EP0170154A1 - Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites - Google Patents

Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites Download PDF

Info

Publication number
EP0170154A1
EP0170154A1 EP85108872A EP85108872A EP0170154A1 EP 0170154 A1 EP0170154 A1 EP 0170154A1 EP 85108872 A EP85108872 A EP 85108872A EP 85108872 A EP85108872 A EP 85108872A EP 0170154 A1 EP0170154 A1 EP 0170154A1
Authority
EP
European Patent Office
Prior art keywords
reflector
network
antenna according
conductive wires
primary source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85108872A
Other languages
German (de)
French (fr)
Other versions
EP0170154B1 (en
Inventor
Gilles Duret
Daniel Renaud
Hubert Diez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Alcatel Thomson Espace SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA, Alcatel Thomson Espace SA filed Critical Alcatel Espace Industries SA
Publication of EP0170154A1 publication Critical patent/EP0170154A1/en
Application granted granted Critical
Publication of EP0170154B1 publication Critical patent/EP0170154B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S343/00Communications: radio wave antennas
    • Y10S343/02Satellite-mounted antenna

Definitions

  • the present invention relates to a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites, allowing coverage of identical areas on the surface of the earth for two electromagnetic waves orthogonally polarized to one another.
  • the radiation diagram of the primary source has an opening which varies according to the frequency of the radiated electromagnetic wave, the efficiency of the antenna is not the same for one and the other of the waves reflected by the reflector and to obtain signals of the same energy on the surface of the terrestrial globe, the primary source must be adapted to compensate for the loss of energy undergone by one of the waves relative to the other, this compensation involving oversizing of the satellite transmitter supply devices.
  • the known antennas formed by a single reflector do not make it possible to preserve, after reflection, perfect orthogonality of the electric fields of each of their plane of polarization so that the isolation between the transmission channels formed by the frequency waves cannot be fully guaranteed.
  • the object of the invention is to remedy these drawbacks.
  • the subject of the invention is a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites of the type comprising a parabolic reflector of vertex S, with an elliptical edge, with a dimension of major axis Dx and of minor axis Dy and a primary source of spherical electromagnetic wave placed at the focus of the parabolic reflector, characterized in that the reflector comprises a first network of conductive wires fixed to the concave face of the reflector at the intersection of planes parallel to each other and to the direction of the axis of revolution of the paraboloid, with the concave face of the reflector and a second network of conductive wires orthogonal to the first network placed inside the area defined by the first network of conductors to form a reflective surface with elliptical edge with dimension of major axis Dx 2 less than Dx and minor axis D Y2 less than Dy 1 , the centers of the ellipses formed by the edges of each of the surfaces
  • the parabolic antenna shown in FIG. 1 comprises a parabolic reflector 1 with apex S and a primary source 2.
  • the primary source 2 is constituted, for example, by means of a horn with rectangular section, and is mounted at the focal point of the reflector using support arms 3, 4 and 5 bearing on the edge 6 delimiting the concave and convex surfaces of the reflector.
  • the reflector 1 comprises a rigid parabolic structure made of synthetic material, for example kevlar fiber, or any other equivalent dielectric material.
  • a first polarization grid 7, electrically conductive, is placed directly on the parabolic concave face of the reflector directly opposite the primary source 2 and a second polarization grid 8, orthogonal to the first grid 7 is located in the central part. of the reflector.
  • the first grid 7 is formed by a network of conductive wires extending over the entire surface of the reflector opposite the primary source at the intersection of planes parallel to each other and to the direction of the main axis AA ′ of the parabolold, the axis AA ′ passing in FIG. 1 through the apex S and the focal point F of the parabolold.
  • the second grid 8- is also constituted by a network of conductors also located at the intersection of planes parallel to each other as well as to the direction of the axis AA 'and orthogonal to the preceding planes defining the first network of conductors of the first grid 7.
  • the reflector is oriented relative to the primary source 2 so that the parallel wires of the grids 7 and -8 are also parallel respectively to the two electric fields of the two electromagnetic waves orthogonally polarized with respect to each other for allow the reflection of each wave by only one of the two grids.
  • the realization of the conductors forming the grids 7 and 8 can be obtained using metallic wires embedded in a dielectric fabric or by global etching using a mask in contact with the surface of the reflector, or by local etching in laser form, or by etching on the developed flat surface of the reflector according for example to the method described in French patent application 2,302,603.
  • the reflector according to the invention which has just been described has the advantage that it allows the reflection of two electromagnetic waves of different frequencies polarized orthogonally to one another while ensuring the same geographic coverage on the surface of the globe. earthly.
  • the central part of the reflector formed by the space common to the two orthogonal grids 7 and 8 reflects the two orthogonally polarized waves while the peripheral part external to the central grid 8 reflects only the polarized wave of low frequency.
  • the same area coverage is obtained by determining the surface and the geometry of the central grid to obtain the same area coverage for the high frequency wave and its method of obtaining is explained below with reference to the representation. in front view of the reflector of FIG. 2.
  • the beam opening for the high frequency is very close to the opening obtained for the low frequency and the area coverage is ensured with the same gain for the two frequencies.
  • the invention is not limited to the embodiment of the double reflector which has just been described. It goes without saying that other embodiments are also possible depending in particular on the primary sources used to make the antenna, it will be appreciated in particular that elliptical shapes of the reflector and of the internal grid could be reduced to circles for certain types of primary sources used to make the antenna.
  • the centers of the ellipses delimiting the surface of the grids 7 and 8 will not necessarily be confused with the vertex S of the reflector may be the case in particular when the antenna is formed by a reflector of type "offset".

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

L'antenne comprend un réflecteur parabolique (1) et une source primaire (2). Le réflecteur (1) comprend un premier réseau de fils conducteurs (7) et un deuxième réseau de fils conducteurs (8) orthogonal au premier formant deux surfaces elliptiques réflechissantes. Les dimensions des grands axes et petits axes des ellipses sont déterminées pour couvrir sur la surface du globe terrestre des zones identiques aux deux fréquences de fonctionnement de l'antenne. Application: satellites de télécommunications.The antenna includes a parabolic reflector (1) and a primary source (2). The reflector (1) comprises a first network of conductive wires (7) and a second network of conductive wires (8) orthogonal to the first forming two elliptical reflecting surfaces. The dimensions of the major axes and minor axes of the ellipses are determined to cover on the surface of the terrestrial globe zones identical to the two operating frequencies of the antenna. Application: telecommunications satellites.

Description

La présente invention concerne une antenne bi-fréquence à même couverture de zone à polarisation croisée pour satellites de télécommunications, permettant des couvertures de zones identiques à la surface du globe terrestre pour deux ondes électromagnétiques polarisées orthogonalement l'une à l'autre.The present invention relates to a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites, allowing coverage of identical areas on the surface of the earth for two electromagnetic waves orthogonally polarized to one another.

Pour obtenir des couvertures de zones identiques à la surface du globe terrestre par deux ondes rayonnées de fréquences différentes il est connu d'utiliser une antenne formée par un réflecteur en forme de parabololde situé en regard d'une source primaire d'ondes électromagnétiques placée au foyer du réflecteur, la source primaire ayant par exemple la forme d'un cornet placé à l'extrémité d'un guide d'onde électromagnétique.To obtain covers of identical areas on the surface of the terrestrial globe by two radiated waves of different frequencies it is known to use an antenna formed by a reflector in the form of a paraboloid located opposite a primary source of electromagnetic waves placed at the focus of the reflector, the primary source having for example the shape of a horn placed at the end of an electromagnetic waveguide.

Comme dans ce mode de réalisation le diagramme de rayonnement de la source primaire a une ouverture qui varie en fonction de la fréquence de l'onde électromagnétique rayonnée, le rendement de l'antenne n'est pas le même pour l'une et l'autre des ondes réfléchies par le réflecteur et pour obtenir à la surface du globe terrestre des signaux de même énergie, la source primaire doit être adaptée pour compenser la perte d'énergie subie par l'une des ondes relativement à l'autre, cette compensation impliquant un surdimensionnement des dispositifs d'alimentation d'émetteur du satellite.As in this embodiment the radiation diagram of the primary source has an opening which varies according to the frequency of the radiated electromagnetic wave, the efficiency of the antenna is not the same for one and the other of the waves reflected by the reflector and to obtain signals of the same energy on the surface of the terrestrial globe, the primary source must be adapted to compensate for the loss of energy undergone by one of the waves relative to the other, this compensation involving oversizing of the satellite transmitter supply devices.

D'autre part, les antennes connues formées par un seul réflecteur ne permettent pas de conserver après réflection une parfaite orthogonalité des champs électriques de chacun de leur plan de polarisation de sorte que l'isolement entre les voies de transmission formées par les ondes de fréquences différentes ne peut être assuré de façon totalement efficace.On the other hand, the known antennas formed by a single reflector do not make it possible to preserve, after reflection, perfect orthogonality of the electric fields of each of their plane of polarization so that the isolation between the transmission channels formed by the frequency waves cannot be fully guaranteed.

Le but de l'invention est de remédier à ces inconvénients.The object of the invention is to remedy these drawbacks.

A cet effet, l'invention a pour objet, une antenne bi-fréquence à même couverture de zone à polarisation croisée pour satellites de télécommunications du type comprenant un réflecteur parabolique de sommet S, à bord elliptique, à dimension de grand axe Dx et de petit axe Dy et une source primaire d'onde électromagnétique sphérique placée au foyer du réflecteur parabolique, caractérisée en ce que le réflecteur comprend un premier réseau de fils conducteurs fixés à la face concave du réflecteur à l'intersection de plans parallèles entre eux et à la direction de l'axe de révolution du paraboloide, avec la face concave du réflecteur et un deuxième réseau de fils conducteurs orthogonal au premier réseau placé à l'intérieur de la zone définie par le premier réseau de conducteurs pour former une surface réfléchissante à bord elliptique à dimension de grand axe Dx2 inférieure à Dx et de petit axe DY2 inférieure à Dy1, les centres des ellipses formés par les bords de chacune des surfaces étant confondus et les dimensions des grands axes et petits axes des ellipses des deux surfaces réfléchissantes formées par les deux réseaux de conducteurs étant déterminées pour obtenir la même couverture de zone pour l'onde de fréquence haute et pour l'onde de fréquence basse.To this end, the subject of the invention is a dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites of the type comprising a parabolic reflector of vertex S, with an elliptical edge, with a dimension of major axis Dx and of minor axis Dy and a primary source of spherical electromagnetic wave placed at the focus of the parabolic reflector, characterized in that the reflector comprises a first network of conductive wires fixed to the concave face of the reflector at the intersection of planes parallel to each other and to the direction of the axis of revolution of the paraboloid, with the concave face of the reflector and a second network of conductive wires orthogonal to the first network placed inside the area defined by the first network of conductors to form a reflective surface with elliptical edge with dimension of major axis Dx 2 less than Dx and minor axis D Y2 less than Dy 1 , the centers of the ellipses formed by the edges of each of the surfaces being combined and the dimensions of the major axes and minor axes of the ellipses of the two reflecting surfaces formed by the two networks of conductors being determined to obtain the same area coverage for the high frequency wave and for the low frequency wave.

D'autres caractéristiques et avantages de l'invention apparaîtront également à l'aide de la description qui va suivre faite au regard des dessins annexés donnés uniquement à titre d'exemple et dans lesquels :

  • - la figure 1 est une vue en perspective d'une antenne munie d'un réflecteur parabolique polarisée selon l'invention ;
  • - la figure 2 est une vue de face du réflecteur selon l'invention.
Other characteristics and advantages of the invention will also appear with the aid of the description which follows, given with regard to the appended drawings given solely by way of example and in which:
  • - Figure 1 is a perspective view of an antenna provided with a polarized parabolic reflector according to the invention;
  • - Figure 2 is a front view of the reflector according to the invention.

L'antenne .parabolique représentée à la figure 1 comprend un réflecteur parabolique 1 de sommet S et une source primaire 2. La source primaire 2 est constituée par exemple, au moyen d'un cornet à section rectangulaire, et est montée au foyer du réflecteur à l'aide de bras supports 3, 4 et 5 prenant appui sur le bord 6 délimitant les surfaces concave et convexe du réflecteur. Le réflecteur 1 comporte une structure parabolique rigide en matière synthétique, en fibre de kevlar par exemple, ou tout autre matériau diélectrique équivalent. Une première grille 7 de polarisation, conductrice de l'électricité est disposée directement sur la face concave parabolique du réflecteur directement en regard de la source primaire 2 et une deuxième grille 8 de polarisation, orthogonale à la première grille 7 est située dans la partie centrale du réflecteur. La première grille 7 est constituée par un réseau de fils conducteurs s'étendant sur toute la surface du réflecteur en regard de la source primaire à l'intersection de plans parallèles entre eux et à la direction de l'axe AA' principal du parabololde, l'axe AA' passant sur la figure 1 par le sommet S et le foyer F du parabololde. La deuxième grille 8-est constituée également par un réseau de conducteurs situés également à l'intersection de plans parallèles entre eux ainsi qu'à la direction de l'axe AA' et orthogonaux aux plans précédents définissant le premier réseau de conducteurs de la première grille 7. Le réflecteur est orienté par rapport à la source primaire 2 de façon que les fils parallèles des grilles 7 et -8 soient également parallèles respectivement aux deux champs électriques des deux ondes électromagnétiques polarisées orthogonalement l'une par rapport à l'autre pour permettre la réflection de chacune des ondes par une seule des deux grilles. La réalisation des conducteurs formant les grilles 7 et 8 peut être obtenue à l'aide de fils métalliques noyés dans un tissu diélectrique ou par gravure globale à l'aide d'un masque au contact avec la surface du réflecteur, ou par gravure locale en forme au laser, ou encore par gravure sur la surface plane développée du réflecteur selon par exemple le procédé décrit dans la demande de brevet français 2 302 603.The parabolic antenna shown in FIG. 1 comprises a parabolic reflector 1 with apex S and a primary source 2. The primary source 2 is constituted, for example, by means of a horn with rectangular section, and is mounted at the focal point of the reflector using support arms 3, 4 and 5 bearing on the edge 6 delimiting the concave and convex surfaces of the reflector. The reflector 1 comprises a rigid parabolic structure made of synthetic material, for example kevlar fiber, or any other equivalent dielectric material. A first polarization grid 7, electrically conductive, is placed directly on the parabolic concave face of the reflector directly opposite the primary source 2 and a second polarization grid 8, orthogonal to the first grid 7 is located in the central part. of the reflector. The first grid 7 is formed by a network of conductive wires extending over the entire surface of the reflector opposite the primary source at the intersection of planes parallel to each other and to the direction of the main axis AA ′ of the parabolold, the axis AA ′ passing in FIG. 1 through the apex S and the focal point F of the parabolold. The second grid 8-is also constituted by a network of conductors also located at the intersection of planes parallel to each other as well as to the direction of the axis AA 'and orthogonal to the preceding planes defining the first network of conductors of the first grid 7. The reflector is oriented relative to the primary source 2 so that the parallel wires of the grids 7 and -8 are also parallel respectively to the two electric fields of the two electromagnetic waves orthogonally polarized with respect to each other for allow the reflection of each wave by only one of the two grids. The realization of the conductors forming the grids 7 and 8 can be obtained using metallic wires embedded in a dielectric fabric or by global etching using a mask in contact with the surface of the reflector, or by local etching in laser form, or by etching on the developed flat surface of the reflector according for example to the method described in French patent application 2,302,603.

Le réflecteur selon l'invention qui vient d'être décrit a pour avantage qu'il permet la réflection de deux ondes électromagnétiques de fréquences différentes polarisées orthogonalement l'une par rapport à l'autre en assurant une même couverture géographique à la surface du globe terrestre. La partie centrale du réflecteur formé par l'espace commun aux deux grilles orthogonales 7 et 8 réfléchit les deux ondes polarisées orthogonalement alors que la partie périphérique extérieure à la grille centrale 8 ne réfléchit que l'onde polarisée de fréquence basse. La même couverture de zone s'obtient en déterminant la surface et la géométrie de la grille centrale pour obtenir la même couverture de zone pour l'onde de fréquence haute et son mode d'obtention est explicité ci-après en se référant à la représentation en vue de face du réflecteur de la figure 2.The reflector according to the invention which has just been described has the advantage that it allows the reflection of two electromagnetic waves of different frequencies polarized orthogonally to one another while ensuring the same geographic coverage on the surface of the globe. earthly. The central part of the reflector formed by the space common to the two orthogonal grids 7 and 8 reflects the two orthogonally polarized waves while the peripheral part external to the central grid 8 reflects only the polarized wave of low frequency. The same area coverage is obtained by determining the surface and the geometry of the central grid to obtain the same area coverage for the high frequency wave and its method of obtaining is explained below with reference to the representation. in front view of the reflector of FIG. 2.

Sur la figure 2 le réflecteur 1 recouvre une surface elliptique de grand axe Dx et de petit axe Dy de rapport d'ellipticité voisin de celui de la couverture désirée, la grille 8 disposée dans la partie centrale, recouvre également une zone elliptique de grand axe Dx2 et de petit axe Dy2 . Les centres des ellipses délimitant les surfaces des grilles 7 et 8 sont confondus. L'onde sphérique de fréquence basse issue de la source primaire 2 est transformée en une onde plane par toute la surface du réflecteur 1. Le diagramme secondaire obtenu a dans ces conditions une largeur à trois décibels qui vaut dans les plans principaux

Figure imgb0001
Figure imgb0002

où θx1 et θy1 désignent les angles d'ouverture du faisceau dans les plans principaux correspondants.

  • - K11 est un coefficient de pondération pour une coupe orthogonale au champ électrique.
  • - K12 est un coefficient de pondération pour une coupe parallèle au champ électrique et - λ1 la longueur d'onde de l'onde de fréquence basse.
In FIG. 2 the reflector 1 covers an elliptical surface with a long axis Dx and a small axis Dy with an ellipticity ratio close to that of the desired cover, the grid 8 disposed in the central part, also covers an elliptical area with large axis Dx 2 and minor axis Dy 2 . The centers of the ellipses delimiting the surfaces of the grids 7 and 8 are combined. The spherical wave of low frequency coming from the primary source 2 is transformed into a plane wave by all the surface of the reflector 1. The secondary diagram obtained has in these conditions a width with three decibels which is worth in the principal planes
Figure imgb0001
Figure imgb0002

where θx 1 and θy 1 denote the beam opening angles in the corresponding main planes.
  • - K 11 is a weighting coefficient for a section orthogonal to the electric field.
  • - K 12 is a weighting coefficient for a section parallel to the electric field and - λ 1 the wavelength of the low frequency wave.

L'onde sphérique de fréquence haute est également transformée par la grille 8 intérieure au réflecteur en une onde plane dont le diagramme de rayonnement a une largeur à 3 dB qui vaut dans les plans principaux

Figure imgb0003
Figure imgb0004

où θx2 et θy2 désignent les angles d'ouverture du faisceau dans les plans principaux correspondants.

  • - K21 est un coefficient de pondération pour une coupe orthogonale au champ électrique
  • - K22 est un coefficient de pondération pour une coupe parallèle au champ électrique
  • - A2 est la longueur d'onde de l'onde de fréquence la plus haute.
The spherical wave of high frequency is also transformed by the grid 8 inside the reflector into a plane wave whose radiation diagram has a width at 3 dB which is valid in the main planes
Figure imgb0003
Figure imgb0004

where θx 2 and θy 2 denote the beam opening angles in the corresponding main planes.
  • - K 21 is a weighting coefficient for a section orthogonal to the electric field
  • - K22 is a weighting coefficient for a cut parallel to the electric field
  • - A2 is the wavelength of the highest frequency wave.

La même couverture de zone pour les deux ondes de longueur d'onde λ1 et λ2 est réalisée lorsque

Figure imgb0005
Figure imgb0006
Figure imgb0007
The same area coverage for the two waves of wavelength λ 1 and λ 2 is achieved when
Figure imgb0005
Figure imgb0006
Figure imgb0007

Lorsque ces conditions sont réalisées l'ouverture du faisceau pour la fréquence haute est très voisine de l'ouverture obtenue pour la fréquence basse et les couvertures de zones sont assurées avec un même gain pour les deux fréquences.When these conditions are met, the beam opening for the high frequency is very close to the opening obtained for the low frequency and the area coverage is ensured with the same gain for the two frequencies.

L'invention n'est pas limitée à l'exemple de réalisation du réflecteur double qui vient d'être décrit il va de soi que d'autres modes de réalisation sont également possibles en fonction notamment des sources primaires utilisées pour réaliser l'antenne, on concevra notamment que des formes elliptiques du réflecteur et de la grille intérieure pourront être réduites à des cercles pour certains types de sources primaires utilisés pour réaliser l'antenne.The invention is not limited to the embodiment of the double reflector which has just been described. It goes without saying that other embodiments are also possible depending in particular on the primary sources used to make the antenna, it will be appreciated in particular that elliptical shapes of the reflector and of the internal grid could be reduced to circles for certain types of primary sources used to make the antenna.

De plus, dans certains modes particuliers d'applications, les centres des ellipses délimitant les surface des grille 7 et 8 ne seront pas nécessairement confondus avec le sommet S du réflecteur se pourra être le cas notamment lorsque l'antenne est formée par un réflecteur de type "offset".In addition, in certain particular modes of applications, the centers of the ellipses delimiting the surface of the grids 7 and 8 will not necessarily be confused with the vertex S of the reflector may be the case in particular when the antenna is formed by a reflector of type "offset".

Claims (7)

1/ Antenne bi-fréquence à même couverture de zone à polarisation croisée pour satellites de télécommunications du type comprenant un réflecteur parabolique (1) de sommet (S), à bord elliptique, à dimension de grand axe Dx1 et de petit axe DY1 et une source primaire (2) d'onde électromagnétique sphérique placée au foyer du réflecteur parabolique caractérisée en ce que le réflecteur (1) comprend un premier réseau de fils conducteurs (7) fixés à la face concave du réflecteur (1) à l'intersection de plans parallèles entre eux et à la direction de l'axe de révolution du paraboloide, avec la face concave du réflecteur et un deuxième réseau de fils conducteurs (8) orthogonal au premier réseau (7) placé à l'intérieur de la zone définie par le premier réseau de conducteurs pour former une surface réfléchissante à bord elliptique à dimension de grand axe Dx2 inférieure à Dx et de petit axe DY2 inférieure à Dyl, les centres des ellipses formés par les bords de chacune des surfaces étant confondus et les dimensions des grands axes et petits axes des ellipses des deux surfaces réfléchissantes formées par les deux réseaux de conducteurs étant déterminées pour obtenir la même couverture de zone pour l'onde de fréquence haute et pour l'onde de fréquence basse.1 / Dual-frequency antenna with the same cross-polarized area coverage for telecommunications satellites of the type comprising a parabolic reflector (1) with apex (S), with elliptical edge, with dimension of major axis Dx 1 and minor axis D Y1 and a primary source (2) of spherical electromagnetic wave placed at the focus of the parabolic reflector, characterized in that the reflector (1) comprises a first network of conductive wires (7) fixed to the concave face of the reflector (1) at the intersection of planes parallel to each other and to the direction of the axis of revolution of the paraboloid, with the concave face of the reflector and a second network of conducting wires (8) orthogonal to the first network (7) placed inside the zone defined by the first network of conductors to form a reflecting surface with an elliptical edge with a dimension of major axis Dx 2 less than Dx and of minor axis D Y2 less than Dy l , the centers of the ellipses formed by the edges of each of the surfaces being con fades and the dimensions of the major axes and minor axes of the ellipses of the two reflecting surfaces formed by the two arrays of conductors being determined to obtain the same zone coverage for the high frequency wave and for the low frequency wave. 2/ Antenne selon la revendication 1, caractérisée en ce que les surfaces réfléchissantes formées par le premier réseau (7) et le deuxième réseau (8) de conducteurs ont respectivement des longueurs de petit axe égales à celles de leur grand axe pour former deux surfaces à bord cylindrique concentriques.2 / antenna according to claim 1, characterized in that the reflective surfaces formed by the first network (7) and the second network (8) of conductors respectively have lengths of minor axis equal to those of their major axis to form two surfaces with concentric cylindrical edge. 3/ Antenne selon l'une quelconque des revendications 1 et 2, caractérisée en ce que le réflecteur (1) est constitué par un tissu diélectrique dans lequel sont noyés les fils conducteurs formant le premier réseau (6) et deuxième réseau (7) de fils conducteurs.3 / Antenna according to any one of claims 1 and 2, characterized in that the reflector (1) consists of a dielectric fabric in which are embedded the conductive wires forming the first network (6) and second network (7) of conducting wires. 4/ Antenne selon l'une quelconque des revendications 1 et 2, caractérisée en ce que les fils conducteurs de chacun des réseaux (7, 8) sont gravés à la surface du réflecteur (1).4 / An antenna according to any one of claims 1 and 2, characterized in that the conductive wires of each of the networks (7, 8) are etched on the surface of the reflector (1). 5/ Antenne selon l'une quelconque des revendications 1 et 2, caractérisée en ce que les fils conducteurs du premier réseau (7) et du deuxième réseau (8) sont gravés à la surface du réflecteur (1) par un procédé de gravure plane surdéveloppée.5 / antenna according to any one of claims 1 and 2, characterized in that the conductive son of the first network (7) and the second network (8) are etched on the surface of the reflector (1) by a planar etching process overdeveloped. 6/ Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la source primaire (2) d'onde électromagnétique est constituée par un cornet à section rectangulaire maintenu au foyer du réflecteur au moyen de bras support (3, 4, 5) prenant appui sur le bord (6) du réflecteur (1) constitué par les fils conducteurs du premier réseau (6). 7/ Antenne selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le réflecteur (1) est orienté par rapport à la source primaire (2) de façon que les fils conducteurs parallèles du premier réseau (7) et du deuxième réseau (8) soient également parallèles respectivement aux deux champs électriques perpendiculaires des deux ondes électromagnétiques rayonnées par la source primaire (2).6 / antenna according to any one of claims 1 to 5, characterized in that the primary source (2) of electromagnetic wave consists of a horn with rectangular section maintained at the focus of the reflector by means of support arms (3, 4 , 5) bearing on the edge (6) of the reflector (1) formed by the conductive wires of the first network (6). 7 / antenna according to any one of claims 1 to 6, characterized in that the reflector (1) is oriented relative to the primary source (2) so that the parallel conductive wires of the first network (7) and the second network (8) are also parallel respectively to the two perpendicular electric fields of the two electromagnetic waves radiated by the primary source (2). 8/ Antenne selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les centres des ellipses délimitant les surfaces des grilles sont confondus avec le sommet S du réflecteur parabolique.8 / antenna according to any one of claims 1 to 7, characterized in that the centers of the ellipses delimiting the surfaces of the grids are coincident with the vertex S of the parabolic reflector.
EP85108872A 1984-07-17 1985-07-16 Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites Expired EP0170154B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8411293A FR2568062B1 (en) 1984-07-17 1984-07-17 BIFREQUENCY ANTENNA WITH SAME CROSS-POLARIZATION ZONE COVERAGE FOR TELECOMMUNICATIONS SATELLITES
FR8411293 1984-07-17

Publications (2)

Publication Number Publication Date
EP0170154A1 true EP0170154A1 (en) 1986-02-05
EP0170154B1 EP0170154B1 (en) 1989-09-20

Family

ID=9306190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108872A Expired EP0170154B1 (en) 1984-07-17 1985-07-16 Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites

Country Status (4)

Country Link
US (1) US4757323A (en)
EP (1) EP0170154B1 (en)
DE (1) DE3573197D1 (en)
FR (1) FR2568062B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598339B1 (en) * 1986-05-06 1990-12-14 Europ Agence Spatiale PARABOLIC REFLECTOR ANTENNAS AND METHOD FOR OBTAINING SAME
US5175562A (en) * 1989-06-23 1992-12-29 Northeastern University High aperture-efficient, wide-angle scanning offset reflector antenna
US4937425A (en) * 1989-08-29 1990-06-26 Hughes Aircraft Company Method of making a polarizing parabolic dish antenna reflector
USH1421H (en) * 1990-09-28 1995-03-07 United States Of America VHF satellite based radar antenna array
CA2105745C (en) * 1992-09-21 1997-12-16 Parthasarathy Ramanujam Identical surface shaped reflectors in semi-tandem arrangement
DE19829554C2 (en) * 1998-07-02 2002-08-01 Bosch Gmbh Robert Antenna lens for a distance sensor
US6169524B1 (en) * 1999-01-15 2001-01-02 Trw Inc. Multi-pattern antenna having frequency selective or polarization sensitive zones
TWI273106B (en) * 2000-05-24 2007-02-11 Chi Mei Corp Method of manufacturing polydiene-based rubber
FR2821489A1 (en) * 2001-02-23 2002-08-30 Sta Satellite Terminal Access Dual band elliptic reflector satellite link antenna has combined patch and rod feed
US6473051B2 (en) * 2001-03-13 2002-10-29 Raytheon Company Elliptic to circular polarization converter and test apparatus incorporating the same for accommodating large axial ratio
US6731249B1 (en) 2003-04-01 2004-05-04 Wistron Neweb Corporation Multi-beam-reflector dish antenna and method for production thereof
US10983389B2 (en) * 2016-03-04 2021-04-20 Applied Materials, Inc. Wire grid polarizer manufacturing method
WO2018165626A1 (en) * 2017-03-09 2018-09-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Cross-link satellite with spherical reflectors
CN109462038A (en) * 2018-09-26 2019-03-12 上海交通大学 The micro-strip grid array antenna of double frequency-band
US11728572B1 (en) * 2019-12-11 2023-08-15 Raytheon Company Twistarray reflector for axisymmetric incident fields

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1177180A (en) * 1956-06-05 1959-04-21 Airtron Multipurpose microwave antenna system
FR1221812A (en) * 1958-12-23 1960-06-03 Thomson Houston Comp Francaise New aerial radiating several beams
US2991473A (en) * 1955-10-03 1961-07-04 Hollandse Signaalapparaten Bv Scanning antenna system for horizontally and vertically polarized waves
US3096519A (en) * 1958-04-14 1963-07-02 Sperry Rand Corp Composite reflector for two independent orthogonally polarized beams
US3483563A (en) * 1965-10-13 1969-12-09 Collins Radio Co Combination vertically-horizontally polarized paracylinder antennas
FR2304192A1 (en) * 1975-03-14 1976-10-08 Thomson Csf SELECTIVE GAIN REDUCTION ANTENNA
GB1457907A (en) * 1974-02-27 1976-12-08 Terma Elektronisk Ind As Microwave antennas

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2483575A (en) * 1944-07-26 1949-10-04 Bell Telephone Labor Inc Directional microwave antenna
US2922160A (en) * 1950-04-27 1960-01-19 Lester C Van Atta Split paraboloidal reflector
US2736895A (en) * 1951-02-16 1956-02-28 Elliott Brothers London Ltd High frequency radio aerials
US2930039A (en) * 1954-10-18 1960-03-22 Gabriel Co Antenna system for variable polarization
US2982961A (en) * 1957-03-20 1961-05-02 Calvin C Jones Dual feed antenna
US3119109A (en) * 1958-12-31 1964-01-21 Raytheon Co Polarization filter antenna utilizing reflector consisting of parallel separated metal strips mounted on low loss dish
US3049708A (en) * 1959-11-20 1962-08-14 Sperry Rand Corp Polarization sensitive antenna system
US3281850A (en) * 1962-03-07 1966-10-25 Hazeltine Research Inc Double-feed antennas operating with waves of two frequencies of the same polarization
US3271171A (en) * 1965-06-16 1966-09-06 Ferro Corp Gray ceramics containing a calcined mixture of aluminum and vanadium compounds
US3898667A (en) * 1974-02-06 1975-08-05 Rca Corp Compact frequency reuse antenna
US4001836A (en) * 1975-02-28 1977-01-04 Trw Inc. Parabolic dish and method of constructing same
US4625214A (en) * 1984-10-15 1986-11-25 Rca Corporation Dual gridded reflector structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991473A (en) * 1955-10-03 1961-07-04 Hollandse Signaalapparaten Bv Scanning antenna system for horizontally and vertically polarized waves
FR1177180A (en) * 1956-06-05 1959-04-21 Airtron Multipurpose microwave antenna system
US3096519A (en) * 1958-04-14 1963-07-02 Sperry Rand Corp Composite reflector for two independent orthogonally polarized beams
FR1221812A (en) * 1958-12-23 1960-06-03 Thomson Houston Comp Francaise New aerial radiating several beams
US3483563A (en) * 1965-10-13 1969-12-09 Collins Radio Co Combination vertically-horizontally polarized paracylinder antennas
GB1457907A (en) * 1974-02-27 1976-12-08 Terma Elektronisk Ind As Microwave antennas
FR2304192A1 (en) * 1975-03-14 1976-10-08 Thomson Csf SELECTIVE GAIN REDUCTION ANTENNA

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS, 3 mai 1963, pages 24,25, Rixon Electronics, Inc., McGraw-Hill, New York, US; "Marines to get 3-D radar" *

Also Published As

Publication number Publication date
EP0170154B1 (en) 1989-09-20
FR2568062A1 (en) 1986-01-24
US4757323A (en) 1988-07-12
FR2568062B1 (en) 1986-11-07
DE3573197D1 (en) 1989-10-26

Similar Documents

Publication Publication Date Title
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP0170154B1 (en) Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites
CA2243603C (en) Radiating structure
US5914694A (en) Dual-band, dual polarization radiating structure
US9666949B2 (en) Partially dielectric loaded antenna elements for dual-polarized antenna
Dion et al. A variable-coverage satellite antenna system
FR2647269A1 (en) SLOTTED ANTENNA SYSTEM
EP1568104A1 (en) Multiple-beam antenna with photonic bandgap material
EP0248886A1 (en) High efficiency optical limited scan antenna.
FR2725561A1 (en) MULTI-SOURCE ANTENNA SYSTEM INTEGRATED WITH LOW NOISE FREQUENCY CONVERTER
US6621459B2 (en) Plasma controlled antenna
FR2646564A1 (en) SLOTTED FLAT ANTENNA SYSTEM FOR TE MODE WAVE
EP0045254A1 (en) Compact dual-frequency microwave feed
EP0065467B1 (en) Circularly polarised microwave antenna
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
Miura et al. A mesh reflecting surface with electrical characteristics independent on direction of electric field of incident wave
US20050088356A1 (en) Receiving antenna for multibeam coverage
EP3902059A1 (en) Directional broadband antenna with longitudinal transmission
EP0337841A1 (en) Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops
FR2590081A1 (en) LINEAR POLARIZED GRID REFLECTING ANTENNA WITH IMPROVED TRANSVERSE POLARIZATION PERFORMANCE
EP0164466B1 (en) High-efficiency multibeam antenna
JP3808536B2 (en) Aperture antenna
US11791562B2 (en) Ring focus antenna system with an ultra-wide bandwidth
US20020080085A1 (en) Earth coverage reflector antenna for geosynchronous spacecraft
EP0109322A1 (en) Double reflector antenna for a tracking radar improving the target acquisition capability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19860729

17Q First examination report despatched

Effective date: 19880203

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ESPACE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3573197

Country of ref document: DE

Date of ref document: 19891026

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920615

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930519

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930521

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930526

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930527

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: ALCATEL ESPACE

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940717

EUG Se: european patent has lapsed

Ref document number: 85108872.4

Effective date: 19950210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

EUG Se: european patent has lapsed

Ref document number: 85108872.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST