EP0160840B1 - Helium-II-Phasentrenner - Google Patents

Helium-II-Phasentrenner Download PDF

Info

Publication number
EP0160840B1
EP0160840B1 EP85104020A EP85104020A EP0160840B1 EP 0160840 B1 EP0160840 B1 EP 0160840B1 EP 85104020 A EP85104020 A EP 85104020A EP 85104020 A EP85104020 A EP 85104020A EP 0160840 B1 EP0160840 B1 EP 0160840B1
Authority
EP
European Patent Office
Prior art keywords
phase separator
helium
separator according
channels
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85104020A
Other languages
English (en)
French (fr)
Other versions
EP0160840A2 (de
EP0160840A3 (en
Inventor
Albert Dipl.-Ing. Seidel
Hartmut Ing.-Grad. Neuking
Ernst Blenninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of EP0160840A2 publication Critical patent/EP0160840A2/de
Publication of EP0160840A3 publication Critical patent/EP0160840A3/de
Application granted granted Critical
Publication of EP0160840B1 publication Critical patent/EP0160840B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating

Definitions

  • the invention relates to a helium-II phase separator for separating superfluid helium (light) from its gas phase using the thermomechanical effect on slot-shaped passage channels, the distance between two surfaces delimiting a slot-shaped passage channel being approximately 10 ⁇ m.
  • thermomechanical effect is used to separate superfluid helium (bright) from the gas phase. This effect manifests itself in two liquid containers connected by a capillary system by increasing the level on the warmer side. This effect is also effective when helium gas is on one side of the capillary system.
  • the liquid bath If the temperature of the liquid bath is greater than the temperature of the capillary system on the gas phase side, the liquid cannot pass through the capillary system due to the thermomechanical effect due to the appropriate selection of the boundary conditions, since the associated force is opposite to the temperature gradient, i.e. from the outlet side to the liquid bath , is directed.
  • This is the basis of the applicability of such a system as a phase separator for helium-II.
  • the lower temperature of the outlet side is determined by lowering the pressure, e.g. by pumping, which leads to cooling by evaporation of liquid.
  • a throttle valve in the exhaust line through which the helium gas flows out into space (vacuum).
  • a known capillary system which is suitable for producing the thermomechanical effect, consists essentially of a plug made of tightly wound aluminum foil with a spiral passage opening, which is inserted into a holder made of a good heat-conducting material and connected to the exhaust system.
  • the winding process does not, strictly speaking, result in only one passage opening, but rather a multiplicity of irregular, gap-like passage openings lying side by side in a spiral.
  • the winding tension must be set so that the largest passage opening has a maximum gap thickness of approximately 10 pm, since otherwise the thermomechanical effect would not occur and liquid helium would escape. Passage openings of this type cannot be produced reproducibly, so that a large number of such plugs must always be produced and tested for usability in an experiment.
  • thermomechanical effect is effective even in narrow annular gaps, the gap width is about 10 microns or less.
  • experiments have shown that when the thermomechanical effect is used exclusively for phase separation, the helium throughput through a narrow annular gap is comparatively low. That would e.g. in the case of a helium throughput of approx. 45 mg / sec, which is typical for space experiments, require an annular gap with a diameter of approx. 0.8 m with a gap width of approx. 10 ⁇ m.
  • Such ring gaps are, however, difficult to manufacture and unsuitable for use in spacecraft.
  • the phase separator shown in FIG. 1 essentially has a tank flange 1 for fastening within a tank of a cyrostat filled with helium-II.
  • the tank flange 1 On the face of a cylindrical extension 1.1. the tank flange 1 is a stack of the same wall elements in the form of square washers 2 with spacers 3 located between them, so that between two washers 2 a total of four, offset by 90 ° and separated by the spacers 3 through channels 2.1.
  • This stack is sealed at the end projecting into the tank with a cover plate 4 and is fastened together with this cover plate by means of tie rods 5 to the flange 1 under elastic pretension.
  • tie rods 5 In the interior of the cavity 7 created by the ring disk stack and the cover disk 4 (see FIG.
  • a displacement body 6 connected to the cover disk 4 is fastened, which exposes a pot-shaped gap 7.1 between itself and the inner edge of each ring disk and to the flange 1.
  • This cup-shaped gap 7.1 is connected to an exhaust pipe B which is led through the flange 1 and which extends around the cylindrical extension 1.1 of the flange 1 and wrapped around the ring disk stack and is thus designed as a heat exchanger until it at a central outlet 1.2. of the flange 1 ends.
  • the gap between the discs 2 is approximately 10 pm; it can be between 5 and 15 11 m, this distance being increased by about 200 times for the graphic representation.
  • the surface quality of the ring washers is particularly high; the surface ripple should be ⁇ 1 ⁇ m.
  • each passage channel 2.1 Between two adjacent ring disks 2, which have square spacers 3 in the corners, there are four slot-shaped passage channels 2.1, in which helium can only flow in a two-dimensional flow.
  • the thickness of each passage channel is the same and dimensioned so that the thermomechanical effect occurs under suitable boundary conditions, due to which superfluid helium (Helium-II) is prevented from passing through the gap-shaped channels. Therefore, only gaseous helium flows in the pot-shaped collecting gap 7.1 and is drawn off via the exhaust gas line B.
  • the residual cold that is still present in the helium gas is used via the exhaust gas line 8, which is further designed as a heat exchanger.
  • the helium-II phase separator shown in Fig. 3 consists of a cylindrical hollow body 9 which, similar to the stacked washers of the phase separator according to Fig. 1, is attached to a flange, not shown, with a central exhaust pipe.
  • the hollow body 9 has distributed on its outer circumference wedge-shaped grooves 10 in the direction of the cylinder longitudinal axis, which are connected to the interior 11 via bores 12 and represent a category of similar wall elements (see FIGS. 4 and 5).
  • In the center of the wedge-shaped grooves 10 there is a second category of wall elements in the form of wedge-shaped strips 13, which each produce two opposite rows of the same gap-shaped passage channels 15 due to inserted spacers 14 (see FIGS. 4, 5 and 6).
  • the cavity 11, similar to that in FIG. 1, is closed in a gas-tight manner on the side facing away from the flange, to which, as in FIG. 1, a cylindrical displacement body can be fastened to produce a pot-shaped collecting gap.
  • the thickness of the spacers 14 and their spacings and the gap geometries produced thereby correspond to those of the phase separator according to FIG. 1.
  • the flow in these passage channels is thus also purely two-dimensional.
  • the wedge-shaped grooves and strips have the advantage that the gap thickness can be adjusted by moving the strips in the wedge direction.
  • FIG. 7 schematically shows the installation of a phase separator 16 according to FIG. 1 or 3 in the tank 17 of a cyrostat filled with helium-II.
  • the discharged gaseous helium (GHe) is used to cool the radiation shields 18 of the cyrostat until it is fed via a control valve 19 to a vacuum pump or into the vacuum of space.
  • the regulation of the helium mass throughput takes place by changing the pressure difference between the inlet and outlet of the passage channels in such a way that the thermomechanical effect is always maintained at the specified bath temperatures.
  • the control valve 19 located outside the helium-II cyrostat is used, which is controlled by a motor 21 via a controller 20.
  • the controller 20 uses the helium II bath temperature (T) as the measurement signal.
  • T helium II bath temperature
  • This bath temperature must be regulated very sensitively, especially in space experiments. If the helium II bath temperature has a rising tendency, the control valve 19 opens and the pressure difference which then arises in the gap-shaped passage channels of the phase separator 16 increases. Due to the increasing pressure difference, the helium throughput also increases, causing the bath to cool down again. This in turn results in the reverse of the procedure just described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

  • Die Erfindung betrifft einen Helium-II-Phasentrenner zur Trennung von superfluidem Helium (Hell) von dessen Gasphase unter Ausnutzung des thermomechanischen Effektes an spaltförmigen Durchlaßkanälen, wobei der Abstand zweier einen spaltförmigen Durchlaßkanal begrenzender Flächen ca. 10 um beträgt.
  • Eine Einrichtung zur Phasentrennung von Helium-II, insbesondere im schwerelosen Zustand, ist u.a. von H.D. Denner et al, Freie Universität Berlin, im Forschungsbericht W-79-47, Dezember 1979, beschrieben. Zur Trennung von superfluidem Helium (Hell) von der Gasphase wird dabei der thermomechanische Effekt (Fontäneneffekt) ausgenutzt. Dieser Effekt äußert sich bei zwei durch ein Kapillarsystem verbundenen Flüssigkeitsbehältern durch Ansteigen des Niveaus auf der wärmeren Seite. Dieser Effekt ist auch wirksam, wennn sich auf der einen Seite des Kapillarsystems Heliumgas befindet. Ist die Temperatur des Flüssigkeitsbades größer als die Temperatur des Kapillarsystems auf der Seite der Gasphase, so kann die Flüssigkeit bei geeigneter Wahl der Randbedingungen aufgrund des thermomechanischen Effektes das Kapillarsystem nicht passieren, da die zugehörige Kraft entgegengesetzt zum Temperaturgefälle, also von der Austrittsseite zum Flüssigkeitsbad hin, gerichtet ist. Hierauf beruht die Anwendbarkeit eines derartigen Systems als Phasentrenner für Helium-ll. Die niedrigere Temperatur der Austrittsseite wird durch Druckerniedrigung, z.B. durch Abpumpen, erreicht, die zur Kühlung durch Verdampfen von Flüssigkeit führt. Bei Weltraumbedingungen genügt hierzu lediglich ein Drosselventil in der Abgasleitung, durch welches das Heliumgas in den Weltraum (Vakuum) ausströmt.
  • Ein bekanntes Kapillarsystem, das zur Erzeugung des thermomechanischen Effektes geeignet ist, besteht im wesentlichen aus einem Stopfen aus eng gewickelter Aluminiumfolie mit spiralförmiger Durchlaßöffnung, der in eine Halterung aus gut wärmeleitendem Material eingesetzt und mit dieser an das Abgassystem angeschlossen ist. Bei einem derartigen Stopfen entsteht jedoch durch den Wickelvorgang genau genommen nicht nur eine Durchlaßöffnung, sondern eine Vielzahl unregelmäßiger, in einer Spirale nebeneinanderliegender spaltförmiger Durchlaßöffnungen. Die Wickelspannung muß dabei so eingestellt sein, daß die größte Durchlaßöffnung maximal eine Spaltdicke von ca. 10 pm aufweist, da sonst der thermomechanische Effekt nicht auftritt und flüssiges Helium austreten würde. Durchlaßöffnungen dieser Art lassen sich nicht reproduzierbar herstellen, so daß stets eine Vielzahl derartiger Stopfen hergestellt und im Versuch auf Braucharkeit erprobt werden muß.
  • Aus der o.g. Literaturstelle ist weiterhin bekannt, daß der thermomechanische Effekt auch in engen Ringspalten wirksam ist, deren Spaltweite ca. 10 um oder weniger beträgt. In Experimenten wurde jedoch gezeigt, daß bei ausschließlicher Nutzung des thermomechanischen Effektes zur Phasentrennung der Heliumdurchsatz durch einen engen Ringspalt vergleichsweise gering ist. Das würde z.B. im Falle eines für Weltraumexperimente typischen Heliumdurchsatzes von ca. 45 mg/sec einen Ringspalt mit einem Durchmesser von ca. 0,8 m bei einer Spaltweite von ca. 10 µm erfordern. Derartige Ringspalte sind jedoch kaum herstellbar und für die Anwendung in Raumflugkörpern ungeeignet.
  • Es ist daher Aufgabe der Erfindung, einen Helium-II-Phasentrenner der o.g. Art zu schaffen, der reproduzierbar herstellbar und für die Anwendung in Raumflugkörpern geeignet ist.
  • Diese Aufgabe erfüllt ein nach den kenzeichnenden Merkmalen des Patentanspruchs 1 ausgebildeter Helium-II-Phasentrenner. Die Erfindung wird im folgenden anhand zweier, in den Figuren teilweise schematisch dargestellter Ausführungsbeispiele beschrieben.
  • Es zeigen:
    • Fig. 1 eine Seitenansicht bzw. einen Längsschnitt durch einen Helium-II-phasentrenner aus übereinander gestapelten, quadratischen Ringscheiben;
    • Fig. 2 einen Querschnitt durch einen Helium-II-Phasentrenner gemäß Fig. 1;
    • Fig. 3 einen Helium-II-Phasentrenner mit zylindrischem Hohlkörper und achsparallelen Nuten;
    • Fig. 4 einen Querschnitt durch einen Helium-II-Phasentrenner gemäß Fig. 3 im Bereich einer Nut;
    • Fig. 5 einen Längsschnitt durch einen Helium-II-Phasentrenner gemäß Fig. 3 längs der Nut;
    • Fig. 6 eine Aufsicht auf einen Teilbereich eines Helium-II-Phasentrenners gemäß Fig. 3 im Bereich der Nut;
    • Fig. 7 die Anordnung eines Helium-II-Phasentrenners an einem Helium-II-Kyrostaten mit Durchsatzregelung.
  • Der in Fig. 1 dargestellte Phasentrenner weist im wesentlichen einen Tankflansch 1 zur Befestigung innerhalb eines mit Helium-II gefüllten Tankes eines Kyrostaten auf. An der Stirnseite einer zylindrischen Verlängerung 1.1. des Tankflansches 1 ist ein Stapel aus gleichen Wandelementen in Form quadratischer Ringscheiben 2 mit jeweils dazwischen befindlichen Abstandsstücken 3 angeordnet, so daß zwischen zwei Ringscheiben 2 insgesamt vier, um 90° versetzte und durch die Abstandsstücke 3 getrennte Durchlaßkanäle 2.1 entstehen. Dieser Stapel ist an dem in den Tank hineinragenden Ende mit einer Abdeckscheibe 4 dicht verschlossen und wird zusammen mit dieser Abdeckscheibe durch Zuganker 5 unter elastischer Vorspannung an dem Flansch 1 befestigt. Im Innern des durch den Ringscheibenstapel und die Abdeckscheibe 4 entstandenen Hohlraumes 7 (siehe Fig. 2) ist ein mit der Abdeckscheibe 4 verbundener Verdrängungskörper 6 befestigt, der zwischen sich und dem Innenrand jeder Ringscheibe, sowie zum Flansch 1 einen topfförmigen Spalt 7.1 freiläßt. Dieser topfförmige Spalt 7.1 steht mit einer durch den Flansch 1 geführten Abgasleitung B in Verbindung, welche um die zylindrische Verlängerung 1.1 des Flansches 1 und den Ringscheibenstapel herumgewickelt und somit als Wärmetauscher ausgebildet ist, bis sie an einem zentralen Auslaß 1.2. des Flansches 1 endet.
  • Die Spaltweite zwischen den Scheiben 2 beträgt ca. 10 pm; sie kann zwischen 5 und 15 11m liegen, wobei dieser Abstand für die zeichnerische Darstellung um das etwa 200-fache Überhöht wurde. Die Oberflächengüte der Ringscheiben ist besonders hoch; die Oberflächenwelligkeit sollte < 1 um betragen.
  • Bei einer Außenabmessung der Scheiben 2 von 50 mm, einer durch die Abstandsstücke 3 begrenzten Kanalbreite von 30 mm und einer Strömungskanallänge von 10 mm im Spalt würden für den eingangs erwähnten He-Durchsatz von 45 mg/sec bei dieser Ausführungsform 21 übereinandergestapelte Scheiben erforderlich sein, was bei einer angenommenen Scheibendicke von 2 mm eine Höhe des gesamten Scheibenpaketes von nur ca. 42 mm ergibt.
  • Die Funktionsweise dieses Phasentrenners ist bereits aus seinem Aufbau erkennbar:
  • Zwischen je zwei benachbarten Ringscheiben 2, die in den Ecken quadratische Abstandshalter 3 aufweisen, entstehen vier spaltförmige Durchlaßkanäle 2.1, in denen Helium ausschließlich in einer zweidimensionalen Strömung fließen kann. Die Dicke jedes Durchlaßkanales ist gleich und so bemessen, daß bei geeigneten Randbedingungen der thermomechanische Effekt auftritt, aufgrund dessen superfluides Helium (Helium-II) am Durchtritt durch die spaltförmigen Kanäle gehindert wird. In dem topfförmigen Sammelspalt 7.1 strömt daher nur noch gasförmiges Helium, welches über die Abgasleitung B abgezogen wird. Über die im weiteren als Wärmetauscher ausgebildete Abgasleitung 8 wird die im Heliumgas noch vorhandene Restkälte ausgenutzt.
  • Der in Fig. 3 dargestellte Helium-II-Phasentrenner besteht aus einem zylindrischen Hohlkörper 9, der, ähnlich wie die aufeinandergestapelten Ringscheiben des Phasentrenners gemäß Fig. 1, an einem nicht dargestellten Flansch mit zentraler Abgasleitung befestigt ist. Der Hohlkörper 9 weist verteilt auf seinem äuBeren Umfang keilförmige Nuten 10 in Richtung der Zylinderlängsachse auf, welche mit dem Innenraum 11 über Bohrungen 12 in Verbindung stehen und eine Kategorie von gleichartigen Wandelementen darstellen (siehe Fig. 4 und 5). Im Zentrum der keilförmigen Nuten 10 befindet sich eine zweite Kategorie von Wandelementen in Form keilförmiger Leisten 13, die aufgrund von eingelegten Abstandsstücken 14 jeweils zwei gegenüberliegende Reihen aus gleichen spaltförmigen Durchlaßkanälen 15 erzeugen (siehe Fig. 4, 5 und 6). Der Hohlraum 11 ist, ähnlich wie in Fig. 1, auf der dem Flansch abgewendeten Seite mit einem Deckel gasdicht verschlossen, an welchem, ebenfalls wie in Fig. 1, ein zylindrischer Verdrängungskörper zur Erzeugung eines topfförmigen Sammelspaltes befestigt sein kann.
  • Die Dicke der Abstandshalter 14 sowie deren Abstände und die dadurch erzeugten Spaltgeometrien entsprechen denen des Phasentrenners gemäß Fig. 1. Die Strömung in diesen Durchlaßkanälen ist somit ebenfalls rein zweidimensional. Die keilförmigen Nuten und Leisten haben bei gleichem Keilwinkel den Vorteil, daß die Spaltdicke durch Verschiebung der Leisten in Keilrichtung eingestellt werden kann.
  • In Fig. 7 ist in schematischer Weise der Einbau eines Phasentrenners 16 gemäß Fig. 1 oder 3 in den mit Helium-II gefüllten Tank 17 eines Kyrostaten dargestellt. Das abgeführte gasförmige Helium (GHe) wird dabei zur Kühlung der Strahlungsschilde 18 des Kyrostaten verwendet, bis es über ein Regelventil 19 zu einer Vakuumpumpe bzw. in das Vakuum des Weltalls geführt wird. Die Regelung des Helium-Massendurchsatzes erfolgt durch Veränderung der Druckdifferenz zwischen dem Einund Austritt der Durchlaßkanäle derart, daß der thermomechanische Effekt bei den vorgegebenen Badtemperaturen stets erhalten bleibt. Dazu wird das außerhalb des Helium-II-Kyrostaten befindliche Regelventil 19 verwendet, das über einen Regler 20 von einem Motor 21 gesteuert wird. Der Regler 20 verwendet als Meßsignal die Helium-II-Badtemperatur (T). Diese Badtemperatur muß insbesondere bei Weltraumexperimenten sehr feinfühlig geregelt werden. Hat die Helium-II-Badtemperatur steigende Tendenz, so öffnet das Regelventil 19 und die daraufhin in den spaltförmigen Durchlaßkanälen des Phasentrenners 16 entstehende Druckdifferenz wird größer. Aufgrund der steigenden Druckdifferenz steigt auch der Heliumdurchsatz, wodurch sich das Bad wieder abkühlt. Dies wiederum hat die Umkehrung des eben beschriebenen Ablaufes zur Folge.

Claims (11)

1. Helium-II-Phasentrenner zur Trennung von superfluidem Helium (Hell) von dessen Gasphase unter Ausnutzung des thermomechanischen Effektes an spaltförmigen Durchlaßkanälen, wobei der Abstand zweier einen spaltförmigen Durchlaßkanal begrenzender Flächen ca. 10 um beträgt, dadurch gekennzeichnet, daß die spaltförmigen Durchlaßkanäle (2.1; 15) von mehreren, in gleichen Abständen nebeinander gelegene, gleichartigen Wandelementen (2; 10,13) gebildet werden, welche in einer Wand angeordnet sind, die einen im wesentlichen abgeschlossenen und in flüssiges Helium hineinragenden Raum (7; 11) umgibt, wobei aus dem Inneren des Raumes (7; 11) gasförmiges Helium abführbar ist.
2. Phasentrenner nach Anspruch 1, dadurch gekennzeichnet, daß die Geometrie der Durchlaßkanäle (2.1; 15) lediglich eine zweidimensionale Strömung zuläßt.
3. Phasentrenner nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Durchlaßkanäle (2.1; 15) jeweils durch zwei planparallele Wandelemente (2; 10, 13) gebildet werden, zwischen denen Abstandsstücke (3; 14) definierter Dicke angeordnet sind.
4. Phasentrenner nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Raum (7) und die Durchlaßkanäle (2.1) durch Aufeinanderstapelung von Ringscheiben (2) mit dazwischen liegenden Abstandsstücken (3) gebildet werden.
5. Phasentrenner nach Anspruch 4, dadurch gekennzeichnet, daß die Ringscheiben (2) n-eckig oder kreisförmig ausgebildet sind.
6. Phasentrenner nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Ringscheiben (2) und die Abstandsstücke (3) durch Zuganker (5) mit elastischer Vorspannung miteinander verbunden sind.
7. Phasentrennner nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Raum (11) und die Durchlaßkanäle (15) durch einen zylindrischen Hohlkörper(9) mitachsparallelen Nuten (10) gebildet wird.
8. Phasentrenner nach Anspruch 7, dadurch gekennzeichnet, daß innerhalb der Nuten (10) in Nutlängsrichtung Leisten (13) mit Abstandsstükken (14) zur Bildung je zweier Durchlaßkanäle (15) angeordnet sind.
9. Phasentrenner nach Anspruch 8, dadurch gekennzeichnet, daß die Nuten (10) und Leisten (13) keilförmig und mit gleichem Keilwinkel ausgebildet sind.
10. Phasentrenner nach einem der Ansprüch 1 bis 9, dadurch gekennzeichnet, daß parallel zur Innenwand des Raumes (7) eine weitere Wandung (6) zur 8ildung eines spaltförmigen Abfuhrkanales (7.1) für das gasförmige Helium vorgesehen ist, dessen Abmessung quer zur Strömungsrichtung des Gases größer ist als die der Durchlaßkanäle.
11. Phasentrenner nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Abfuhr des gasförmigen Heliums aus dem Raum (7; 11) über einen mit dem flüssigen Helium in Wärmekontakt stehenden Wärmetauscher (8) erfolgt.
EP85104020A 1984-05-09 1985-04-03 Helium-II-Phasentrenner Expired - Lifetime EP0160840B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3417055 1984-05-09
DE3417055A DE3417055C2 (de) 1984-05-09 1984-05-09 Helium-II-Phasentrenner

Publications (3)

Publication Number Publication Date
EP0160840A2 EP0160840A2 (de) 1985-11-13
EP0160840A3 EP0160840A3 (en) 1986-10-15
EP0160840B1 true EP0160840B1 (de) 1990-09-05

Family

ID=6235295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85104020A Expired - Lifetime EP0160840B1 (de) 1984-05-09 1985-04-03 Helium-II-Phasentrenner

Country Status (4)

Country Link
US (1) US4607490A (de)
EP (1) EP0160840B1 (de)
JP (1) JPS60244308A (de)
DE (2) DE3417055C2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3530168C1 (de) * 1985-08-23 1986-12-18 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Regelbarer Helium-II-Phasentrenner
US4791788A (en) * 1987-08-24 1988-12-20 Quantum Design, Inc. Method for obtaining improved temperature regulation when using liquid helium cooling
US4848093A (en) * 1987-08-24 1989-07-18 Quantum Design Apparatus and method for regulating temperature in a cryogenic test chamber
FR2747595B1 (fr) * 1996-04-19 1998-08-21 Air Liquide Procede et installation de fourniture d'helium ultra-pur
US5647228A (en) * 1996-07-12 1997-07-15 Quantum Design, Inc. Apparatus and method for regulating temperature in a cryogenic test chamber
FR2781868B1 (fr) * 1998-07-29 2000-09-15 Air Liquide Installation et procede de fourniture d'helium a plusieurs lignes de production

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB945223A (en) * 1961-09-22 1963-12-23 Atomic Energy Authority Uk Improvements in or relating to refrigerators
JPS5012968B1 (de) * 1970-02-24 1975-05-16
NL7009420A (de) * 1970-06-26 1971-12-28
DE2716663C2 (de) * 1977-04-15 1983-12-15 Messer Griesheim Gmbh, 6000 Frankfurt Vorrichtung zum Abtrennen des Gases, welches bei der Förderung von tiefsiedenden verflüssigten Gasen verdampft
US4223723A (en) * 1978-01-12 1980-09-23 Wisconsin Alumni Research Foundation Heat transfer in boiling liquified gas
NL7902014A (nl) * 1979-03-14 1980-09-16 Philips Nv 3he-4he verdunningskoelmachine.
FR2500908A1 (fr) * 1981-03-02 1982-09-03 Europ Agence Spatiale Installation cryogenique a fonctionnement en l'absence de gravite, notamment pour missions spatiales
DE3148426C2 (de) * 1981-12-08 1984-01-26 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Entnahmevorrichtung für Kaltgas
EP0089391B1 (de) * 1982-03-23 1986-06-04 International Business Machines Corporation Verfahren und Verdünnungskältemaschine zum Kühlen bei Temperaturen unter 1 K
US4498046A (en) * 1982-10-18 1985-02-05 International Business Machines Corporation Room temperature cryogenic test interface

Also Published As

Publication number Publication date
DE3579492D1 (de) 1990-10-11
DE3417055C2 (de) 1986-05-07
EP0160840A2 (de) 1985-11-13
EP0160840A3 (en) 1986-10-15
JPS60244308A (ja) 1985-12-04
DE3417055A1 (de) 1985-11-14
US4607490A (en) 1986-08-26

Similar Documents

Publication Publication Date Title
DE2543451C2 (de) Piezoelektrisch betriebener Schreibkopf für Tintenmosaikschreibeinrichtungen
DE3587646T2 (de) Druckentspanner zum Stabilisieren von Fluidströmen bei Entspannung, begleitet von einer Verminderung der kinetischen Energie.
EP0892670A1 (de) Vorrichtung zum filtern und trennen von strömungsmedien
WO1996020775A1 (de) Vorrichtung zur trennung von stoffgemischen mittels voneinander beabstandeter, gestapelter membranelemente
DE3024108C2 (de)
EP0158220A2 (de) Mittels eines Wärme übertragenden Mediums beheizbare Kalanderwalze
EP0160840B1 (de) Helium-II-Phasentrenner
DE1501585C3 (de) Regenerativ-Wärmetauscher
DE602006000699T2 (de) Filtereinrichtung für Diesel-Abgase
EP0050281A1 (de) Abscheidevorrichtung der Hochgradienten-Magnettrenntechnik
DE2506855A1 (de) Gesteuertes druckminderventil
DE3939854A1 (de) Saeule fuer die fluessigkeits-chromatographie
DE3536316A1 (de) Oelkuehler in scheibenbauweise
DE3530168C1 (de) Regelbarer Helium-II-Phasentrenner
CH689315A5 (de) Gekühlter Drucksensor.
DD297462A5 (de) Vorrichtung zum verspinnen thermoplastischer schmelzen
DE3904701A1 (de) Filterelement fuer fluessigkeiten und gase
DE2939506C2 (de) Vorrichtung zum Trennen von Isotopen
EP0501203B1 (de) Kryomagnetsystem mit störungsminimiertem Low-Loss-Heliumkryostat
EP0423527A1 (de) Vorrichtung zur Trennung von Stoffgemischen mit voneinander beabstandeten, gestapelten Membranelementen
DE1020960B (de) Vorrichtung zur Trennung von Gasen verschiedener Molekulargewichte durch Diffusion in engen Kanälen
DE4000985C2 (de) Dichtvorrichtung
DE1440658C (de) Isolierendes Halteglied fur Glimmentladungsofen
DE2422108A1 (de) Drosseleinrichtung mit schallunterdruekkung
CH679785A5 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19870311

17Q First examination report despatched

Effective date: 19880217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3579492

Country of ref document: DE

Date of ref document: 19901011

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980421

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990322

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990427

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST