sources used to make the antenna; it will be appreciated in particular that elliptical shapes of the reflector and of the internal grid could be reduced to circles for certain types of primary sources used to make the antenna.
  • the centers of the ellipses delimiting the surfaces of grids 7 and 8 will not necessarily coincide with the vertex S of the reflector. This could be the case in particular when the antenna is formed by a reflector of the "offset " type.

Description

La présente invention concerne une antenne bi-fréquence à même couverture de zone à polarisation croisée pour satellites de télécommunications, permettant des couvertures de zones identiques à la surface du globe terrestre pour deux ondes électromagnétiques polarisées orthogonalement l'une à l'autre.The present invention relates to a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites, allowing coverage of identical areas on the surface of the earth for two electromagnetic waves orthogonally polarized to one another.

Pour obtenir des couvertures de zones identiques à la surface du globe terrestre par deux ondes rayonnées de fréquences différentes il est connu d'utiliser une antenne formée par un réflecteur en forme de paraboloïde situé en regard d'une source primaire d'ondes électromagnétiques placée au foyer du réflecteur, la source primaire ayant par exemple la forme d'un cornet placé à l'extrémité d'un guide d'onde électromagnétique.To obtain covers of identical zones on the surface of the terrestrial globe by two radiated waves of different frequencies it is known to use an antenna formed by a reflector in the form of a paraboloid located opposite a primary source of electromagnetic waves placed at the focus of the reflector, the primary source having for example the shape of a horn placed at the end of an electromagnetic waveguide.

Comme dans ce mode de réalisation le diagramme de rayonnement de la source primaire a une ouverture qui varie en fonction de la fréquence de l'onde électromagnétique rayonnée, le rendement de l'antenne n'est pas le même pour l'une et l'autre des ondes réfléchies par le réflecteur et pour obtenir à la surface du globe terrestre des signaux de même énergie, la source primaire doit être adaptée pour compenser la perte d'énergie subie par l'une des ondes relativement à l'autre, cette compensation impliquant un surdimensionnement des dispositifs d'alimentation d'émetteur du satellite.As in this embodiment the radiation diagram of the primary source has an opening which varies according to the frequency of the radiated electromagnetic wave, the efficiency of the antenna is not the same for one and the other of the waves reflected by the reflector and to obtain signals of the same energy on the surface of the terrestrial globe, the primary source must be adapted to compensate for the loss of energy undergone by one of the waves relative to the other, this compensation involving oversizing of the satellite transmitter supply devices.

D'autre part, les antennes connues formées par un seul réflecteur ne permettent pas de conserver après réflection une parfaite orthogonalité des champs électriques de chacun de leur plan de polarisation de sorte que l'isolement entre les voies de transmission formées par les ondes de fréquences différentes ne peut être assuré de façon totalement efficace.On the other hand, the known antennas formed by a single reflector do not make it possible to preserve, after reflection, perfect orthogonality of the electric fields of each of their plane of polarization so that the isolation between the transmission channels formed by the frequency waves cannot be fully guaranteed.

Le but de l'invention est de remédier à ces inconvénients. Le brevet US-A-2 991 473 décrit un système d'antenne de balayage pour des ondes polarisées horizontalement et verticalement, dans lequel un réflecteur, permettant de focaliser des ondes, peut être construit en utilisant deux ensembles de conducteurs parallèles entre eux ; le premier ensemble étant perpendiculaire au vecteur électrique de l'onde émanant d'un premier élément rayonnant et le second étant perpendiculaire au vecteur de l'onde émanant d'un second élément rayonnant, ces deux ensembles étant perpendiculaires entre eux ; chacun de ces deux ensembles réfléchissant l'onde dont le vecteur magnétique est perpendiculaire à la direction des conducteurs qui la compose.The object of the invention is to remedy these drawbacks. US-A-2 991 473 describes a scanning antenna system for horizontally and vertically polarized waves, in which a reflector, making it possible to focus waves, can be constructed using two sets of conductors parallel to each other; the first assembly being perpendicular to the electric vector of the wave emanating from a first radiating element and the second being perpendicular to the vector of the wave emanating from a second radiating element, these two assemblies being perpendicular to each other; each of these two sets reflecting the wave whose magnetic vector is perpendicular to the direction of the conductors which compose it.

Par contre, l'invention a pour objet, une antenne bi-fréquence à même couverture de zone à polarisation croisée pour satellites de télécommunications du type comprenant un réflecteur de forme parabolique qui comporte deux réseaux de fils conducteurs de directions orthogonales, et une source primaire d'ondes électromagnétiques placée au foyer de ce réflecteur, ces deux réseaux, disposés sur la face concave du réflecteur, étant constitués de fils situés à l'intersection de plans, parallèles entre eux et parallèles à l'axe principal du réflecteur, avec ladite face concave, caractérisée en ce que les bords de chaque réseau délimitent respectivement une première et une deuxième surfaces elliptiques dont les centres sont confondus et dont les dimensions sont déterminées pour obtenir la même couverture de zone pour les deux fréquences, et en ce que le deuxième réseau est disposé à l'intérieur de la zone formée par le premier réseau.On the other hand, the subject of the invention is a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites of the type comprising a reflector of parabolic shape which comprises two networks of conductive wires in orthogonal directions, and a primary source. of electromagnetic waves placed at the focus of this reflector, these two networks, arranged on the concave face of the reflector, being made up of wires located at the intersection of planes, parallel to each other and parallel to the main axis of the reflector, with said concave face, characterized in that the edges of each network respectively delimit a first and a second elliptical surface whose centers are combined and whose dimensions are determined to obtain the same area coverage for the two frequencies, and in that the second network is arranged inside the area formed by the first network.

D'autres caractéristiques et avantages de l'invention apparaîtront également à l'aide de la description qui va suivre faite au regard des dessins annexés donnés uniquement à titre d'exemple et dans lesquels :

  • la figure 1 est une vue en perspective d'une antenne munie d'un réflecteur parabolique polarisée selon l'invention ;
  • la figure 2 est une vue de face du réflecteur selon l'invention.
Other characteristics and advantages of the invention will also appear with the aid of the description which follows, given with regard to the appended drawings given solely by way of example and in which:
  • Figure 1 is a perspective view of an antenna with a polarized parabolic reflector according to the invention;
  • Figure 2 is a front view of the reflector according to the invention.

L'antenne parabolique représentée à la figure 1 comprend un réflecteur parabolique 1 de sommet S et une source primaire 2. La source primaire 2 est constituée par exemple, au moyen d'un cornet à section rectangulaire, et est montée au foyer du réflecteur à l'aide de bras supports 3, 4 et 5 prenant appui sur le bord 6 délimitant les surfaces concave et convexe du réflecteur. Le réflecteur 1 comporte une structure parabolique rigide en matière synthétique, en fibre de kevlar par exemple, ou tout autre matériau diélectrique équivalent. Une première grille 7 de polarisation, conductrice de l'électricité est disposée directement sur la face concave parabolique du réflecteur directement en regard de la source primaire 2 et une deuxième grille 8 de polarisation, orthogonale à la première grille 7 est située dans la partie centrale du réflecteur. La première grille 7 est constituée par un réseau de fils conducteurs s'étendant sur toute la surface du réflecteur en regard de la source primaire à l'intersection de plans parallèles entre eux et à la direction de l'axe AA' principal du paraboloïde, l'axe AA' passant sur la figure 1 par le sommet S et le foyer F du paraboloïde. La deuxième grille 8 est constituée également par un réseau de conducteurs situés également à l'intersection de plans parallèles entre eux ainsi qu'à la direction de l'axe AA' et orthogonaux aux plans précédents définissant le premier réseau de conducteurs de la première grille 7. Le réflecteur est orienté par rapport à la source primaire 2 de façon que les fils parallèles des grilles 7 et 8 soient également parallèles respectivement aux deux champs électriques des deux ondes électromagnétiques polarisées orthogonalement l'une par rapport à l'autre pour permettre la réflection de chacune des ondes par une seule des deux grilles. La réalisation des conducteurs formant les grilles 7 et 8 peut être obtenue à l'aide de fils métalliques noyés dans un tissu diélectrique ou par gravure globale à l'aide d'un masque au contact avec la surface du réflecteur, ou par gravure locale en forme au laser, ou encore par gravure sur la surface plane développée du réflecteur selon par exemple le procédé décrit dans la demande de brevet français 2 302 603.The parabolic antenna shown in FIG. 1 comprises a parabolic reflector 1 with apex S and a primary source 2. The primary source 2 is constituted, for example, by means of a horn with rectangular section, and is mounted at the focal point of the reflector at using support arms 3, 4 and 5 resting on the edge 6 delimiting the concave and convex surfaces of the reflector. The reflector 1 comprises a rigid parabolic structure made of synthetic material, for example kevlar fiber, or any other equivalent dielectric material. A first polarization grid 7, electrically conductive, is disposed directly on the concave parabolic face of the reflector directly opposite the primary source 2 and a second polarization grid 8, orthogonal to the first grid 7 is located in the central part. of the reflector. The first grid 7 is formed by a network of conductive wires extending over the entire surface of the reflector opposite the primary source at the intersection of planes parallel to each other and to the direction of the main axis AA ′ of the paraboloid, the axis AA 'passing in FIG. 1 through the vertex S and the focal point F of the paraboloid. The second grid 8 also consists of a network of conductors also located at the intersection of planes parallel to each other as well as to the direction of the axis AA 'and orthogonal to the previous planes defining the first network of conductors of the first grid 7. The reflector is oriented relative to the primary source 2 so that the parallel wires of the grids 7 and 8 are also parallel respectively to the two electric fields of the two electromagnetic waves polarized orthogonally to each other to allow the reflection of each wave by only one of the two grids. The realization of the conductors forming the grids 7 and 8 can be obtained using metallic wires embedded in a dielectric fabric or by overall etching using a mask in contact with the surface of the reflector, or by local etching in laser form, or by etching on the developed flat surface of the reflector according for example to the process described in French patent application 2,302,603.

Le réflecteur selon l'invention qui vient d'être décrit a pour avantage qu'il permet la réflection de deux ondes électromagnétiques de fréquences différentes polarisées orthogonalement l'une par rapport à l'autre en assurant une même couverture géographique à la surface du globe terrestre. La partie centrale du réflecteur formé par l'espace commun aux deux grilles orthogonales 7 et 8 réfléchit les deux ondes polarisées orthogonalement alors que la partie périphérique extérieure à la grille centrale 8 ne réfléchit que l'onde polarisée de fréquence basse. La même couverture de zone s'obtient en déterminant la surface et la géométrie de la grille centrale pour obtenir la même couverture de zone pour l'onde- de fréquence haute et son mode d'obtention est explicité ci-après en se référant à la représentation en vue de face du réflecteur de la figure 2.The reflector according to the invention which has just been described has the advantage that it allows the reflection of two electromagnetic waves of different frequencies polarized orthogonally to one another while ensuring the same geographic coverage on the surface of the globe. earthly. The central part of the reflector formed by the space common to the two orthogonal grids 7 and 8 reflects the two orthogonally polarized waves while the peripheral part external to the central grid 8 reflects only the polarized wave of low frequency. The same area coverage is obtained by determining the area and the geometry of the central grid to obtain the same area coverage for the high frequency wave and its method of obtaining is explained below with reference to the front view representation of the reflector of FIG. 2.

Sur la figure 2 le réflecteur 1 recouvre une surface elliptique de grand axe DX1 et de petit axe DY1 de rapport d'ellipticité voisin de celui de la couverture désirée, la grille 8 disposée dans la partie centrale, recouvre également une zone elliptique de grand axe Dx2 et de petit axe Dy2. Les centres des ellipses délimitant les surfaces des grilles 7 et 8 sont confondus. L'onde sphérique de fréquence basse issue de la source primaire 2 est transformée en une onde plane par toute la surface du réflecteur 1. Le diagramme secondaire obtenu a dans ces conditions une largeur à trois décibels qui vaut dans les plans principaux

Figure imgb0001
et
Figure imgb0002
où θx1 et θY1 désignent les angles d'ouverture du faisceau dans les plans principaux correspondants.In FIG. 2, the reflector 1 covers an elliptical surface with a long axis DX 1 and a small axis DY 1 with an ellipticity ratio close to that of the desired cover, the grid 8 disposed in the central part, also covers an elliptical area of major axis Dx 2 and minor axis Dy 2 . The centers of the ellipses delimiting the surfaces of the grids 7 and 8 are combined. The spherical wave of low frequency coming from the primary source 2 is transformed into a plane wave by all the surface of the reflector 1. The secondary diagram obtained has in these conditions a width with three decibels which is worth in the principal planes
Figure imgb0001
and
Figure imgb0002
where θx 1 and θ Y1 denote the beam opening angles in the corresponding main planes.

K11 est un coefficient de pondération pour une coupe orthogonale au champ électriqueK 11 is a weighting coefficient for a section orthogonal to the electric field

K12 est un coefficient de pondération pour une coupe parallèle au champ électrique et λ1 la longueur d'onde de l'onde de fréquence basse.K 12 is a weighting coefficient for a section parallel to the electric field and λ 1 the wavelength of the low frequency wave.

L'onde sphérique de fréquence haute est également transformée par la grille 8 intérieure au réflecteur en une onde plane dont le diagramme de rayonnement a une largeur à 3 dB qui vaut dans les plans principaux

Figure imgb0003
Figure imgb0004
où ex2 et ey2 désignent les angles d'ouverture du faisceau dans les plans principaux correspondants.The spherical wave of high frequency is also transformed by the grid 8 inside the reflector into a plane wave whose radiation diagram has a width at 3 dB which is valid in the main planes
Figure imgb0003
Figure imgb0004
where ex 2 and ey 2 denote the beam opening angles in the corresponding main planes.

K21 est un coefficient de pondération pour une coupe orthogonale au champ électriqueK 21 is a weighting coefficient for a section orthogonal to the electric field

K22 est un coefficient de pondération pour une coupe parallèle au champ électriqueK 22 is a weighting coefficient for a cut parallel to the electric field

X2 est la longueur d'onde de l'onde de fréquence la plus haute. La même couverture de zone pour les deux ondes de longueur d'onde λ1 et X2 est réalisée lorsque

Figure imgb0005
et
Figure imgb0006
soit
Figure imgb0007
et
Figure imgb0008
X 2 is the wavelength of the highest frequency wave. The same area coverage for the two waves of wavelength λ 1 and X 2 is achieved when
Figure imgb0005
and
Figure imgb0006
is
Figure imgb0007
and
Figure imgb0008

Lorsque ces conditions sont réalisées l'ouverture du faisceau pour la fréquence haute est très voisine de l'ouverture obtenue pour la fréquence basse et les couvertures de zones sont assurées avec un même gain pour les deux fréquences.When these conditions are met, the beam opening for the high frequency is very close to the opening obtained for the low frequency and the area coverage is ensured with the same gain for the two frequencies.

L'invention n'est pas limitée à l'exemple de réalisation du réflecteur double qui vient d'être décrit. Il va de soi que d'autres modes de réalisation sont également possibles en fonction notamment des sources primaires utilisées pour réaliser l'antenne ; on concevra notamment que des formes elliptiques du réflecteur et de la grille intérieure pourront être réduites à des cercles pour certains types de sources primaires utilisés pour réaliser l'antenne.The invention is not limited to the embodiment of the double reflector which has just been described. It goes without saying that other embodiments are also possible depending in particular on the primary sources used to make the antenna; it will be appreciated in particular that elliptical shapes of the reflector and of the internal grid could be reduced to circles for certain types of primary sources used to make the antenna.

De plus, dans certains modes particuliers d'applications, les centres des ellipses délimitant les surfaces des grilles 7 et 8 ne seront pas nécessairement confondus avec le sommet S du réflecteur. Ce pourra être le cas notamment lorsque l'antenne est formée par un réflecteur de type « offset ".In addition, in certain particular modes of application, the centers of the ellipses delimiting the surfaces of grids 7 and 8 will not necessarily coincide with the vertex S of the reflector. This could be the case in particular when the antenna is formed by a reflector of the "offset " type.

Claims (7)

1. A cross-polarization dual-frequency antenna with the same area of coverage, for telecommunication satellites of the type comprising a reflector (1) of paraboloid shape, which comprises two conducting wire networks (7, 8) extending in orthogonal directions, and a primary source .(2) of electromagnetic waves placed in the focus of this reflector, said two networks (7, 8), disposed on the concave face of the reflector, being constituted of wires placed at the intersection of planes that are parallel with one another and with the main axis (A-A') of the reflector (1), with said concave plane, characterized in that the edges of each network delimit respectively a first and a second elliptical surface (DX1, DY1 ; DX2, DY2), whose centres are confounded (S) and whose dimensions are sized to obtain the same area coverage for both frequencies, and that the second network (8) is disposed within the zone formed by the first network (7).
2. An antenna according to claim 1, characterized in that the reflector (1) is constituted by a dielectrical tissue within which the conducting wires forming the first (7) and the second network (8) are embedded.
3. An antenna according to any one of claims 1 and 2, characterized in that the conducting wires of each of the networks are engraved in the surface of the reflector (1).
4. An antenna according to any one of claims 1 and 2, characterized in that the conducting wires of each of the networks (7, 8) are engraved in the surface of the reflector (1) by means of an over-developped plane engraving method.
5. An antenna according to any one of the claims 1 to 4, characterized in that the primary electromagnetic wave source (2) is constituted by a rectangular section horn held at the focus of the reflector by means of a support arm (3, 4, 5) supported by the edge (6) of the reflector (1).
6. An antenna according to any one of claims 1 to 5, characterized in that the reflector (1) is so oriented relative to the primary source (2) that the parallel conducting wires of the first network (7) and of the second network (8) are also parallel respectively to the two perpendicular electric fields of the two electromagnetic waves radiated by the primary source (2).
7. An antenna according to any one of claims 1 to 6, characterized in that the two elliptical surfaces delimiting the areas of the networks (7, 8) have their centres of symmetry (S) confounded with twe intersection point of the concave face of the reflector (1) and its main axis (A-A').
EP85108872A 1984-07-17 1985-07-16 Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites Expired EP0170154B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8411293 1984-07-17
FR8411293A FR2568062B1 (en) 1984-07-17 1984-07-17 BIFREQUENCY ANTENNA WITH SAME CROSS-POLARIZATION ZONE COVERAGE FOR TELECOMMUNICATIONS SATELLITES

Publications (2)

Publication Number Publication Date
EP0170154A1 EP0170154A1 (en) 1986-02-05
EP0170154B1 true EP0170154B1 (en) 1989-09-20

Family

ID=9306190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108872A Expired EP0170154B1 (en) 1984-07-17 1985-07-16 Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites

Country Status (4)

Country Link
US (1) US4757323A (en)
EP (1) EP0170154B1 (en)
DE (1) DE3573197D1 (en)
FR (1) FR2568062B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598339B1 (en) * 1986-05-06 1990-12-14 Europ Agence Spatiale PARABOLIC REFLECTOR ANTENNAS AND METHOD FOR OBTAINING SAME
US5175562A (en) * 1989-06-23 1992-12-29 Northeastern University High aperture-efficient, wide-angle scanning offset reflector antenna
US4937425A (en) * 1989-08-29 1990-06-26 Hughes Aircraft Company Method of making a polarizing parabolic dish antenna reflector
USH1421H (en) * 1990-09-28 1995-03-07 United States Of America VHF satellite based radar antenna array
CA2105745C (en) * 1992-09-21 1997-12-16 Parthasarathy Ramanujam Identical surface shaped reflectors in semi-tandem arrangement
DE19829554C2 (en) * 1998-07-02 2002-08-01 Bosch Gmbh Robert Antenna lens for a distance sensor
US6169524B1 (en) * 1999-01-15 2001-01-02 Trw Inc. Multi-pattern antenna having frequency selective or polarization sensitive zones
TWI273106B (en) * 2000-05-24 2007-02-11 Chi Mei Corp Method of manufacturing polydiene-based rubber
FR2821489A1 (en) * 2001-02-23 2002-08-30 Sta Satellite Terminal Access Dual band elliptic reflector satellite link antenna has combined patch and rod feed
US6473051B2 (en) * 2001-03-13 2002-10-29 Raytheon Company Elliptic to circular polarization converter and test apparatus incorporating the same for accommodating large axial ratio
US6731249B1 (en) * 2003-04-01 2004-05-04 Wistron Neweb Corporation Multi-beam-reflector dish antenna and method for production thereof
JP6882316B2 (en) * 2016-03-04 2021-06-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Wire grid polarizing plate manufacturing method
WO2018165626A1 (en) * 2017-03-09 2018-09-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Cross-link satellite with spherical reflectors
CN109462038A (en) * 2018-09-26 2019-03-12 上海交通大学 The micro-strip grid array antenna of double frequency-band
US11728572B1 (en) * 2019-12-11 2023-08-15 Raytheon Company Twistarray reflector for axisymmetric incident fields

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2483575A (en) * 1944-07-26 1949-10-04 Bell Telephone Labor Inc Directional microwave antenna
US2922160A (en) * 1950-04-27 1960-01-19 Lester C Van Atta Split paraboloidal reflector
US2736895A (en) * 1951-02-16 1956-02-28 Elliott Brothers London Ltd High frequency radio aerials
US2930039A (en) * 1954-10-18 1960-03-22 Gabriel Co Antenna system for variable polarization
BE551006A (en) * 1955-10-03
DE1092072B (en) * 1956-06-05 1960-11-03 Bendix Aviat Corp Antenna for radar systems with switchable directional diagrams with different directivity
US2982961A (en) * 1957-03-20 1961-05-02 Calvin C Jones Dual feed antenna
US3096519A (en) * 1958-04-14 1963-07-02 Sperry Rand Corp Composite reflector for two independent orthogonally polarized beams
NL246679A (en) * 1958-12-23
US3119109A (en) * 1958-12-31 1964-01-21 Raytheon Co Polarization filter antenna utilizing reflector consisting of parallel separated metal strips mounted on low loss dish
US3049708A (en) * 1959-11-20 1962-08-14 Sperry Rand Corp Polarization sensitive antenna system
US3281850A (en) * 1962-03-07 1966-10-25 Hazeltine Research Inc Double-feed antennas operating with waves of two frequencies of the same polarization
US3271171A (en) * 1965-06-16 1966-09-06 Ferro Corp Gray ceramics containing a calcined mixture of aluminum and vanadium compounds
US3483563A (en) * 1965-10-13 1969-12-09 Collins Radio Co Combination vertically-horizontally polarized paracylinder antennas
US3898667A (en) * 1974-02-06 1975-08-05 Rca Corp Compact frequency reuse antenna
GB1457907A (en) * 1974-02-27 1976-12-08 Terma Elektronisk Ind As Microwave antennas
US4001836A (en) * 1975-02-28 1977-01-04 Trw Inc. Parabolic dish and method of constructing same
FR2304192A1 (en) * 1975-03-14 1976-10-08 Thomson Csf SELECTIVE GAIN REDUCTION ANTENNA
US4625214A (en) * 1984-10-15 1986-11-25 Rca Corporation Dual gridded reflector structure

Also Published As

Publication number Publication date
FR2568062B1 (en) 1986-11-07
EP0170154A1 (en) 1986-02-05
DE3573197D1 (en) 1989-10-26
US4757323A (en) 1988-07-12
FR2568062A1 (en) 1986-01-24

Similar Documents

Publication Publication Date Title
EP0170154B1 (en) Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
US5914694A (en) Dual-band, dual polarization radiating structure
JP2004511940A (en) Improvements to electromagnetic wave transmission / reception sources in multi-reflector antennas
EP1568104B1 (en) Multiple-beam antenna with photonic bandgap material
EP0899814A1 (en) Radiating structure
Dion et al. A variable-coverage satellite antenna system
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
Sanchez-Escuderos et al. Microwave planar lens antenna designed with a three-layer frequency-selective surface
EP0248886A1 (en) High efficiency optical limited scan antenna.
EP0045254B1 (en) Compact dual-frequency microwave feed
US6459414B1 (en) Dual-polarized and circular-polarized antennas
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
FR2854737A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
Miura et al. A mesh reflecting surface with electrical characteristics independent on direction of electric field of incident wave
US3852748A (en) High-resolution hemispherical reflector antenna
US20050088356A1 (en) Receiving antenna for multibeam coverage
EP0337841A1 (en) Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops
FR2684809A1 (en) MULTI-BEAM PASSIVE ANTENNA WITH CONFORMITY REFLECTOR (S).
FR2590081A1 (en) LINEAR POLARIZED GRID REFLECTING ANTENNA WITH IMPROVED TRANSVERSE POLARIZATION PERFORMANCE
FR2490025A1 (en) Monomode or multimode radar horn - contains radiating elements deposited on thin dielectric substrate located perpendicular to direction of polarisation
EP3155689B1 (en) Flat antenna for satellite communication
EP0472636A1 (en) Antenna apparatus with reflector or lens consisting of a frequency scanned grating
FR2803694A1 (en) RESONANT CAVITY ANTENNA HAVING A CONFORMING BEAM ACCORDING TO A PREDETERMINED RADIATION DIAGRAM
FR2535906A1 (en) DOUBLE REFLECTOR ANTENNA FOR FOLLOWING RADAR TO ENHANCE ACQUISITION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19860729

17Q First examination report despatched

Effective date: 19880203

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ESPACE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3573197

Country of ref document: DE

Date of ref document: 19891026

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920615

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930519

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930521

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930526

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930527

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: ALCATEL ESPACE

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940717

EUG Se: european patent has lapsed

Ref document number: 85108872.4

Effective date: 19950210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

EUG Se: european patent has lapsed

Ref document number: 85108872.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST