EP0168600B1 - Bipolar apparatus for electrolysis using a gas diffusion cathode - Google Patents

Bipolar apparatus for electrolysis using a gas diffusion cathode Download PDF

Info

Publication number
EP0168600B1
EP0168600B1 EP85106418A EP85106418A EP0168600B1 EP 0168600 B1 EP0168600 B1 EP 0168600B1 EP 85106418 A EP85106418 A EP 85106418A EP 85106418 A EP85106418 A EP 85106418A EP 0168600 B1 EP0168600 B1 EP 0168600B1
Authority
EP
European Patent Office
Prior art keywords
cathode
anode
partition
electrolysis
flanges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85106418A
Other languages
German (de)
French (fr)
Other versions
EP0168600A2 (en
EP0168600A3 (en
Inventor
Rudolf Dr. Staab
Kurt Hannesen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to AT85106418T priority Critical patent/ATE36562T1/en
Publication of EP0168600A2 publication Critical patent/EP0168600A2/en
Publication of EP0168600A3 publication Critical patent/EP0168600A3/en
Application granted granted Critical
Publication of EP0168600B1 publication Critical patent/EP0168600B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells

Definitions

  • the present invention relates to a bipolar electrolysis apparatus with an oxygen consumable cathode for producing chlorine and sodium hydroxide solution from aqueous alkali chloride solution with devices for supplying the electrolysis current and the electrolysis starting products and for removing the electrolysis starting products, in which the anode and cathode are arranged separated from one another by a partition.
  • Aqueous sodium chloride electrolysis is an important process for the production of the heavy chemicals chlorine and sodium hydroxide.
  • a modern variant is carried out in a membrane cell.
  • the electrolysis cell consists of an anode compartment with an anode and a cathode compartment with a cathode, and a cation exchange membrane that separates the two electrolysis compartments. If a saturated sodium chloride solution is fed into the anode compartment, the chloride ions at the anode are discharged into elemental chlorine under the influence of the electric current. At the same time, water is decomposed at the cathode with the formation of elemental hydrogen and hydroxide ions. Sodium ions migrate from the anode compartment through the cation exchange membrane into the cathode compartment to approximately the same extent as hydroxide ions are generated.
  • the underlying chemical reaction corresponds to the following equation:
  • an alkali chloride such as sodium chloride, potassium chloride or lithium chloride
  • a material must be used: it is resistant to the corrosive medium, which contains high chloride ion concentrations and elemental chlorine.
  • State of the art is the use of titanium, iridium or noble metals, preference is given to titanium metal, which can be activated on the surface with a mixed oxide in order to reduce the chlorine overvoltage and at the same time increase the oxygen overvoltage.
  • the anode is also made of titanium, which can be activated by transition metal oxides such as ruthenium oxide or iridium oxide in order to reduce the chlorine overvoltage and at the same time increase the oxygen overvoltage.
  • Titanium cannot be used for the cathode compartment because the hydrogen formed would cause embrittlement of the titanium metal.
  • the cathode compartment is therefore made of normal steel, stainless steel, nickel or nickel-plated steel.
  • the cathode also consists of these materials, but can additionally be activated by noble metals or other electrocatalysts such as, for example, Raney nickel or sulfur-containing nickel.
  • Electrochemical cells for alkali chloride electrolysis additionally contain a diaphragm or a cation exchange membrane that separate the anode and cathode compartments.
  • Cation exchange membranes that is perfluorinated membranes containing sulfonic acid or carboxyl groups, are preferably used if high-purity sodium hydroxide solution is to be obtained.
  • the membranes are cation-selective, i.e. only allow sodium ions to pass through during sodium chloride electrolysis, whereas the chloride ions remain in the anode compartment.
  • electrolysis cells which consist of anode space with anode, cathode space with cathode and cation exchange membrane, are used to compile larger electrolysers, which can consist of a large number of individual cells (cf. e.g. DE-A-2 914 869 or EP-A-22 445).
  • electrolysers can be switched monopolar or bipolar. The bipolar circuit is preferred since very large cell units can be operated with it.
  • the invention achieves the object in that at least one element with the shape of a double trough is arranged between two half-shells with edges designed as a flange, one of which carries an anode and the second a cathode is formed from a common floor and a side wall divided by the floor in height, the edges of which are provided with flanges, the anode and the cathode, which are spatially separated from one another by the floor, with the wall and struts which are perpendicular on both sides Protrude from the bottom are electrically connected, the partition walls are clamped between the flanges of the half-shells and the element and sealing elements are arranged so that a cavity is formed between the partition wall and the cathode.
  • two or more elements can be arranged between the half-shells.
  • the partition is clamped between the flanges of the elements and a sealing element is arranged so that a cavity is created between the partition and the cathode.
  • a spacer can be arranged between the partition and the cathode and the sealing element can have recesses, which connects the cavity between the partition and the cathode with devices for supplying and removing the catholyte.
  • Titanium can be used as the material for the half-shells and elements. Suitable as anode is titanium, which is activated with an oxide or mixed oxide of the metals of group VIII of the periodic table.
  • the element 6 has the shape of a double trough, which is formed from a common floor 7 and a side wall 8 divided by the floor in height.
  • the bottom 7 can also be arranged asymmetrically, so that the tubs are of different depths.
  • the edges of the wall, i.e. the free ends, are provided with flanges 9 and 10.
  • the flange 9 or the wall part adjoining it each carries an anode 4 and the flange 10 or the wall part adjoining it each carries a cathode 5.
  • the space formed by the anode 4 and the trough is the anode space 11 and that by the cathode 5 and the trough formed space the gas space 12.
  • struts 13 are arranged, which are perpendicular. protrude from the floor and connect the electrodes 4 and 5 to the floor 7 in an electrically conductive manner.
  • Partition walls 14 such as ion exchange membranes, diaphragms etc. and sealing elements 15 are arranged between the flanges 3, 3a, 9, 10 of the half-shells 1, 2 and the elements 6.
  • the sealing element consists of an alkali-resistant material, preferably PTFE.
  • the thickness of the sealing element 15 is such that a cavity 16, the cathode space, is created between the partition 14 and the cathode 5. It may be expedient to arrange a spacer 17 between the partition wall 14 and the cathode 5 in the cavity 16, which spacer sets a uniform distance between the cathode and the partition wall.
  • the spacer is made of an alkali-resistant material such as PTFE or nickel.
  • a cathode space depth of approximately 2 to 3 mm is preferred, particularly preferably 0.5 to 1 mm.
  • the sealing element 15 can be provided with recesses 18 which connect the cavity 16 with devices 19 for feeding and removing the catholyte.
  • Anolyte is supplied or discharged via the lines 20 and gas (air, oxygen) for the oxygen consumable cathode via the lines 21.
  • the half-shells 1, 2 and the elements 6 are connected by means of screws 23 guided in bushings 22 made of electrically insulating material.
  • the power supplies are marked with plus and minus.
  • the partition 14 can rest on the anode 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

In this electrolysis apparatus, the anode and the gas diffusion cathode are arranged to be separated from one another by means of a partition. At least one element (6) which has the form of a twin trough is located between two half-shells (1, 2) which are located at the ends and of which one carries an anode (4) and the second carries a cathode (5). This twin trough is formed by a common plate (7) and a lateral wall (8), the height of which is divided by the plate and the edges of which are provided with flanges (9, 10). The anode (4) and the cathode (5) are electrically conductively connected to the wall (8) and to struts (13) which protrude vertically from the plate on both sides. In order to form a cavity (16) between the partition (14) and the cathode (5), a sealing element is arranged between these two.

Description

Die vorliegende Erfindung betrifft einen bipolaren Elektrolyseapparat mit Sauerstoffverzehrkathode zum Herstellen von Chlor und Natronlauge aus wässeriger Alkalichloridlösung mit Einrichtungen zum Zuführen des Elektrolysestromes und der Elektrolyseeingangsprodukte und zum Abführen der Elektrolyseausgangsprodukte, bei dem Anode und Kathode durch eine Trennwand voneinander getrennt angeordnet sind.The present invention relates to a bipolar electrolysis apparatus with an oxygen consumable cathode for producing chlorine and sodium hydroxide solution from aqueous alkali chloride solution with devices for supplying the electrolysis current and the electrolysis starting products and for removing the electrolysis starting products, in which the anode and cathode are arranged separated from one another by a partition.

Die wäßrige Natriumchlorid-Elektrolyse ist ein wichtiges Verfahren zur Herstellung der Schwerchemikalien Chlor und Natronlauge. Eine moderne Variante wird in einer Membranzelle durchgeführt. Bei diesem Verfahren besteht die Elektrolyse-Zelle aus einem Anodenraum mit einer Anode und einem Kathodenraum mit einer Kathode, sowie einer Kationenaustauscher-Membran, die beide Elektrolyseräume voneinander trennt. Speist man in den Anodenraum eine gesättigte Natriumchlorid-Lösung ein, so werden unter der Einwirkung des elektrischen Stromes die Chloridionen an der Anode zu elementarem Chlor entladen. Gleichzeitig findet an der Kathode eine Wasserzerlegung unter Bildung von elementarem Wasserstoff und Hydroxidionen statt. Etwa in gleichem Maße wie Hydroxidionen erzeugt werden, wandern Natriumionen aus dem Anodenraum durch die Kationenaustauscher-Membran in den Kathodenraum. Die zugrundeliegende chemische Reaktion entspricht der folgenden Gleichung :

Figure imgb0001
Aqueous sodium chloride electrolysis is an important process for the production of the heavy chemicals chlorine and sodium hydroxide. A modern variant is carried out in a membrane cell. In this method, the electrolysis cell consists of an anode compartment with an anode and a cathode compartment with a cathode, and a cation exchange membrane that separates the two electrolysis compartments. If a saturated sodium chloride solution is fed into the anode compartment, the chloride ions at the anode are discharged into elemental chlorine under the influence of the electric current. At the same time, water is decomposed at the cathode with the formation of elemental hydrogen and hydroxide ions. Sodium ions migrate from the anode compartment through the cation exchange membrane into the cathode compartment to approximately the same extent as hydroxide ions are generated. The underlying chemical reaction corresponds to the following equation:
Figure imgb0001

Für den Anodenraum einer Elektrolysezelle in der ein Alkalichlorid wie beispielsweise Natriumchlorid, Kaliumchlorid oder Lithiumchlorid elektrolysiert werden soll, muß ein Werkstoff verwendet werden: der beständig ist gegen das korrosive Medium, das hohe Chloridionenkonzentrationen und elementares Chlor enthält. Stand der Technik ist die Verwendung von Titan, Iridium oder Edelmetalle, bevorzugt ist Titanmetall, welches oberflächlich mit einem Mischoxid aktiviert sein kann, um die Chlorüberspannung zu verringern und gleichzeitig die Sauerstoffüberspannung zu erhöhen. Die Anode besteht ebenfalls aus Titan, welches durch Übergangsmetalloxide wie Rutheniumoxid oder Iridiumoxid aktiviert sein kann, um die Chlorüberspannung zu erniedrigen und gleichzeitig die Sauerstoffüberspannung zu erhöhen.For the anode compartment of an electrolytic cell in which an alkali chloride such as sodium chloride, potassium chloride or lithium chloride is to be electrolyzed, a material must be used: it is resistant to the corrosive medium, which contains high chloride ion concentrations and elemental chlorine. State of the art is the use of titanium, iridium or noble metals, preference is given to titanium metal, which can be activated on the surface with a mixed oxide in order to reduce the chlorine overvoltage and at the same time increase the oxygen overvoltage. The anode is also made of titanium, which can be activated by transition metal oxides such as ruthenium oxide or iridium oxide in order to reduce the chlorine overvoltage and at the same time increase the oxygen overvoltage.

Für den Kathodenraum kann der Werkstoff Titan nicht verwendet werden, da durch den gebildeten Wasserstoff eine Versprödung des Titanmetalls verursacht würde. Der Kathodenraum wird deshalb aus Normalstahl, Edelstahl, Nickel oder vernickeltem Stahl gefertigt. Die Kathode besteht ebenfalls aus diesen Materialien, kann aber zusätzlich durch Edelmetalle oder andere Elektrokatalysatoren wie beispielsweise Raney-Nickel oder schwefelhaltigem Nickel aktiviert sein. Elektrochemische Zellen für die Alkalichlorid-Elektrolyse enthalten zusätzlich ein Diaphragma oder eine Kationenaustauschermembran, die Anoden- und Kathodenraum voneinander trennen. Bevorzugt werden Kationenaustauscher-Membranen, das sind perfluorierte Membranen, die Sulfonsäure- oder Carboxylgruppen enthalten, verwendet, wenn hochreine Natronlauge erhalten werden soll. Die Membranen sind kationenselektiv, lassen also bei der Natriumchlorid-Elektrolyse nur die Natriumionen durch, wohingegen die Chloridionen im Anodenraum verbleiben.Titanium cannot be used for the cathode compartment because the hydrogen formed would cause embrittlement of the titanium metal. The cathode compartment is therefore made of normal steel, stainless steel, nickel or nickel-plated steel. The cathode also consists of these materials, but can additionally be activated by noble metals or other electrocatalysts such as, for example, Raney nickel or sulfur-containing nickel. Electrochemical cells for alkali chloride electrolysis additionally contain a diaphragm or a cation exchange membrane that separate the anode and cathode compartments. Cation exchange membranes, that is perfluorinated membranes containing sulfonic acid or carboxyl groups, are preferably used if high-purity sodium hydroxide solution is to be obtained. The membranes are cation-selective, i.e. only allow sodium ions to pass through during sodium chloride electrolysis, whereas the chloride ions remain in the anode compartment.

In der Praxis werden aus solchen Elektrolysezellen, die aus Anodenraum mit Anode, Kathodenraum mit Kathode und Kationenaustauscher-Membran bestehen, größere Elektrolyseure zusammenstellt, die aus einer Vielzahl von Einzelzellen bestehen können (vgl. z. B. DE-A-2 914 869 oder EP-A-22 445). Solche Elektrolyseure können monopolar oder bipolar geschaltet sein. Bevorzugt ist die bipolare Schaltung, da hiermit sehr große Zelleneinheiten betrieben werden können.In practice, such electrolysis cells, which consist of anode space with anode, cathode space with cathode and cation exchange membrane, are used to compile larger electrolysers, which can consist of a large number of individual cells (cf. e.g. DE-A-2 914 869 or EP-A-22 445). Such electrolysers can be switched monopolar or bipolar. The bipolar circuit is preferred since very large cell units can be operated with it.

Schwierigkeiten treten aber beim Stromübergang von Zelle zu Zelle auf. Wegen der unterschiedlichen Materialien von Kathodenraum und Anodenraum, über deren jeweilige Rückwand die Stromleitung erfolgt, und vor allem wegen der Passivierung des Titans in Luftatmosphäre, treten große Übergangswiderstände und damit erhebliche Spannungsverluste auf.However, difficulties arise in the current transfer from cell to cell. Because of the different materials of the cathode compartment and the anode compartment, through whose respective rear wall the power is conducted, and above all because of the passivation of the titanium in an air atmosphere, there are large contact resistances and thus considerable voltage losses.

Es bestannd daher die Aufgabe, eine elektrochemische Zelle zur Verfügung zu stellen, die aus einfachen Bausteinen besteht und zu großen Elektrolyseuren zusammengestellt werden kann, und die bei bipolarer Schaltung eine optimale Stromleitung von Zelle zu Zelle gewährleistet.It is therefore the task of providing an electrochemical cell which consists of simple building blocks and can be put together to form large electrolysers and which ensures optimal current conduction from cell to cell in the case of bipolar switching.

Die Erfindung, wie sie in den Patentansprüchen formuliert ist, löst die Aufgabe dadurch, daß zwischen zwei Halbschalen mit als Flansch ausgebildeten Rändern, von denen eine eine Anode und die zweite eine Kathode trägt, mindestens ein Element mit der Form einer Doppelwanne angeordnet ist, die aus einem gemeinsamen Boden und einer durch den Boden in ihrer Höhe geteilten seitlichen Wand gebildet wird, deren Ränder mit Flanschen versehen sind, die Anode und die Kathode, die durch den Boden räumlich voneinander getrennt sind, mit der Wand und Streben die beidseitig senkrecht aus dem Boden herausragen elektrisch leitend verbunden sind, zwischen den Flanschen der Halbschalen und des Elements die Trennwände eingeklemmt und Dichtungselemente so angeordnet sind, daß zwischen Trennwand und Kathode ein Hohlraum entsteht.The invention, as formulated in the claims, achieves the object in that at least one element with the shape of a double trough is arranged between two half-shells with edges designed as a flange, one of which carries an anode and the second a cathode is formed from a common floor and a side wall divided by the floor in height, the edges of which are provided with flanges, the anode and the cathode, which are spatially separated from one another by the floor, with the wall and struts which are perpendicular on both sides Protrude from the bottom are electrically connected, the partition walls are clamped between the flanges of the half-shells and the element and sealing elements are arranged so that a cavity is formed between the partition wall and the cathode.

In einer Ausgestaltung können zwischen den Halbschalen zwei und mehr Elemente angeordnet sein. Zwischen den Flanschen der Elemente ist die Trennwand eingeklemmt und ein Dichtungselement so angeordnet, daß zwischen Trennwand und Kathode ein Hohlraum entsteht. Zwischen Trennwand und Kathode kann ein Abstandshalter angeordnet sein und das Dichtungselement Ausnehmungen aufweisen, die den Hohlraum zwischen Trennwand und Kathode mit Einrichtungen zum Zu- und Abführen des Katholyten verbindet. Für die Halbschalen und Elemente kann Titan als Werkstoff verwendet werden. Als Anode eignet sich Titan, das mit einem Oxid oder Mischoxid der Metalle der VIII Gruppe des Periodensystems aktiviert ist.In one configuration, two or more elements can be arranged between the half-shells. The partition is clamped between the flanges of the elements and a sealing element is arranged so that a cavity is created between the partition and the cathode. A spacer can be arranged between the partition and the cathode and the sealing element can have recesses, which connects the cavity between the partition and the cathode with devices for supplying and removing the catholyte. Titanium can be used as the material for the half-shells and elements. Suitable as anode is titanium, which is activated with an oxide or mixed oxide of the metals of group VIII of the periodic table.

Bevorzugte Ausführungsformen der Erfindung sind Gegenstand des abhängigen Ansprüche 2-6.Preferred embodiments of the invention are the subject of dependent claims 2-6.

Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Es zeigt

  • Figur 1 einen Schnitt durch einen Elektrolyseur der aus drei bipolaren Zellen besteht (zwei Elemente gemäß Figur 2 zwischen den Halbschalen)
  • Figur 2 einen Schnitt durch ein Element
  • Figur 3 einen vergrößerten Ausschnitt « Z von Figur 1
The invention is explained in more detail below with the aid of drawings which illustrate only one embodiment. It shows
  • 1 shows a section through an electrolyzer consisting of three bipolar cells (two elements according to FIG. 2 between the half-shells)
  • Figure 2 shows a section through an element
  • FIG. 3 shows an enlarged section “Z of FIG. 1

Zwischen den Halbschalen 1 und 2, deren Ränder als Flansche 3 und 3 a ausgebildet sind und von denen die eine eine Anode 4 und die andere ein Gasdiffusionskathode 5 trägt, wie sie beispielsweise in der EP-A-141 142 beschrieben ist, ist mindestens ein Element 6 angeordnet. Das Element 6 besitzt die Form einer Doppelwanne, die aus einem gemeinsamen Boden 7 und einer durch den Boden in ihrer Höhe geteilten seitlichen Wand 8 gebildet wird. Der Boden 7 kann auch asymmetrisch angeordnet sein, so daß die Wannen unterschiedlich tief ausfallen. Die Ränder der Wand, also die freien Enden sind mit Flanschen 9 und 10 versehen. Der Flansch 9 bzw. das an ihn angrenzende Wandteil trägt jeweils eine Anode 4 und der Flansch 10 bzw. das daran angrenzende Wandteil jeweils eine Kathode 5. Der durch die Anode 4 und die Wanne gebildete Raum ist der Anodenraum 11 und der durch die Kathode 5 und die Wanne gebildete Raum der Gasraum 12. Im Anodenraum 11 und Gasraum 12 sind Streben 13 angeordnet, die senkrecht . aus dem Boden herausragen und die Elektroden 4 und 5 elektrisch leitend mit dem Boden 7 verbinden. Zwischen den Flanschen 3, 3a, 9, 10 der Halbschalen 1,2 und der Elemente 6 sind Trennwände 14 wie lonenaustauschermembranen, Diaphragmen etc. und Dichtungselemente 15 angeordnet. Das Dichtungselement besteht aus einem laugebeständigen Material, bevorzugt PTFE. Das Dichtungselement 15 ist bezüglich seiner Dicke so bemessen, daß zwischen Trennwand 14 und Kathode 5 ein Hohlraum 16, der Kathodenraum entsteht. Es kann zweckmäßig sein, zwischen Trennwand 14 und Kathode 5 im Hohlraum 16 einen Abstandshalter 17 anzuordnen, der einen gleichmäßigen Abstand der Kathode von der Trennwand einstellt. Der Abstandshalter besteht aus einem laugebeständigen Material wie beispielsweise PTFE oder Nickel. Bevorzugt ist eine Kathodenraumtiefe von etwa 2 bis 3 mm, besonders bevorzugt 0,5 bis 1 mm. Das Dichtungselement 15 kann mit Ausnehmungen 18 versehen sein, die den Hohlraum 16 mit Einrichtungen 19 zum Zu-und Abführen des Katholyten verbinden. Anolyt wird über die Leitungen 20 zu- bzw. abgeführt und Gas (Luft, Sauerstoff) für die Sauerstoffverzehrkathode über die Leitungen 21. Die Halbschalen 1, 2 und die Elemene 6 werden mittels in Büchsen 22 aus elektrisch isolierendem MaterIal geführten Schrauben 23 verbunden. Die Stromzuführungen sind mit plus und minus gekennzeichnet. Die Trennwand 14 kann auf der Anode 4 aufliegen.Between the half-shells 1 and 2, the edges of which are designed as flanges 3 and 3 a and of which one carries an anode 4 and the other a gas diffusion cathode 5, as described for example in EP-A-141 142, is at least one Element 6 arranged. The element 6 has the shape of a double trough, which is formed from a common floor 7 and a side wall 8 divided by the floor in height. The bottom 7 can also be arranged asymmetrically, so that the tubs are of different depths. The edges of the wall, i.e. the free ends, are provided with flanges 9 and 10. The flange 9 or the wall part adjoining it each carries an anode 4 and the flange 10 or the wall part adjoining it each carries a cathode 5. The space formed by the anode 4 and the trough is the anode space 11 and that by the cathode 5 and the trough formed space the gas space 12. In the anode space 11 and gas space 12 struts 13 are arranged, which are perpendicular. protrude from the floor and connect the electrodes 4 and 5 to the floor 7 in an electrically conductive manner. Partition walls 14 such as ion exchange membranes, diaphragms etc. and sealing elements 15 are arranged between the flanges 3, 3a, 9, 10 of the half-shells 1, 2 and the elements 6. The sealing element consists of an alkali-resistant material, preferably PTFE. The thickness of the sealing element 15 is such that a cavity 16, the cathode space, is created between the partition 14 and the cathode 5. It may be expedient to arrange a spacer 17 between the partition wall 14 and the cathode 5 in the cavity 16, which spacer sets a uniform distance between the cathode and the partition wall. The spacer is made of an alkali-resistant material such as PTFE or nickel. A cathode space depth of approximately 2 to 3 mm is preferred, particularly preferably 0.5 to 1 mm. The sealing element 15 can be provided with recesses 18 which connect the cavity 16 with devices 19 for feeding and removing the catholyte. Anolyte is supplied or discharged via the lines 20 and gas (air, oxygen) for the oxygen consumable cathode via the lines 21. The half-shells 1, 2 and the elements 6 are connected by means of screws 23 guided in bushings 22 made of electrically insulating material. The power supplies are marked with plus and minus. The partition 14 can rest on the anode 4.

Claims (6)

1. A bipolar electrolysis apparatus with an oxygenconsuming cathode for the production of chlorine from aqueous alkali metal chloride solution, with devices for supplying the electrolysis current and the electrolysis feed materials and for discharging the electrolysis output products, in which the anode and cathode are arranged to be separated from one another by means of a partition, and in which at least one element (6) in the form of a twin trough is located between two half-shells (1, 2) which have edges formed as a flange (3, 3a) and of which one carries an anode (4) and the second carries a cathode (5), which twin trough is formed by a common plate (7) and a lateral wall (8), the height of which is divided by the plate, the edges of the twin trough being provided with flanges (9, 10) which, together with the wall (8), carry an anode (4) and a cathode (5) which are separated from one another in space by the plate (7), struts (13) protruding vertically from the plate (7) on both sides, the anode (4) and the cathode (5) being electrically conductively connected to the flanges (9, 10), the wall (8) and the struts (13), the partitions (14) being clamped in between the flanges (3, 3a, 9, 10) of the half-shells (1, 2) and of the element (6), and sealing elements (15) being arranged in such a way that a cavity (16) is formed between the partition (14) and the cathode (5).
2. The electrolysis apparatus as claimed in claim 1, wherein two elements (6) are located between the halfshells (1, 2), a partition (14) is clamped in between the flanges (10, 11) of the elements (6), and a sealing element (15) is arranged in such a way that a cavity (16) is formed between the partition (14) and the cathode (5).
3. The electrolysis apparatus as claimed as Claim 1 or 2, wherein a spacer (17) is located between the partition (14) and the cathode (5), and the sealing element (15) has recesses (18) which connect the cavity (16) between the partition (14) and the cathode (5) to devices (19) for feeding and discharging the catholyte.
4. The electrolysis apparatus as claimed in any of claims 1 to 3, wherein the material used for the halfshells (1, 2) and the elements (6) is titanium.
5. The electrolysis apparatus as claimed in any of claims 1 to 3, wherein the anode (4) used is a titanium anode which has been activated with an oxide or mixed oxide of the metals of the Group VIII of the Periodic Table.
6. The electrolysis apparatus as claimed in any of claims 1 to 3, wherein the cathode (5) used is a gas diffusion cathode comprising a current collector of nickel fabric, which is coated with a porous colloidal silver 20 catalyst deposited on polytetrafluoroethylene, and having a hydrophilic top layer on the long side.
EP85106418A 1984-06-01 1985-05-24 Bipolar apparatus for electrolysis using a gas diffusion cathode Expired EP0168600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85106418T ATE36562T1 (en) 1984-06-01 1985-05-24 BIPOLAR ELECTROLYSIS DEVICE WITH GAS DIFFUSION CATHODE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3420483 1984-06-01
DE19843420483 DE3420483A1 (en) 1984-06-01 1984-06-01 BIPOLAR ELECTROLYSIS WITH GAS DIFFUSION CATHODE

Publications (3)

Publication Number Publication Date
EP0168600A2 EP0168600A2 (en) 1986-01-22
EP0168600A3 EP0168600A3 (en) 1986-03-19
EP0168600B1 true EP0168600B1 (en) 1988-08-17

Family

ID=6237403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85106418A Expired EP0168600B1 (en) 1984-06-01 1985-05-24 Bipolar apparatus for electrolysis using a gas diffusion cathode

Country Status (14)

Country Link
US (1) US4584080A (en)
EP (1) EP0168600B1 (en)
JP (1) JPS60258489A (en)
AT (1) ATE36562T1 (en)
AU (1) AU566360B2 (en)
BR (1) BR8502618A (en)
CA (1) CA1258045A (en)
DE (2) DE3420483A1 (en)
ES (1) ES8607425A1 (en)
FI (1) FI79145C (en)
IN (1) IN164829B (en)
MX (1) MX159262A (en)
NO (1) NO163909C (en)
ZA (1) ZA854107B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3501261A1 (en) * 1985-01-16 1986-07-17 Uhde Gmbh, 4600 Dortmund ELECTROLYSIS
US4732660A (en) * 1985-09-09 1988-03-22 The Dow Chemical Company Membrane electrolyzer
US4927509A (en) * 1986-06-04 1990-05-22 H-D Tech Inc. Bipolar electrolyzer
US5281311A (en) * 1992-07-01 1994-01-25 Sachem, Inc. Process for reducing the acid content of hydroxylamine salt solutions and for preparing hydroxylamines from hydroxylamine salts
US5653857A (en) * 1995-11-29 1997-08-05 Oxteh Systems, Inc. Filter press electrolyzer electrode assembly
DE19545332A1 (en) * 1995-12-05 1997-06-12 Karl Lohrberg Electrolytic cell
DE19641125A1 (en) * 1996-10-05 1998-04-16 Krupp Uhde Gmbh Electrolysis apparatus for the production of halogen gases
DE10022592B4 (en) * 2000-05-09 2010-03-04 Peroxid-Chemie Gmbh & Co. Kg Bipolar multipurpose electrolysis cell for high current loads
DE10108452C2 (en) * 2001-02-22 2003-02-20 Karl Lohrberg electrolyzer
ITMI20010401A1 (en) * 2001-02-28 2002-08-28 Nora Tecnologie Elettrochimich NEW BIPOLAR ASSEMBLY FOR FILTER-PRESS ELECTROLIZER
DE10143410A1 (en) * 2001-09-05 2003-03-27 Rossendorf Forschzent Hydroxyapatite-containing biomaterial useful in medical implantology, biotechnology, tissue culture and pharmaceutics comprises calcium phosphate and calcium carbonate and a matrix of extracellular organic polymers
ITMI20012287A1 (en) * 2001-10-31 2003-05-01 Uhdenora Technologies Srl BIPOLAR ELEMENT FOR THE ELECTROLYSIS OF HYDROCHLORIC ACID
ITMI20021203A1 (en) * 2002-06-04 2003-12-04 Uhdenora Technologies Srl DISTRIBUTION ELEMENT FOR ELECTROCHEMISTRY WITH ELECTROLYTE PERCOLATION
DE102006028168A1 (en) * 2006-06-16 2007-12-20 Uhde Gmbh Apparatus for electrochemical water treatment
CN101451245B (en) * 2007-12-07 2010-09-29 中国蓝星(集团)总公司 Dipolar type natural circulation ionic membrane electrolysis cell
KR20180128962A (en) 2016-04-07 2018-12-04 코베스트로 도이칠란트 아게 Dual Functional Electrode and Electrolysis Device for Chlor-Alkaline Electrolysis
EP4227440A1 (en) 2018-12-21 2023-08-16 Mangrove Water Technologies Ltd. Membrane electrolysis cell
CN110219012A (en) * 2019-06-03 2019-09-10 江阴市宏泽氯碱设备制造有限公司 Ion-exchange membrane electrolyzer
WO2022258394A1 (en) * 2021-06-07 2022-12-15 thyssenkrupp nucera AG & Co. KGaA Electrolysis cell and electrolyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2914869A1 (en) * 1979-04-12 1980-10-30 Hoechst Ag ELECTROLYSIS

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT199664B (en) * 1956-04-28 1958-09-25 A Hering Ag Electrolytic cell
DE1252643B (en) * 1960-07-11 1967-10-26 Imperial Chemical Industries Ltd London Diaphragm cell for generating chlorine and caustic potash by electrolysis of an alkali metal chloride solution
JPS5413473A (en) * 1977-02-17 1979-01-31 Kurorin Engineers Kk Double polar electrode
JPS5435173A (en) * 1977-08-24 1979-03-15 Kurorin Engineers Kk Double polar electrode and its manufacture
EP0004191B1 (en) * 1978-03-13 1982-05-05 Eltech Systems Corporation Chloralkali electrolytic cell and method for operating same
DE2909640A1 (en) * 1979-03-12 1980-09-25 Hoechst Ag ELECTROLYSIS
US4217199A (en) * 1979-07-10 1980-08-12 Ppg Industries, Inc. Electrolytic cell
IT1163737B (en) * 1979-11-29 1987-04-08 Oronzio De Nora Impianti BIPOLAR ELECTROLIZER INCLUDING MEANS TO GENERATE THE INTERNAL RECIRCULATION OF THE ELECTROLYTE AND ELECTROLYSIS PROCEDURE
IT1140510B (en) * 1980-01-16 1986-10-01 Oronzio De Nora Impianti BIPOLAR ELECTROLIZER AND ELECTROLYSIS PROCEDURE OF ELECTROLYSIS OF HALIDE
JPS5743992A (en) * 1980-08-29 1982-03-12 Asahi Glass Co Ltd Electrolyzing method for alkali chloride
GB2098238B (en) * 1981-05-07 1984-10-24 Electricity Council An electrochemical cell
US4402809A (en) * 1981-09-03 1983-09-06 Ppg Industries, Inc. Bipolar electrolyzer
US4488946A (en) * 1983-03-07 1984-12-18 The Dow Chemical Company Unitary central cell element for filter press electrolysis cell structure and use thereof in the electrolysis of sodium chloride
DE3332566A1 (en) 1983-09-09 1985-03-28 Hoechst Ag, 6230 Frankfurt GAS DIFFUSION ELECTRODE WITH HYDROPHILIC TOP LAYER AND METHOD FOR THEIR PRODUCTION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2914869A1 (en) * 1979-04-12 1980-10-30 Hoechst Ag ELECTROLYSIS

Also Published As

Publication number Publication date
FI79145B (en) 1989-07-31
FI852165A0 (en) 1985-05-30
NO163909C (en) 1990-08-08
NO163909B (en) 1990-04-30
ATE36562T1 (en) 1988-09-15
EP0168600A2 (en) 1986-01-22
ES543698A0 (en) 1986-06-01
EP0168600A3 (en) 1986-03-19
BR8502618A (en) 1986-02-04
NO852207L (en) 1985-12-02
CA1258045A (en) 1989-08-01
IN164829B (en) 1989-06-10
DE3420483A1 (en) 1985-12-05
ES8607425A1 (en) 1986-06-01
MX159262A (en) 1989-05-09
FI852165L (en) 1985-12-02
ZA854107B (en) 1986-02-26
DE3564454D1 (en) 1988-09-22
FI79145C (en) 1989-11-10
AU4321185A (en) 1985-12-05
JPS60258489A (en) 1985-12-20
US4584080A (en) 1986-04-22
AU566360B2 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
EP0168600B1 (en) Bipolar apparatus for electrolysis using a gas diffusion cathode
EP0068522B1 (en) Process and apparatus for the synthetic preparation of ozone by electrolysis, and its application
EP0182114B1 (en) Electrolysis apparatus with horizontally positioned electrodes
DE2847955C2 (en) Process for producing halogens by electrolysis of aqueous alkali metal halides
DE69016459T2 (en) ELECTROCHEMICAL CHLORINE DIOXIDE GENERATOR.
DE69108018T2 (en) DEVICE FOR PRODUCING CHLORIC ACID AND CHLORIC ACID.
DE2435185C3 (en) Electrolytic cell
EP0189535B1 (en) Electrolysis apparatus
DE1252643B (en) Diaphragm cell for generating chlorine and caustic potash by electrolysis of an alkali metal chloride solution
EP0095997B1 (en) Process for the electrolytic production of hydrogen peroxide, and use thereof
DE1557065B2 (en) Process for purifying a gas containing hydrogen or oxygen
DE2930609A1 (en) METHOD FOR THE ELECTROLYTIC GENERATION OF HALOGENS AND THEREFORE SUITABLE ELECTROLYSIS CELL
DE3017965A1 (en) METHOD FOR PRODUCING HALOGENS, ESPECIALLY CHLORINE AND AETZALKALIL SOLUTIONS, AND ELECTROLYTIC CELL
DE3025662A1 (en) ELECTROLYTIC CELL
DE2856882A1 (en) ELECTROLYZING DEVICE AND METHOD FOR PRODUCING CHLORINE BY ELECTROLYZING
DD250556A5 (en) MONOPOLAR CELL
DE2303589A1 (en) ELECTROLYTIC CELL ARRANGEMENTS AND CHEMICAL MANUFACTURING METHODS
DE3401812C2 (en) electrolysis cell
DE2125941C3 (en) Bipolar unit and electrolytic cell built up with it
DE3640584A1 (en) ELECTRODE ARRANGEMENT FOR GAS-GENERATING ELECTROLYSISTS WITH VERTICALLY ARRANGED PLATE ELECTRODES
DE2710670B2 (en) Method of electrolyzing using an auxiliary electrode in the cell liquid collecting container to prevent corrosion
EP0865516B1 (en) Electrolyte cell
DE10203689A1 (en) Cathodic current distributor for electrolytic cells
EP0234256B1 (en) Process for carrying out hcl membrane electrolysis
EP0333281A1 (en) Membrane electrolysis device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860807

17Q First examination report despatched

Effective date: 19870508

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 36562

Country of ref document: AT

Date of ref document: 19880915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3564454

Country of ref document: DE

Date of ref document: 19880922

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910715

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920410

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920413

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920415

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920416

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920504

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920531

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930524

Ref country code: AT

Effective date: 19930524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930531

Ref country code: CH

Effective date: 19930531

Ref country code: BE

Effective date: 19930531

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85106418.8

Effective date: 19931210