EP0158217B1 - Schaltungsanordnung für eine Gefahrenmeldeanlage - Google Patents

Schaltungsanordnung für eine Gefahrenmeldeanlage Download PDF

Info

Publication number
EP0158217B1
EP0158217B1 EP85103600A EP85103600A EP0158217B1 EP 0158217 B1 EP0158217 B1 EP 0158217B1 EP 85103600 A EP85103600 A EP 85103600A EP 85103600 A EP85103600 A EP 85103600A EP 0158217 B1 EP0158217 B1 EP 0158217B1
Authority
EP
European Patent Office
Prior art keywords
circuit arrangement
evaluation electronics
arrangement according
signal
indicators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85103600A
Other languages
English (en)
French (fr)
Other versions
EP0158217A1 (de
Inventor
Reiner Künzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Fuss GmbH and Co
Original Assignee
Fritz Fuss GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Fuss GmbH and Co filed Critical Fritz Fuss GmbH and Co
Priority to AT85103600T priority Critical patent/ATE36767T1/de
Publication of EP0158217A1 publication Critical patent/EP0158217A1/de
Application granted granted Critical
Publication of EP0158217B1 publication Critical patent/EP0158217B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/001Alarm systems in which substations are interrogated in succession by a central station with individual interrogation of substations connected in parallel
    • G08B26/002Alarm systems in which substations are interrogated in succession by a central station with individual interrogation of substations connected in parallel only replying the state of the sensor

Definitions

  • the invention relates to a circuit arrangement for a hazard alarm system with a plurality of detectors according to the preamble of claim 1.
  • a plurality of detectors are connected in a detection line to a control center, in which evaluation electronics are accommodated, which are able to evaluate the signals supplied by the individual detectors, in particular voltage levels. Sensors that respond to the hazard to be detected can be used as detectors.
  • each detector is connected in series to the control center in a two-wire detection line, with each detector being connected between the two wires of the detection line, which in turn is terminated by a line resistance.
  • Such a circuit arrangement can usually indicate two states to the central station, namely alarm and / or fault.
  • a circuit arrangement which extends the status report and which corresponds to the aforementioned type is known from DE-A-1 441 417. Since this known, generic circuit arrangement for the feedback of the individual detectors works with a desired time shift, the feedback signal provided for the characterizing state of the individual detector reaches the evaluation electronics with a time delay after the interval responsible for the corresponding queried detector. This deliberately chosen time shift can, however, lead to incorrect switching in the sense of false messages in the known circuit arrangement or, on the other hand, requires a very extensive circuit effort in order to be able to eliminate such incorrect switching from the outset.
  • the object of the invention is to provide a circuit arrangement of the generic type such that the detectors can be individually identified to the control center with a high level of error security in the case of a two-wire detection line, which should be possible with relatively little effort and the circuit arrangement is also compatible with existing hazard alarm systems.
  • the circuit arrangement according to the invention is compatible with existing hazard detection systems, i. that is, the detectors provided in the invention can be retrofitted into already installed hazard detection systems without any great effort.
  • a two-wire detector line is sufficient, since this detector line can be used to supply the operating voltage to the individual detectors and to handle all data traffic.
  • the outlay for the circuit arrangement according to the invention is very low, which is also expressed in that the space requirement for the circuit arrangement is minimal.
  • the signal electronics or voltage level at the detection line and thus at the individual detectors is cyclically keyed or reduced by the evaluation electronics.
  • Logic signals with the value 0 or 1 are obtained from these voltage drops, for example by means of comparators in the individual detectors, which signals are then fed to a binary counter as counting pulses.
  • This binary counter counts the logical signals in the individual detectors, for example from 1 to 32. This means that as often as the voltage on the detector line is reduced to the specified voltage value, the counter switches by the value 1.
  • the voltage at the detector line could also be increased, in which case the counter would advance by the value 1 with each increase.
  • the reset signal can also have the same voltage value as the counter pulses and differ from them by the different pulse width.
  • the detector address Only if the counter content of the counter of each detector matches a value set in the detector by means of a coding switch, the so-called detector address, can the detector transmit information back to the control center. This means that if the detector address matches the meter reading, the status of the relevant detector can be sent to the control center by means of certain signals, for example a precisely defined current increase, which is evaluated accordingly by the control center.
  • each addressed detector reports back with a precisely defined current increase if the counter reading is the same as the detector address. If this feedback is not given, a sabotage and / or fault message is sent to the control center.
  • a display 8 is provided on the control center 1, in which, for example, an alarm can be reported by means of a light-emitting diode 9 and a fault can be reported by means of a light-emitting diode 10.
  • the LED 10 lights up, an observer does not know which of the detectors 4, 5, 6 is malfunctioning. A check must therefore be carried out on site, which can be done by assigning a light emitting diode 14, 15, 16 to each detector 4, 5, 6, which emits light if the associated detector 4, 5 or 6 has a fault or an alarm is given. If the light-emitting diode 10 lights up, it must be checked which of the light-emitting diodes 14, 15, 16 also emits light, which can be extremely complex in a large hazard alarm system with, for example, 32 different detectors.
  • FIG. 2 The same reference numerals are used in FIG. 2 for corresponding components as in FIG. 1.
  • FIG. 2 shows a block diagram of the circuit arrangement according to the invention. This consists of the control center 1, the detector line 2, 3, the two detectors 4, and the detector line end resistor 7.
  • the detector line end resistor 7 can be omitted in the present exemplary embodiment, since it works with cyclical feedback. Of course, 32 different detectors can also be connected between the detection line 2, 3 in this exemplary embodiment. For better clarity, only the detector 4 is shown in detail, while the detector 5 is only indicated schematically.
  • the control center 1 essentially consists of evaluation electronics 20 having a memory, to which voltage comparators K1, K2 and K3 or a commercially available analog / digital converter are connected, each of which is preceded by an operational amplifier IC1 for «lossless current measurement» (cf. EP- A 0098326).
  • the operating voltage U B is fed via a line 21 and a resistor 22 to the positive input of the operational amplifier IC1 and is also connected via resistors 23, 24, 25 to the negative inputs of the voltage comparators K1, K2 and K3.
  • the positive inputs of the voltage comparators K1, K2 and K3 are connected to the output of the operational amplifier IC1, the negative input of which is fed back to the output thereof via a resistor R1.
  • the positive input of the operational amplifier IC1 is connected via resistors 26, 27, 28 to the ground wire 3 or signal line 2, the center tap between the resistors 26 and 27 or between the resistors 27 and 28 to the collector of a transistor T1 or T2 is connected.
  • the emitters of these transistors T1 and T2 are connected to the wire 3, while the base connections are each connected to the evaluation electronics 20 via resistors 29, 30.
  • a seven-segment display 32 for the detector number, a light-emitting diode 33 for alarm indication, a light-emitting diode 34 for fault indication and keys TA1 and TA2 for actuating the detector display 32 or for switching the detector number are provided on the output side of the evaluation electronics 20.
  • a voltage UM ⁇ ⁇ UM is applied by the control center 1 between the wires 2, 3 of the detection line.
  • the individual detectors 4, 5 report the respective status by increasing the current AIM, ie. that is, the current IM flowing in the wire 2 is increased by ⁇ IM when a certain state is detected, for example in the event of a fault.
  • the specific current increases AIM are converted in the control center 1 by the operational amplifier IC1 into a corresponding voltage UA1.
  • the comparator from the three voltage comparators K1, K2 and K3 then evaluates the voltage value UA1 output by the operational amplifier IC1, whereby there is a detector feedback if this voltage value corresponds to a reference voltage U Ref1 , while a detector alarm is given if the voltage UA1 corresponds to a reference voltage U Ref2 is equal to. Finally, there is a detector fault if the voltage value UA1 is equal to the reference voltage value U Ref3 .
  • the voltage values from the operational amplifier IC1 could also be evaluated by means of a commercially available analog / digital converter, which converts an analog voltage value fed into it into an equivalent digital value, which is then processed in the evaluation electronics 20 in accordance with the criteria "alarm", "fault". and «feedback» is evaluated.
  • the current increase ⁇ IM corresponding to a certain detector state is thus converted by the operational amplifier IC1 into a voltage increase UA1, which in turn is compared with certain reference voltages, so that - depending on the determined voltage increase - an observer from the evaluation electronics 20 via the displays 32, 33 and 34 it can be reported which detector 4, 5 has which detector state.
  • the detector 4 (and likewise the other detectors 5, etc.) consists of detection and evaluation electronics 40 for detecting physical variables, such as smoke, heat, movement, etc.
  • This evaluation electronics 40 supplies appropriate signals for the status of the detector 4, that is to say signals for alarm, malfunction, etc.
  • An input demodulator 41 consists of voltage comparators K4 and K5 which, by comparing the signal line voltage UM offered in each case with reference values U Ref4 and U Ref5 and a downstream logic 42, generate signals “count” and “reset”. These signals can differ in terms of different signal levels and / or pulse widths.
  • the 5-bit BCD counter 43 is connected to a 5-bit comparator 44 via its outputs Q1 to Q5 and supplies it with input signals A.
  • a 5-pin coding switch 45 on the 5-bit comparator 44, with which the detector number 1 to 32 can be set for a total of 32 detectors. In this way, the coding switch 45 supplies the 5-bit comparator 44 with an input signal B. If the two input signals A and B are identical, then the 5-bit comparator generates a logic 1 as the output signal, by means of which a transistor output stage 46 consisting of resistors 47, 48, 49, 50 and transistors T3 and T4 is released. That is, if signals A and B are identical, a current increase ⁇ IM is passed on to the detection line 2 by this transistor output stage, this current increase ⁇ IM being dependent on the state of the detector 4, which is detected by the evaluation electronics 40.
  • the transistor T4 is activated, while when the transistor T3 is activated there is an alarm and an activation of the two transistors T3 and T4 means a fault.
  • the detector 4 also has a voltage regulator 51 between the wire 2 and the evaluation electronics 40, a diode 52 and a capacitor 53 between the two wires 2, 3, resistors 54, 55 and 56 for setting the reference voltages U Ref4 and U Ref5 between the output of the controller 51 or the input of the evaluation electronics 40 and the wire 3 and a resistor 57 between the wire 2 and the negative input of the voltage comparators K4 and K5. Finally, there is a logic 58 between the output of the evaluation electronics 40 and the resistors 47, 48 for generating the signals “fault” and “alarm”.
  • the evaluation electronics 20 cyclically control the transistors T1 or T2 via the resistors 29, 30, as a result of which the reference voltage value at the non-inverting input of the operational amplifier IC1 is also changed cyclically.
  • the signal line voltage UM then changes by the same voltage amount.
  • transistor T1 is activated and conductive with time t 1 , as a result of which the signal line voltage UM drops to a value UM3.
  • the transistor T1 is then blocked and the signal line voltage rises again to its initial value UM1.
  • This voltage value UM1 is maintained for a period of time t 2 .
  • the transistor T2 then becomes conductive, which means that the signal line voltage UM drops to a value UM2 during the time period t 3 .
  • the pulses corresponding to the voltage values UM2 are counted by the binary counters 43 of the individual detectors 4, 5 until the value 32 is reached, for example.
  • the voltage value UM1 finally corresponds to normal operation, i. H. a polling cycle in which the status of the individual detectors 4, 5 is polled by the control center.
  • the voltage values UM1, UM2 and UM3 present at the detection line 2, 3 are registered, recorded and evaluated by all connected detectors 4, 5.
  • the voltage comparators K4 and K5 derive from the voltage values whether the counter 43 should continue to count or whether this counter 43 should be reset.
  • a working cycle begins with a reset signal, ie with the signal in which the voltage value UM3 is present during the time period t 1 . Such a signal is shown in Fig. 3 (B). This reset signal has the effect that the counters 43 in all detectors 4, 5 are reset, for example, to the counter reading “00000”.
  • a voltage jump to the voltage value UM2 during the time period t 2 generates a counting pulse, which means that in a hazard alarm system with, for example, 30 detectors, the respective counters 43 are incremented cyclically from 1 to 30 (“00000” to “11111”). These signals are shown in Fig. 3 (C).
  • the 5-bit comparator 44 now statically compares the BCD value B set with the coding switch 45 with the counter content of the counter 43. If the counter reading of the counter 43 and the detector number set by the coding switch 45, ie the address, are the same, the Output of the comparator 44 activated, whereby the transistors T3 and T4 are turned on.
  • a corresponding current increase is carried out on the detection line 2, 3 when the transistors T3 and T4 are switched on. If there is an alarm, the transistor T3 is activated and the current increase ⁇ IM is UM / R. In the event of a fault, the transistors T3 and T4 are activated and the current increase ⁇ IM is UM / 3R, since the resistor 49 is said to have twice the resistance value as the resistor 50.
  • the defined current increase related to each detector is evaluated in the control center 1 or in the evaluation electronics 20.
  • the output voltage UA1 of the operational amplifier IC1 changes in accordance with the current change ⁇ IM in the detection line 2, 3.
  • the output voltage UA1 of the operational amplifier IC1 is therefore proportional to the current change AIM.
  • the comparators K1, K2 and K3 are then activated, so that the information corresponding to the respectively addressed detector 4, 5 (alarm, fault, feedback) is present at the evaluation electronics 20. This information is evaluated and displayed 32, 33 and 34.
  • the display 32 can be used to show which detector has triggered an alarm and / or a fault.
  • the fault is indicated by the LED 34, while the LED 33 lights up when there is an alarm on one of the detectors.
  • the TA2 key it is possible to successively advance the detector number by the amount + 1, i.e. the display 32 is increased by the value +. Pressing the TA1 key again can finally exit the display mode.
  • 3 (H), 3 (1) and 3 (J) each show a signal which reports a "feedback", an "alarm” or a "fault” of the evaluation electronics 20.
  • 3 (K) finally gives the result of the evaluation by the evaluation electronics 20: namely there is a feedback from the second detector of the detection line 2, 3, an alarm of the fourth detector of the detection line 2, 3 and a fault of the sixth detector Detection line 2, 3 shown.

Description

  • Die Erfindung betrifft eine Schaltungsanordnung für eine Gefahrenmeldeanlage mit mehreren Meldern gemäß Oberbegriff des Anspruches 1.
  • Bekanntlich sind bei Gefahrenmeldeanlagen im allgemeinen mehrere Melder in einer Meldelinie mit einer Zentrale verbunden, in der eine Auswerteelektronik untergebracht ist, die die von den einzelnen Meldern gelieferten Signale, insbesondere Spannungspegel, auszuwerten vermag. Als Melder können dabei Sensoren verwendet werden, die auf die zu erfassende Gefahr ansprechen.
  • In Einbruchmeldeanlagen und in Brandmeldeanlagen sind auf diese Weise zwanzig bzw. dreißig einzelne Melder in einer zweiadrigen Meldelinie in Reihe mit der Zentrale verbunden, wobei jeder Melder zwischen den beiden Adern der Meldelinie geschaltet ist, die ihrerseits durch einen Meldelinien-Endwiderstand abgeschlossen ist.
  • Üblicherweise kann eine derartige Schaltungsanordnung an die Zentrale zwei Zustände anzeigen, nämlich Alarm und/oder Störung.
  • Eine Schaltungsanordnung, die die Zustandsmeldung noch erweitert und die der vorausgenannten Gattung entspricht, ist aus der DE-A-1 441 417 bekannt. Da diese bekannte, gattungsgemäße Schaltungsanordnung für die Rückmeldung der einzelnen Melder mit einer gewollten Zeitverschiebung arbeitet, erreicht das für den charakterisierenden Zustand des einzelnen Melders vorgesehene Rückmeldesignal die Auswerteelektronik zeitversetzt nach dem für den entsprechenden abgefragten Melder zuständigen Intervall. Diese bewußt gewählte Zeitverschiebung kann jedoch zu Fehlschaltungen im Sinne von Falschmeldungen bei der bekannten Schaltungsanordnung führen oder es bedarf andererseits eines sehr umfangreichen Schaltungsaufwandes, um derartige Fehlschaltungen von vorneherein eliminieren zu können.
  • Ausgehend von diesem Stand der Technik liegt daher der Erfindung die Aufgabe zugrunde, eine gattungsgemässe Schaltungsanordnung so zu schaffen, daß dabei bei einer nur zweiadrigen Meldelinie eine Einzelidentifikation der Melder an die Zentrale mit hoher Fehlersicherheit erfolgen kann, wobei dies mit relativ geringem Aufwand ermöglicht werden soll und die Schaltungsanordnung auch mit bestehenden Gefahrenmeldean!agen kompatibel ist.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Anspruches 1 gelöst.
  • Vorteilhafte Weiterbildungen der Erfindung ergeben sich insbesondere aus den Unteransprüchen.
  • Die erfindungsgemäße Schaltungsanordnung ist mit bestehenden Gefahrenmeldeanlagen kompatibel, d. h., die bei der Erfindung vorgesehenen Melder können in bereits eingebaute Gefahrenmeldeanlagen ohne besonders großen Aufwand nachgerüstet werden. Eine zweiadrige Meldelinie ist ausreichend, da über diese Meldelinie sowohl den einzelnen Meldern die Betriebsspannung zugeführt als auch der gesamte Datenverkehr abgewickelt werden kann. Schließlich ist der Aufwand für die erfindungsgemäße Schaltungsanordnung sehr gering, was auch dadurch zum Ausdruck kommt, daß der Platzbedarf für die Schaltungsanordnung minimal ist.
  • Bei der Schaltungsanordnung wird von der Auswerteelektronik der Signal- bzw. Spannungspegel an der Meldelinie und damit an den einzelnen Meldem zyklisch umgetastet bzw. verringert. Aus diesen Spannungsabsenkungen werden beispielsweise mittels Vergleichern in den einzelnen Meldern logische Signale mit dem Wert 0 oder 1 gewonnen, die dann als Zählimpulse einem Binärzähler zugeführt werden. Dieser Binärzähler zählt in den einzelnen Meldern die logischen Signale, beispielsweise von 1 bis 32. Das heißt, so oft die Spannung an der Meldelinie auf den bestimmten Spannungswert abgesenkt wird, schaltet der Zähler um den Wert 1 weiter. Die Spannung an der Meldelinie könnte auch angehoben werden, wobei dann der Zähler bei jeder Anhebung um den Wert 1 weiterschalten würde.
  • Sobald ein bestimmter Zählerstand in den einzelnen Zählern erreicht ist, beispielsweise der Zählerstand 32, werden alle Zähler auf den Wert 0 rückgesetzt, indem eine andere, von der obengenannten Spannungsabsenkung verschiedene Spannungsabsenkung an der Meldelinie vorgenommen wird, wobei diese andere Spannungsabsenkung durch den Vergleicher als Rücksetzsignal ausgewertet wird. Anstelle dieser anderen Spannungsabsenkung kann auch ein Rücksetzsignal verwendet werden, das den gleichen Spannungspegel wie die Zählerimpulse besitzt und sich von diesen durch eine größere oder kleinere Impulsbreite unterscheidet.
  • Bei der erfindungsgemäßen Schaltungsanordnung können also die Zähler in allen Meldern durch die beiden Steuersignale «Zählen» (= Umtasten mit einem ersten Spannungswert während einer ersten Zeitdauer) und «Rücksetzen» (=Umtasten mit einem zweiten, vom ersten Spannungswert verschiedenen Spannungswert während einer zweiten, von der ersten Zeitdauer verschiedenen Zeitdauer) zyklisch hochgezählt und gemeinsam rückgesetzt werden. Anstelle der unterschiedlichen Spannungswerte kann das Rücksetzsignal aber auch den gleichen Spannungswert wie die Zählerimpulse haben und sich von diesen durch die unterschiedliche Impulsbreite unterscheiden.
  • Nur dann, wenn der Zählerinhalt des Zählers jedes Melders mit einem im Melder mittels eines Kodierschalters eingestellten Wert, der sogenannten Melderadresse, übereinstimmt, kann vom Melder eine Informationsübertragung zurück zur Zentrale erfolgen. Das heißt, wenn die Melderadresse mit dem Zählerstand übereinstimmt, kann an die Zentrale mittels bestimmter Signale, beispielsweise einer genau definierten Stromerhöhung, über die Meldelinie der Zustand des betreffenden Melders abgegeben werden, was durch die Zentrale entsprechend ausgewertet wird.
  • Damit auch die Funktion der Melder sowie der Meldelinie immer überwacht ist, meldet sich jeder angesprochene Melder mit einer genau definierten Stromerhöhung bei Gleichheit des Zählerstandes mit der Melderadresse zurück. Erfolgt diese Rückmeldung nicht, dann wird an der Zentrale eine Sabotage- und/oder Störungsmeldung abgegeben.
  • Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigen:
    • Fig. 1 ein Blockschaltbild einer bestehenden Gefahrenmeldeanlage,
    • Fig. 2 ein Blockschaltbild der erfindungsgemäßen Schaltungsanordnung und
    • Fig. 3 Signaldiagramme zur Erläuterung des Betriebs der Schaltungsanordnung von Fig. 2.
    • Fig. 1 zeigt eine bestehende Gefahrenmeldeanlage mit einer Zentrale 1, an die eine zweiadrige Meldelinie 2, 3 mit einzelnen Meldern 4, 5, 6 und einem Meldelinien-Endwiderstand 7 angeschlossen sind. Beispielsweise können auf diese Weise 20 oder aber auch 32 verschiedene Melder 4, 5, 6,... mit der Zentrale 1 verbunden sein. Jeder Melder 4, 5, 6 liegt dabei zwischen den beiden Adern der Meldelinie 2, 3.
  • An der Zentrale 1 ist eine Anzeige 8 vorgesehen, bei der beispielsweise mittels einer Leuchtdiode 9 ein Alarm und mittels einer Leuchtdiode 10 eine Störung gemeldet werden kann.
  • Wenn beispielsweise die Leuchtdiode 10 aufleuchtet, dann weiß ein Beobachter aber nicht, bei welchem der Melder 4, 5, 6 eine Störung vorliegt. Es muß also eine Überprüfung vor Ort vorgenommen werden, was dadurch geschehen kann, daß jedem Melder 4, 5, 6 eine Leuchtdiode 14, 15, 16 zugeordnet ist, die Licht abgibt, wenn bei dem zugehörigen Melder 4, 5 oder 6 eine Störung bzw. ein Alarm gegeben ist. Leuchtet also die Leuchtdiode 10 auf, dann muß überprüft werden, welche der Leuchtdioden 14, 15, 16 ebenfalls Licht aussendet, was bei einer großen Gefahrenmeldeanlage mit beispielsweise 32 verschiedenen Meldern äußerst aufwendig sein kann.
  • In Fig. 2 sind für einander entsprechende Bauteile die gleichen Bezugszeichen verwendet wie in Fig. 1.
  • Fig. 2 zeigt ein Blockschaltbild der erfindungsgemäßen Schaltungsanordnung. Diese besteht aus der Zentrale 1, der Meldelinie 2, 3, den beiden Meldern 4, und dem Meldelinien-Endwiderstand 7. Der Meldelinien-Endwiderstand 7 kann beim vorliegenden Ausführungsbeispiel weggelassen werden, da dieses mit zyklischer Rückmeldung arbeitet. Selbstverständlich können auch bei diesem Ausführungsbeispiel beispielsweise 32 verschiedene Melder zwischen die Meldelinie 2, 3 geschaltet sein. Zur besseren Übersichtlichkeit ist lediglich der Melder 4 in Einzelheiten gezeigt, während der Melder 5 nur schematisch angedeutet ist.
  • Die Zentrale 1 besteht im wesentlichen aus einer einen Speicher aufweisenden Auswerteelektronik 20, an die Spannungskomparatoren K1, K2 und K3 oder ein handelsüblicher Analog/Digital-Wandler angeschlossen sind, denen jeweils ein Operationsverstärker IC1 zur «verlustlosen Strommessung» vorgeschaltet ist (vgl. EP-A 0098326).
  • Die Betriebsspannung UB wird über eine Leitung 21 und einen Widerstand 22 dem positiven Eingang des Operationsverstärkers IC1 zugeführt und liegt außerdem über Widerstände 23, 24, 25 an den negativen Eingängen der Spannungskomparatoren K1, K2 bzw. K3. Die positiven Eingänge der Spannungskomparatoren K1, K2 und K3 sind mit dem Ausgang des Operationsverstärkers IC1 verbunden, dessen negativer Eingang über einen Widerstand R1 mit dessen Ausgang gegengekoppelt ist.
  • Der positive Eingang des Operationsverstärkers IC1 ist über Widerstände 26, 27, 28 mit der auf Masse liegenden Ader 3 oder Meldelinie 2, verbunden, wobei jeweils der Mittenabgriff zwischen den Widerständen 26 und 27 bzw. zwischen den Widerständen 27 und 28 an den Kollektor eines Transistors T1 bzw. T2 angeschlossen ist. Die Emitter dieser Transistoren T1 und T2 sind mit der Ader 3 verbunden, während die Basisanschlüsse jeweils über Widerstände 29, 30 mit der Auswerteelektronik 20 verbunden sind.
  • Zwischen dem negativen Eingang des Spannungskomparators K1 und der Ader 3 der Meldelinie 2, 3 liegt schließlich noch ein Widerstand 31.
  • Auf der Ausgangsseite der Auswerteelektronik 20 sind eine Sieben-Segment-Anzeige 32 für die Meldernummer, eine Leuchtdiode 33 zur Alarmanzeige, eine Leuchtdiode 34 zur Störungsanzeige und Tasten TA1 sowie TA2 zur Betätigung der Melderanzeige 32 bzw. zum Weiterschalten der Meldernummer vorgesehen.
  • Zwischen die Adern 2, 3 der Meldelinie wird von der Zentrale 1 eine Spannung UM±ΔUM gelegt. Die einzelnen Melder 4, 5 melden den jeweiligen Zustand durch eine Stromerhöhung AIM, d. h., der in der Ader 2 fließende Strom IM wird bei der Erfassung eines bestimmten Zustandes, also beispielsweise bei einer Störung, um ΔIM erhöht.
  • Die spezifischen Stromerhöhungen AIM werden in der Zentrale 1 durch den Operationsverstärker IC1 in eine entsprechende Spannung UA1 umgewandelt.
  • Der Vergleicher aus den drei Spannungskomparatoren K1, K2 und K3 wertet sodann den vom Operationsverstärker IC1 abgegebenen Spannungswert UA1 aus, wobei eine Melderrückmeldung vorliegt, wenn dieser Spannungswert einer Bezugsspannung URef1 entspricht, während ein Melderalarm gegeben ist, wenn die Spannung UA1 einer Bezugsspannung URef2 gleich ist. Eine Melderstörung ist schließlich gegeben, wenn der Spannungswert UA1 dem Bezugsspannungswert URef3 gleich ist. Die Auswertung der vom Operationsverstärker IC1 anliegenden Spannungswerte könnte auch mittels eines handelsüblichen Analog/Digital-Wandlers vorgenommen werden, der einen in ihren eingespeisten analogen Spannungswert in einen äquivalenten Digitalwert umwandelt, welcher dann in der Auswerteelektronik 20 entsprechend der Kriterien «Alarm», «Störung» und «Rückmeldung» ausgewertet wird.
  • Die einem bestimmten Melderzustand entsprechende Stromerhöhung ΔIM wird also durch den Operationsverstärker IC1 in eine Spannungserhöhung UA1 umgewandelt, die ihrerseits mit bestimmten Bezugsspannungen verglichen wird, so daß - abhängig von der ermittelten Spannungserhöhung - über die Anzeigen 32, 33 und 34 einem Beobachter von der Auswerteelektronik 20 gemeldet werden kann, bei welchem Melder 4, 5 welcher Melderzustand vorliegt.
  • Der Melder 4 (und ebenso die anderen Melder 5 usw.) besteht aus einer Erfassungs- und Auswerteelektronik 40 zur Erfassung physikalischer Größen, wie beispielsweise Rauch, Wärme, Bewegung usw. Diese Auswerteelektronik 40 liefert entsprechende Signale für den Zustand des Melders 4, also Signale für Alarm, Störung usw.
  • Ein Eingangs-Demodulator 41 besteht aus Spannungskomparatoren K4 und K5, die durch Vergleich der jeweils angebotenen Meldelinienspannung UM mit Bezugswerten URef4 und URef5 und einer nachgeschalteten Logik 42 Signale «Zählen» und «Rücksetzen» erzeugen. Diese Signale können sich durch verschiedene Signalpegel und/oder Impulsbreiten unterscheiden.
  • Ein 5-Bit-BCD-Zähler 43 mit Ausgängen Q1 bis Q5 und einer Zählfolge «00000» bis «11111» wird mit dem Signal «Zählen» von der Logik 42 jeweils um den Wert+1 hochgezählt und mit dem Signal «Rücksetzen» von der Logik 42 auf den Wert «00000» zurückgesetzt.
  • Der 5-Bit-BCD-Zähler 43 ist mit einem 5-Bit-Komparator 44 über seine Ausgänge Q1 bis Q5 verbunden und führt diesem Eingangssignale A zu. Weiterhin liegt am 5-Bit-Komparator44 ein 5poliger Kodierschalter 45, mit dem die Meldernummer 1 bis 32 bei insgesamt 32 Meldern eingestellt werden kann. Auf diese Weise führt der Kodierschalter 45 dem 5-Bit-Komparator 44 ein Eingangssignal B zu. Liegt Gleichheit der beiden Eingangssignale A und B vor, dann erzeugt der 5-Bit-Komparator als Ausgangssignal eine logische 1, durch die eine Transistorendstufe 46 aus Widerständen 47, 48, 49, 50 und Transistoren T3 und T4 freigegeben wird. Das heißt, bei Gleichheit der Signale A und B wird durch diese Transistorendstufe eine Stromerhöhung ΔIM an die Meldelinie 2, weitergegeben, wobei diese Stromerhöhung ΔIM von dem Zustand des Melders 4 abhängig ist, der durch die Auswerteelektronik 40 erfaßt wird.
  • Bei einer Melderrückmeldung wird dabei der Transistor T4 aktiviert, während bei Aktivierung des Transistors T3 ein Alarm vorliegt und eine Aktivierung der beiden Transistoren T3 und T4 eine Störung bedeutet.
  • Der Melder 4 weist außerdem einen Spannungsregler 51 zwischen der Ader 2 und der Auswerteelektronik 40, eine Diode 52 und einen Kondensator 53 zwischen den beiden Adern 2, 3, Widerstände 54, 55 und 56 zur Einstellung der Bezugsspannungen URef4 und URef5 zwischen dem Ausgang des Reglers 51 bzw. dem Eingang der Auswerteelektronik 40 und der Ader 3 und einen Widerstand 57 zwischen der Ader 2 und dem negativen Eingang der Spannungskomparatoren K4 und K5 auf. Schließlich liegt noch eine Logik 58 zwischen dem Ausgang der Auswerteelektronik 40 und den Widerständen 47, 48 zur Erzeugung der Signale «Störung» und «Alarm».
  • Durch die Auswerteelektronik 20 werden zyklisch über die Widerstände 29, 30 die Transistoren T1 oder T2 angesteuert, wodurch der Bezugsspannungswert am nichtinvertierenden Eingang des Operationsverstärkers IC1 ebenfalls zyklisch verändert wird. Infolge der durch den Widerstand R1 gegebenen Gegenkopplung des Operationsverstärkers IC1 ändert sich dann um den gleichen Spannungsbetrag die Meldelinienspannung UM.
  • Das heißt, zu Beginn jedes Abfragezyklus wird der Transistor T1 mit der Zeit t1 angesteuert und leitend, wodurch die Meldelinienspannung UM auf einen Wert UM3 absinkt. Anschließend wird der Transistor T1 gesperrt, und die Meldelinienspannung steigt wieder auf ihren Anfangswert UM1 an. Dieser Spannungswert UM1 wird für eine Zeitdauer t2 beibehalten. Sodann wird der Transistor T2 leitend, was bedeutet, daß die Meldelinienspannung UM während der Zeitdauer t3 auf einen Wert UM2 absinkt.
  • In Fig.3(A) sind diese Spannungswerte UM1, UM2 und UM3 gezeigt.
  • Die Spannungsumtastungen auf die Spannungswerte UM1, UM2 und UM3 bedeuten die folgenden Zustände der Melder:
    • Bei der Spannung UM3 werden die Zähler 43 der einzelnen Melder 4, 5 rückgestellt.
  • Die den Spannungswerten UM2 entsprechenden Impulse werden durch die Binärzähler 43 der einzelnen Melder 4, 5 gezählt, bis beispielsweise der Wert 32 erreicht ist.
  • Der Spannungswert UM1 entspricht schließlich einem Normalbetrieb, d. h. einem Abfragezyklus, bei dem von der Zentrale der Zustand der einzelnen Melder 4, 5 abgefragt wird.
  • Die an der Meldelinie 2, 3 anstehenden Spannungswerte UM1, UM2 und UM3 werden von allen angeschlossenen Meldern 4, 5 registriert, erfaßt und ausgewertet. Dabei leiten die Spannungskomparatoren K4 und K5 aus den Spannungswerten ab, ob durch den Zähler 43 weitergezählt werden soll oder ob dieser Zähler 43 rückzustellen ist. Ein Arbeitszyklus beginnt mit einem Rückstellsignal, d.h., mit dem Signal, bei dem der Spannungswert UM3 während der Zeitdauer t1 vorliegt. Ein solches Signal ist in Fig. 3(B) gezeigt. Durch dieses Rückstellsignal wird bewirkt, daß in allen Meldern 4, 5 die Zähler 43 beispielsweise auf den Zählerstand «00000» zurückgesetzt werden.
  • Ein Spannungssprung auf den Spannungswert UM2 während der Zeitdauer t2 erzeugt einen Zählimpuls, was bedeutet, daß bei einer Gefahrenmeldeanlage mit beispielsweise 30 Meldern die jeweiligen Zähler 43 zyklisch von 1 bis 30 («00000» bis «11111 ») hochgezählt werden. Diese Signale sind in Fig. 3(C) dargestellt.
  • Der 5-Bit-Komparator 44 vergleicht nun statisch den mit dem Kodierschalter 45 eingestellten BCD-Wert B mit dem Zählerinhalt des Zählers 43. Bei Gleichheit zwischen dem Zählerstand des Zählers 43 und der durch den Kodierschalter 45 eingestellten Meldernummer, also der Adresse, wird der Ausgang des Komparators 44 aktiviert, wodurch die Transistoren T3 und T4 eingeschaltet werden.
  • Abhängig von dem durch die Auswerteelektronik 40 erfaßten Zustand des Melders 4 wird bei eingeschalteten Transistoren T3 und T4 eine entsprechende Stromerhöhung an der Meldelinie 2, 3 vorgenommen. Liegt ein Alarm vor, dann wird der Transistor T3 aktiviert, und die Stromerhöhung ΔIM beträgt UM/R. Bei Vorliegen einer Störung werden die Transistoren T3 und T4 aktiviert, und die Stromerhöhung ΔIM beträgt UM/3R, da der Widerstand 49 den doppelten Widerstandswert wie der Widerstand 50 haben soll.
  • Die Fig. 3(D), 3(E) und 3(F) zeigen jeweils die Ausgangssignale des Komparators 44 (Voraussetzung: A = B) für den zweiten bzw. vierten bzw. sechsten Melder einer Meldelinie (vgl. hierzu Fig. 3(C).
  • In Fig. 3(G) sind die entsprechenden Signale dargestellt, die der Zentrale 1 melden, welcher Zustand (Melderrückmeldung oder Alarm oder Störung) vorliegt.
  • Um auch die Funktion der einzelnen Melder und der Meldelinie 2, 3 überprüfen zu können, muß sich jeder Melder während seiner angesprochenen Zeit t3 mit einer definierten Stromerhöhung ΔIM = UM/2R zurückmelden. Bleibt eine solche Rückmeldung aus, dann wird an der Zentrale 1 eine Störung oder eine Sabotage angezeigt.
  • Die auf jeden Melder bezogene, definierte Stromerhöhung wird in der Zentrale 1 bzw. in der Auswerteelektronik 20 ausgewertet.
  • Wie bereits eingangs erläutert wurde, verändert sich dabei die Ausgangsspannung UA1 des Operationsverstärkers IC1 entsprechend der Stromänderung ΔIM in der Meldelinie 2, 3. Die Ausgangsspannung UA1 des Operationsverstärkers IC1 ist also proportional zur Stromänderung AIM.
  • Abhängig von der Höhe der Ausgangsspannung UA1 des Operationsverstärkers IC1 werden sodann die Komparatoren K1, K2 und K3 aktiviert, so daß an der Auswerteelektronik 20 die dem jeweils adressierten Melder 4, 5 entsprechende Information (Alarm, Störung, Rückmeldung) ansteht. Diese Information wird ausgewertet und in den Anzeigen 32, 33 und 34 zur Anzeige gebracht.
  • Durch Betätigen der Taste TA1 kann mittels der Anzeige 32 angezeigt werden, welcher Melder einen Alarm und/oder eine Störung ausgelöst hat. Die Störung wird dabei durch die Leuchtdiode 34 angezeigt, während die Leuchtdiode 33 aufleuchtet, wenn ein Alarm an einem der Melder vorliegt.
  • Mittels der Taste TA2 ist es möglich, nacheinander die Meldernummer jeweils um den Betrag+1 weiterzuschalten, d.h., die Anzeige 32 wird jeweils um den Wert + erhöht. Durch nochmaliges Drükken der Taste TA1 kann schließlich der Anzeigebetrieb verlassen werden.
  • In Fig. 3(H), 3(1) und 3(J) ist jeweils ein Signal gezeigt, das eine «Rückmeldung», einen «Alarm» bzw. eine «Störung» der Auswerteelektronik 20 meldet. Fig. 3(K) gibt schließlich das Ergebnis der Auswertung durch die Auswerteelektronik 20 an: es ist dort nämlich eine Rückmeldung des zweiten Melders der Meldelinie 2, 3, ein Alarm des vierten Melders der Meldelinie 2, 3 und eine Störung des sechsten Melders der Meldelinie 2, 3 gezeigt.

Claims (14)

1. Schaltungsanordnung für eine Gefahrenmeldeanlage mit mehreren Meldern (4, 5), die über eine zweiadrige Meldelinie (2, 3) an eine eine Auswerteelektronik (20) aufweisende Zentrale angeschlossen sind, die von den Meldern (4, 5) gelieferten Signale jeweils definierte Zustände an den Meldern zuordnet, mit einem über die Meldelinie (2, 3) von der Auswerteelektronik (20) an die Melder gelegten Signalpegel, der zyklisch umgetastet wird, mit jeweils einem in den Meldern (4, 5) vorgesehenen Zähler (43), der dieser Signalpegelumtastung entsprechende logische Zustände zählt und bei Gleichheit des Zählerwertes mit einem jeweils an jedem Melder voreingestellten Adressenwert vom Melder ein seinen Zustand charakterisierendes Signal über die Meldelinie (2, 3) an die Auswerteelektronik (20) abgibt, wobei alle Zähler (43) durch ein Rückstellsignal rückstellbar sind, dadurch gekennzeichnet, daß das Rückstellsignal für die Zähler (43) der Melder (4, 5) als weitere Signalpegelumtastung ausgebildet ist und daß das den Zustand, zum Beispiel Alarm oder Störung, des einzelnen Melders (4, 5) charakterisierende Signal als definierter, aber unterschiedlicher Signalpegel innerhalb des Zeitintervalls bis zur Ansteuerung des nächstfolgenden Melders vom angesteuerten Melder (4, 5) an die Auswerteelektronik (20) abgegeben wird.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der zyklisch umgetastete Signalpegel ein Spannungspegel, insbesondere der Betriebsspannungspegel, ist.
3. Schaltungsanordnung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das vom einzelnen Melder (4) abgegebene, seinen Zustand charakterisierende Signal ein Strompegelsignal ist.
4. Schaltungsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Auswerteelektronik (20) Spannungskomparatoren (K1, K2, K3) oder Analog/Digital-Wandler vorgeschaltet sind, die die der Auswerteelektronik (20) zugeführten Eingangssignale jeweils mit einem Bezugsspannungswert vergleichen.
5. Schaltungsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in der Zentrale (1) zwischen dem Eingang der Meldelinie (2, 3) und den Spannungskomparatoren (K1, K2, K3) ein Operationsverstärker (IC1) liegt.
6. Schaltungsanordnung nach Anspruch 5, dadurch gekennzeichnet, daß in an sich bekannter Weise der Operationsverstärker (IC1) über einen Widerstand (R1) gegengekoppelt ist.
7. Schaltungsanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Auswerteelektronik (20) über eine Transistorstufe (T1, T2) und in Reihe geschaltete Widerstände (26, 27, 28) an die Meldelinie (2, 3) definierte Spannungspegel (UM) legt.
8. Schaltungsanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Adressenwert an jedem Melder (4, 5) mittels eines Kodierschalters (45) eingebbar ist.
9. Schaltungsanordnung nach Anspruch 8, dadurch gekennzeichnet, daß zwischen dem Kodierschalter (45) und dem Zähler (43) ein Komparator (44) vorgesehen ist.
10. Schaltungsanordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß jeder Melder (4, 5) mit einer Auswerteelektronik (40) für die zu erfassenden physikalischen Größen ausgestattet ist.
11. Schaltungsanordnung nach Anspruch 10, dadurch gekennzeichnet, daß der Auswerteelektronik (40) eine Logik (58) und eine Transistorstufe (T3, T4) nachgeschaltet ist.
12. Schaltungsanordnung nach Anspruch 11, dadurch gekennzeichnet, daß die Transistoren der Transistorstufe (T3, T4) bei Gleichheit des Zählerwertes im Zähler (43) mit dem jeweils an jedem Melder (4, 5) vom Kodierschalter (45) voreingestellten Adressenwert freigegeben sind.
13. Schaltungsanordnung nach einem der Ansprüche 1 bis 12, gekennzeichnet durch einen dem Zähler (43) vorgeschalteten Vergleicher (41) aus zwei Komparatoren (K4, K5), die die von der Zentrale (1) an die Meldelinie (2, 3) gelegten Signale auswerten.
14. Schaltungsanordnung nach Anspruch 13, gekennzeichnet durch eine Logik (42) zwischen den Komparatoren (K4, K5) und dem Zähler (43).
EP85103600A 1984-03-26 1985-03-26 Schaltungsanordnung für eine Gefahrenmeldeanlage Expired EP0158217B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85103600T ATE36767T1 (de) 1984-03-26 1985-03-26 Schaltungsanordnung fuer eine gefahrenmeldeanlage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3411129 1984-03-26
DE19843411129 DE3411129A1 (de) 1984-03-26 1984-03-26 Schaltungsanordnung fuer eine gefahrenmeldeanlage

Publications (2)

Publication Number Publication Date
EP0158217A1 EP0158217A1 (de) 1985-10-16
EP0158217B1 true EP0158217B1 (de) 1988-08-24

Family

ID=6231665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85103600A Expired EP0158217B1 (de) 1984-03-26 1985-03-26 Schaltungsanordnung für eine Gefahrenmeldeanlage

Country Status (3)

Country Link
EP (1) EP0158217B1 (de)
AT (1) ATE36767T1 (de)
DE (2) DE3411129A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250488A1 (de) * 1985-12-24 1988-01-07 Monitronix Limited Elektronisches sequentielles fehlerermittlungssystem
CH669859A5 (de) * 1986-06-03 1989-04-14 Cerberus Ag
FR2728373B1 (fr) * 1994-12-14 1997-01-24 Schneider Electric Sa Dispositif de detection et d'alarme
GB9623764D0 (en) * 1996-11-15 1997-01-08 Menvier Electronic Eng Ltd Allocating addresses to addressable devices
DE102015223207A1 (de) * 2015-11-24 2017-05-24 Minimax Gmbh & Co. Kg Zustandsüberwachungseinheit zur Identifizierung eines Ereignis detektierenden Teilnehmers sowie Teilnehmer und Verfahren dazu

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1178678A (en) * 1981-03-13 1984-11-27 John M. Wynne Bidirectional, interactive fire detection system
DE3128796A1 (de) * 1981-07-21 1983-02-10 Esser Sicherheitstechnik GmbH & Co KG, 4040 Neuss Brand- oder einbruchmeldeanlage
EP0098326B1 (de) * 1982-07-10 1985-12-18 Fritz Fuss Kom.-Ges. Schaltungsanordnung für eine Gefahrenmeldeanlage
US4568935A (en) * 1983-06-08 1986-02-04 Honeywell Inc. Data reporting system

Also Published As

Publication number Publication date
DE3564629D1 (en) 1988-09-29
ATE36767T1 (de) 1988-09-15
EP0158217A1 (de) 1985-10-16
DE3411129A1 (de) 1985-10-03

Similar Documents

Publication Publication Date Title
EP0120196B1 (de) Schaltungsanordnung zur optischen Anzeige von Zustandsgrössen
DE2817089B2 (de) Gefahrenmeldeanlage
DE3329049C2 (de)
DE2533330C3 (de) Verfahren und Einrichtung zur Übertragung von Meßwerten in einem Brandmeldesystem
EP0158217B1 (de) Schaltungsanordnung für eine Gefahrenmeldeanlage
EP0098554B1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und der Melderkennung in einer Gefahrenmeldeanlage
EP0211344A2 (de) Adressierbare Schaltungsanordnung
DE2202110B2 (de) Einrichtung zum Überwachen einer Anzahl von Meldestellen
EP0295593B1 (de) Einzelidentifikation
EP0098552B1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und der Melderkennung in einer Gefahrenmeldeanlage
DE3424294A1 (de) Abfrageeinrichtung zur identifikation der stellung von schaltern
DE2817053C2 (de) Gefahrenmeldeanlage
DE4323619C1 (de) Einrichtung zur Übertragung einer Mehrzahl von Sensorsignalen an ein elektronisches Steuergerät
DE4124041A1 (de) Identifikationsvorrichtung fuer messgeber
DE2513323C2 (de) Fernwirkverfahren unter Verwendung eines Zentralsenders und Fernwirksystem zur Durchführung des Verfahrens
EP0098553B1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und/oder der Melderkennung in einer Gefahrenmeldeanlage
EP0178454B1 (de) Verfahren und Vorrichtung zur Melderidentifizierung in einer Gefahrenmeldeanlage
EP0178451B1 (de) Einrichtung zur Melderidentifizierung in einer Gefahrenmeldeanlage
DE1259230B (de) Einrichtung zur Fernueberwachung
DE3806993C2 (de)
DE2415694B2 (de) Elektronische Schaltung zur Überwachung einer gleichzeitigen Betätigung von Tasten einer Tastatur
DE2521297C3 (de) Überwachungsschaltung für matrizenförmig aufgebaute Abtastschaltungen
EP0167669B1 (de) Verfahren und Anordung zur Identifizierung eines alarmauslösenden Melders in einer Gefahrenmeldeanlage
DE2415475B2 (de) Meldeanlage
DE2318877A1 (de) Zentrale einrichtung zur ueberwachung, steuerung und messung der funktion von anlagen mit elektrischen antrieben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850326

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRITZ FUSS KOM.-GES.

17Q First examination report despatched

Effective date: 19870112

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRITZ FUSS GMBH & CO.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880824

REF Corresponds to:

Ref document number: 36767

Country of ref document: AT

Date of ref document: 19880915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3564629

Country of ref document: DE

Date of ref document: 19880929

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950316

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960311

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960326

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970314

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970331

BERE Be: lapsed

Owner name: FRITZ FUSS G.M.B.H. & CO.

Effective date: 19970331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980302

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980330

Year of fee payment: 14

Ref country code: FR

Payment date: 19980330

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980331

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000331

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101