EP0155544B1 - Apparatus for the transport of flowable materials - Google Patents

Apparatus for the transport of flowable materials Download PDF

Info

Publication number
EP0155544B1
EP0155544B1 EP85102033A EP85102033A EP0155544B1 EP 0155544 B1 EP0155544 B1 EP 0155544B1 EP 85102033 A EP85102033 A EP 85102033A EP 85102033 A EP85102033 A EP 85102033A EP 0155544 B1 EP0155544 B1 EP 0155544B1
Authority
EP
European Patent Office
Prior art keywords
pump
drive
stator
rotor
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85102033A
Other languages
German (de)
French (fr)
Other versions
EP0155544A3 (en
EP0155544A2 (en
Inventor
Rainer Dr.-Ing. Jürgens
Johann Biehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Oilfield Operations LLC
Original Assignee
Eastman Christensen Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Christensen Co filed Critical Eastman Christensen Co
Priority to AT85102033T priority Critical patent/ATE43408T1/en
Publication of EP0155544A2 publication Critical patent/EP0155544A2/en
Publication of EP0155544A3 publication Critical patent/EP0155544A3/en
Application granted granted Critical
Publication of EP0155544B1 publication Critical patent/EP0155544B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • F04C11/003Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle having complementary function
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/129Adaptations of down-hole pump systems powered by fluid supplied from outside the borehole
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/06Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth
    • F04B47/08Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth the motors being actuated by fluid

Definitions

  • the invention relates to a device for conveying flowable materials from a production well according to the preamble of claim 1.
  • the object on which the invention is based is to simplify a device of the type mentioned in the introduction and thereby to increase its reliability in the extreme underground conditions of use.
  • the design of the rotors and stators of the drive and pump for the same eccentricity creates a matching path of movement of the rotors, which radially decouples the connection of the rotors from one another, for. B. can be dispensed with by universal joints and thus enables the rotors to be connected directly to one another. Such a device reduces the risk of failure due to the saving of parts mounted against one another and thus creates the conditions for longer, maintenance-free operation.
  • the device conveys a substantially higher amount of flowable substances from the production bore than pressure medium has to be pressed into the same.
  • the differential pressure across the displacement rotary machines which is in inverse proportion to the working chamber volumes, is coped with by the drive through multi-stage training. As a result, the share of the total differential pressure reduced per stage can be kept low and the sealing edges between the working chambers can be protected from leakage or blowing through.
  • the increase in the working chamber volume of the ⁇ pump can be achieved by a higher gradient of the helix of the rotor and stator, by a larger working chamber cross-sectional area or by a combination of both measures. Appropriate selection and coordination of both measures makes it possible to create a desired working chamber volume even with a small borehole diameter.
  • the number of stages S A of the drive, the number of stages Sp of the pump, the working volume Vp of the pump, the working chamber volume V A of the drive and the overall efficiencies TJGA 'TJGP of the drive and pump correspond to the formula the same load on the sealing edges between adjacent working chambers is achieved taking into account the losses occurring during operation of the drive and pump.
  • the line required in this configuration, parallel to the working chamber of the pump or drive, can preferably be formed by an intermediate space between the coiled stator or rotor sleeve and an associated carrier sleeve, whereby the space already available can be used and an enlargement of the housing diameter can be avoided.
  • a particularly compact embodiment enables a device in which the stators of the pump and drive are designed as external and internal stators and the rotors are formed by a common body arranged between the stators.
  • the pressure medium is preferably passed through a pressure medium line in the form of a usual drill pipe embedded in the bore, so that the larger cross-section of the annular space between the flow pipe than the drill pipe as the delivery pipe for the flowable substances and the lining of the hole is available.
  • a pressure medium line in the form of a usual drill pipe embedded in the bore, so that the larger cross-section of the annular space between the flow pipe than the drill pipe as the delivery pipe for the flowable substances and the lining of the hole is available.
  • the pressure medium is fed to the drive through the annular space between the drill pipe and the borehole lining and the flowable materials are conveyed through the drill pipe, a drill pipe with a particularly large diameter then being used.
  • the device shown in FIG. 1 comprises an above-ground pressure medium source 1, which pressurizes a pressure medium 29 through a pressure medium line 3 arranged in a production bore 2
  • a pressure medium line 3 arranged in a production bore 2
  • Form of a drill pipe 32 leads to the bottom of the bore.
  • the pressure medium is supplied to an arrangement, designated as a whole by 4, which is accommodated in a common housing 7 and comprises a drive 5 and a pump 6.
  • the arrangement 4 can also be arranged in another area of the bore 2, in addition to the sole area, at which flowable substances 8 penetrate from a deposit into the bore 2 through perforations in the borehole lining 9.
  • the drive 5 consists in particular of a coiled rotor 10, which is accommodated in a coiled stator 11.
  • the stator 11 is in turn surrounded by the housing 7.
  • the pump 6, which, like the drive, comprises a rotor 12 and a stator 13, which in turn is surrounded by the housing 7.
  • the rotor 12 of the pump 6 is rigidly connected to the rotor 10 of the drive 5.
  • the lower end face of the rotor 12 is supported against an axial bearing 14. 1, the rotor 10 and the stator 11 have the same eccentricity as the rotor 12 and the stator 13 so that both rotors 10, 12 perform the same eccentric wobble movement in operation.
  • the drive 5 is provided with twenty times the number of stages of the pump 6.
  • the pressure portion acting on each sealing edge thus corresponds to that of the pump 6, so that both rotary machines are loaded equally.
  • the flowable substances 8 enter the pump through openings 15 and together with the pressure medium 29 through openings 16 into the annular space 34, which serves as a delivery line 33, from.
  • a direct short circuit between the openings 15 and 16 is prevented by a packer 17 which is arranged between the housing 7 and the borehole lining 9.
  • the alternative shown in Fig. 2 comprises a drive 5 and a pump 6 with coils running in the same direction. While the pump 6 is identical to that in Fig. 1, the drive 5 is reversed, i.e. flows through from bottom to top with pressure medium 29. For this purpose, the pressure medium line 3 is guided parallel to the working chambers 18 of the drive 5 and opens into it from below.
  • the same flow direction of drive 5 and pump 6 leads to opposite directions of the axial reaction forces on the rotors 10, 12, so that they can compensate each other and relieve the thrust bearing 14.
  • the pressure medium 29 is supplied to the drive 5 from below.
  • the spatial arrangement of drive 5 and pump 6 in the housing 7 is reversed, as a result of which a seal between the working chambers 18 of the drive 5 and those 19 of the pump 6 can be omitted.
  • FIG. 4 corresponds again to that in FIG. 1 with regard to the arrangement of drive 5 and pump 6, the design of drive 5 and the pressure medium supply also being the same version.
  • the spiral in the pump 6 is carried out in the same direction as in the drive 5, so that the flowable substances 8 flow through the pump 6 from top to bottom and are conveyed upward after a reversal of direction through a line 21 running parallel to the working chamber 19 of the pump 6 .
  • FIGS. 5 and 6 Possible embodiments of such a line 3, 21 are shown in FIGS. 5 and 6 using the example of multilobe displacement machines.
  • the stator 11; 13 housed in the form of a shaped sleeve 22 in the housing 7.
  • the space between the inwardly directed coils of the shaped sleeve 22 and the housing 7 serves here as a line 3, 21 which runs parallel to the working chamber 18, 19.
  • pressure medium 29 or flowable substances 8 flow through the working chambers 18, 19 in a direction pointing into the plane of the drawing, while flowing through the line 21, 3 in a direction pointing out from the drawing.
  • rotor 10, 12 it is also possible to additionally or alternatively to form rotor 10, 12 as a sleeve 31 fixed on a carrier sleeve 30 and to use the space between the outwardly projecting spiral of the sleeve 31 and the carrier sleeve 30 as a line 3, 21 or to make the rotor 10, 12 hollow and the interior space for this Use purpose.
  • drive 5 and pump 6 are interleaved.
  • the drive is formed by the inner stator 11 and the inner region 26 of a common rotor 25.
  • the outer stator 13 and the outer region 27 of the common rotor 25 are assigned to the pump.
  • An axial line 28 is additionally assigned to the axial bearing 14.
  • the pressure medium 29 is supplied to the drive part 5 via the hollow inner stator 11 and flows through the associated working chamber 18.
  • Pressure medium 29 and flowable substances 8 leave the housing 7 via common outlet openings 16. As the illustration shows, a particularly short, compact design can be realized with this alternative.
  • FIG. 8 shows an alternative of the device according to the invention in which the pressure medium 29 is passed through the annular space 34 between the drill pipe 32 and the borehole lining 9 instead of through the drill pipe 32 and the flowable materials 8 are conveyed through the drill pipe 32.
  • the embodiment in FIG. 3 serves as the basis for the arrangement of drive 5 and pump 6, but any other of the embodiments presented can also be used for the quasi-reversed supply of pressure medium 29 and the conveyance of the flowable substances 8.
  • This alternative is required in the case of chemically aggressive flowable materials 8 to protect the borehole lining 9, specifically from the point that a drill pipe 32 can be replaced more easily than the borehole lining 9 in the event of corrosion damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Rotary Pumps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Screw Conveyors (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A device for delivering flowable materials from a production bore (2), consisting of a source of pressurized medium (1), a pressurized medium conduit (3) for conducting the pressurized medium into the bottom area of the bore, the pressurized medium being used to operate drive means (5) coupled to a pump (6) for the flowable material. The drive means (5) and the pump (6) are both rotary displacement devices having a spiral rotor (10, 12) which describes an eccentric rotational path within a spiral stator (11,13). The rotor (10) and the stator (11) of the drive means (5) and the rotor (12) and the stator (13) of the pump (6) have the same eccentricity and are rigidly connected to one another.

Description

Die Erfindung betrifft eine Vorrichtung zum Fördern von fließfähigen Stoffen aus einer Produktionsbohrung gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a device for conveying flowable materials from a production well according to the preamble of claim 1.

Bei einer durch die US-A-4 386 654 bekannten derartigen Vorrichtung sind die Rotoren von Antrieb und Pumpe jeweils mit Universalgelenken versehen, die untereinander durch eine zentrisch gelagerte Welle verbunden sind. Die Vorrichtung ist dadurch fertigungstechnisch aufwendig und wegen der Vielzahl von schwenkbeweglich gegeneinander gelagerten Teile verschleißanfällig.In such a device known from US-A-4 386 654, the rotors of the drive and pump are each provided with universal joints which are connected to one another by a centrally mounted shaft. As a result, the device is complex in terms of production technology and, due to the large number of parts which can be pivoted relative to one another, is susceptible to wear.

Die der Erfindung zugrundeliegende Aufgabe besteht darin, eine Vorrichtung der eingangs genannten Art zu vereinfachen und dadurch ihre Zuverlässigkeit bei den extremen untertägigen Einsatzbedingungen zu erhöhen.The object on which the invention is based is to simplify a device of the type mentioned in the introduction and thereby to increase its reliability in the extreme underground conditions of use.

Die Erfindung löst diese Aufgabe mit den Merkmalen des Anspruchs 1.The invention solves this problem with the features of claim 1.

Die Auslegung der Rotoren und Statoren von Antrieb und Pumpe auf gleiche Exzentrizität schafft eine übereinstimmende Bewegungsbahn der Rotoren, die eine radiale Entkoppelung der Verbindung der Rotoren untereinander z. B. durch Universalgelenke entbehrlich macht und so ermöglicht, die Rotoren direkt miteinander zu verbinden. Eine derartige Vorrichtung vermindert wegen der Einsparung von gegeneinander gelagerten Teilen das Ausfallrisiko und schafft so die Voraussetzung für einen längeren wartungsfreien Betrieb.The design of the rotors and stators of the drive and pump for the same eccentricity creates a matching path of movement of the rotors, which radially decouples the connection of the rotors from one another, for. B. can be dispensed with by universal joints and thus enables the rotors to be connected directly to one another. Such a device reduces the risk of failure due to the saving of parts mounted against one another and thus creates the conditions for longer, maintenance-free operation.

Durch das gemäß einer Weiterbildung wesentlich höhere Arbeitskammervolumen der Pumpe gegenüber dem Antrieb fördert die Vorrichtung eine wesentlich höhere Menge an fließfähigen Stoffen aus der Produktionsbohrung als an Druckmittel in dieselbe hineingepreßt werden muß. Der im umgekehrten Verhältnis zu den Arbeitskammervolumina stehende Differenzdruck über den Verdrängungsrotationsmaschinen wird beim Antrieb durch mehrstufige Ausbildung desselben bewältigt. Dadurch kann der je Stufe abgebaute Anteil am Gesamtdifferenzdruck klein gehalten und so die Dichtkanten zwischen den Arbeitskammern vor Leckage oder Durchblasen geschützt werden.Due to the significantly higher working chamber volume of the pump compared to the drive according to a further development, the device conveys a substantially higher amount of flowable substances from the production bore than pressure medium has to be pressed into the same. The differential pressure across the displacement rotary machines, which is in inverse proportion to the working chamber volumes, is coped with by the drive through multi-stage training. As a result, the share of the total differential pressure reduced per stage can be kept low and the sealing edges between the working chambers can be protected from leakage or blowing through.

Die Erhöhung des Arbeitskammervolumens der ` Pumpe kann durch eine höhere Steigung der Wendelung von Rotor und Stator, durch eine größere Arbeitskammerquerschnittsfläche oder durch eine Kombination aus beiden Maßnahmen erzielt werden. Durch eine entsprechende Auswahl und Abstimmung beider Maßnahmen ist daher die Schaffung eines gewünschten Arbeitskammervolumens auch bei kleinem Bohrlochdurchmesser möglich.The increase in the working chamber volume of the `pump can be achieved by a higher gradient of the helix of the rotor and stator, by a larger working chamber cross-sectional area or by a combination of both measures. Appropriate selection and coordination of both measures makes it possible to create a desired working chamber volume even with a small borehole diameter.

Entspricht gemäß einer Weiterbildung die Stufenzahl SA des Antriebs, die Stufenzahl Sp der Pumpe, das Arbeitsvolumen Vp der Pumpe, das Arbeitskammervolumen VA des Antriebs und die Gesamtwirkungsgrade TJGA' TJGP von Antrieb und Pumpe der Formel

Figure imgb0001
wird unter Berücksichtigung der im Betrieb auftretenden Verluste bei Antrieb und Pumpe die gleiche Belastung der Dichtkanten zwischen benachbarten Arbeitskammern erzielt.According to a further development, the number of stages S A of the drive, the number of stages Sp of the pump, the working volume Vp of the pump, the working chamber volume V A of the drive and the overall efficiencies TJGA 'TJGP of the drive and pump correspond to the formula
Figure imgb0001
the same load on the sealing edges between adjacent working chambers is achieved taking into account the losses occurring during operation of the drive and pump.

Durch Auslegung der Wendelung bei Antrieb und Pumpe im gleichen Drehsinn werden gleiche Durchströmungsrichtungen in beiden Verdrängungsrotationsmaschinen geschaffen und die auf die Rotoren ausgeübten axialen Reaktionskräfte einander entgegengerichtet. Bei betragsmäßiger Übereinstimmung der Reaktionskräfte lassen sich so die vom Axiallager aufzunehmenden resultierenden Kräfte weitgehend kompensieren.By designing the helix for the drive and pump in the same direction of rotation, the same flow directions are created in both positive-displacement rotary machines and the axial reaction forces exerted on the rotors are directed against one another. If the reaction forces correspond in terms of amount, the resulting forces to be absorbed by the thrust bearing can be largely compensated for.

Die bei dieser Ausgestaltung erforderliche Leitung parallel zur Arbeitskammer der Pumpe oder des Antriebs kann vorzugsweise durch einen Zwischenraum zwischen der gewendelten Stator-oder Rotorhülse und einer dieser zugeordneten Trägerhülse gebildet sein, wodurch der ohnehin vorhandene Raum genutzt und eine Vergrößerung des Gehäusedurchmessers vermieden werden kann.The line required in this configuration, parallel to the working chamber of the pump or drive, can preferably be formed by an intermediate space between the coiled stator or rotor sleeve and an associated carrier sleeve, whereby the space already available can be used and an enlargement of the housing diameter can be avoided.

Eine besonders kompakte Ausführungsform ermöglicht eine Vorrichtung, bei der die Statoren von Pumpe und Antrieb als Außen- und Innenstator ausgebildet und die Rotoren durch einen gemeinsamen, zwischen den Statoren angeordneten Körper gebildet sind.A particularly compact embodiment enables a device in which the stators of the pump and drive are designed as external and internal stators and the rotors are formed by a common body arranged between the stators.

Im Hinblick auf möglichst geringe Strömungsverluste der zu fördernden flußfähigen Stoffe wird das Druckmittel vorzugsweise durch eine Druckmittelleitung in Form eines in die Bohrung eingelassenen Gestängerohrs üblichen Durchmessers geleitet, so daß als Förderleitung für die fließfähigen Stoffe der in seinem Querschnitt im Vergleich zum Gestängerohr größere Ringraum zwischen diesem und der Auskleidung der Bohrung zur Verfügung steht. Bei chemisch aggressiven fließfähigen Stoffen kann es aber auch erforderlich sein, diese von der Auskleidung der Bohrung fernzuhalten.With a view to the lowest possible flow losses of the flowable substances to be conveyed, the pressure medium is preferably passed through a pressure medium line in the form of a usual drill pipe embedded in the bore, so that the larger cross-section of the annular space between the flow pipe than the drill pipe as the delivery pipe for the flowable substances and the lining of the hole is available. In the case of chemically aggressive, flowable substances, however, it may also be necessary to keep them away from the lining of the bore.

In diesem Fall wird das Druckmittel dem Antrieb durch den Ringraum zwischen Gestängerohr und Bohrlochauskleidung zugeführt und die fließfähigen Stoffe durch das Gestängerohr gefördert, wobei dann ein Gestängerohr mit besonders großem Durchmesser Verwendung findet.In this case, the pressure medium is fed to the drive through the annular space between the drill pipe and the borehole lining and the flowable materials are conveyed through the drill pipe, a drill pipe with a particularly large diameter then being used.

Die Erfindung wird nun anhand mehrerer Ausführungsbeispiele, die in der Zeichnung dargestellt sind, erläutert. In der Zeichnung zeigen:

  • Fig. 1 einen gebrochenen Längsschnitt durch eine erfindungsgemäße Vorrichtung,
  • Fig. 2, 3 und 4 alternative Ausführungsformen der Vorrichtung als Prinzipskizze,
  • Fig. 5, 6 Querschnitte durch alternative Ausführungsformen,
  • Fig. 7 einen gebrochenen Längsschnitt einer weiteren Ausführung der Vorrichtung mit gemeinsamem Rotor,
  • Fig. 8 eine weitere alternative Ausführungsform der Vorrichtung als Prinzipskizze.
The invention will now be explained on the basis of several exemplary embodiments which are shown in the drawing. The drawing shows:
  • 1 shows a broken longitudinal section through a device according to the invention,
  • 2, 3 and 4 alternative embodiments of the device as a schematic diagram,
  • 5, 6 cross sections through alternative embodiments,
  • 7 shows a broken longitudinal section of a further embodiment of the device with a common rotor,
  • Fig. 8 shows a further alternative embodiment of the device as a schematic diagram.

Die in Fig. 1 dargestellte Vorrichtung umfaßt eine obertägige Druckmittelquelle 1, die ein Druckmittel 29 durch eine in einer Produktionsbohrung 2 angeordnete Druckmittelleitung 3 in Form eines Gestängerohres 32 zur Sohle der Bohrung leitet. Das Druckmittel wird einer als ganzes mit 4 bezeichneten, in einem gemeinsamen Gehäuse 7 untergebrachten Anordnung aus einem Antrieb 5 und einer Pumpe 6 zugeführt.The device shown in FIG. 1 comprises an above-ground pressure medium source 1, which pressurizes a pressure medium 29 through a pressure medium line 3 arranged in a production bore 2 Form of a drill pipe 32 leads to the bottom of the bore. The pressure medium is supplied to an arrangement, designated as a whole by 4, which is accommodated in a common housing 7 and comprises a drive 5 and a pump 6.

Die Anordnung 4 kann außer im Sohlenbereich auch an einer anderen Stelle der Bohrung 2 angeordnet sein, an der fließfähige Stoffe 8 aus einer Lagerstätte durch Perforationen in der Bohrlochauskleidung 9 in die Bohrung 2 dringen.The arrangement 4 can also be arranged in another area of the bore 2, in addition to the sole area, at which flowable substances 8 penetrate from a deposit into the bore 2 through perforations in the borehole lining 9.

Der Antrieb 5 besteht im einzelnen aus einem gewendelten Rotor 10, der in einem ebenfalls gewendelten Stator 11 untergebracht ist. Der Stator 11 wiederum ist von dem Gehäuse 7 umgeben. Unterhalb des Antriebs 5 befindet sich die Pumpe 6, die ähnlich wie der Antrieb einen Rotor 12 und einen Stator 13 umfaßt, der seinerseits von dem Gehäuse 7 umgeben ist. Der Rotor 12 der Pumpe 6 ist starr mit dem Rotor 10 des Antriebs 5 verbunden. Die untere Stirnfläche des Rotors 12 ist gegen ein Axiallager 14 abgestützt. Wie aus Fig. 1 ersichtlich besitzen der Rotor 10 und der Stator 11 die gleiche Exzentrizität wie der Rotor 12 und der Stator 13 so daß beide Rotoren 10, 12 im Betrieb dieselbe exzentrische Taumelbewegung vollführen.The drive 5 consists in particular of a coiled rotor 10, which is accommodated in a coiled stator 11. The stator 11 is in turn surrounded by the housing 7. Below the drive 5 is the pump 6, which, like the drive, comprises a rotor 12 and a stator 13, which in turn is surrounded by the housing 7. The rotor 12 of the pump 6 is rigidly connected to the rotor 10 of the drive 5. The lower end face of the rotor 12 is supported against an axial bearing 14. 1, the rotor 10 and the stator 11 have the same eccentricity as the rotor 12 and the stator 13 so that both rotors 10, 12 perform the same eccentric wobble movement in operation.

Die Querschnittsflächen der Arbeitskammer 18, 19 von Antrieb 5 und Pumpe 6 sind gleichgroß während der Pumpenmotor 12 und -stator 13 eine zehnfach höhere Steigung besitzen als der Antriebsrotor 10 und -stator 11. Dadurch wälzt die Pumpe 6 bei jeder Rotorumdrehung das zehnfache Volumen im Vergleich zum Antrieb 5 um. Im Betrieb setzt sich das aufwärts gepumpte Volumen aus einem Teil Druckmittel 30 und neun Teilen fließfähiger Stoffe 8 zusammen. Unter Annahme verlustfreier Verhältnisse wäre der Antrieb 5 mit dem zehnfachen Druck, den die Pumpe 6 überwindet, zu beaufschlagen, jedoch ergibt sich unter Berücksichtigung der Gesamtwirkungsgrade von Antrieb 5 und Pumpe 6 gemäss nachstehender Formel

Figure imgb0002
worin

  • VA: Arbeitskammervolumen des Antriebs,
  • Vp: Arbeitskammervolumen der Pumpe,
  • APA: Druckdifferenz über dem Antrieb,
  • APp: Druckdifferenz über der Pumpe,
  • TJGA: Gesamtwirkungsgrad des Antriebs,
  • ηGP: Gesamtwirkungsgrad der Pumpe und angenommener Wert für die Gesamtwirkungsgrade von jeweils 70% für OPA das zwanzigfache von APp.
The cross-sectional areas of the working chamber 18, 19 of the drive 5 and pump 6 are of equal size, while the pump motor 12 and stator 13 have a ten times higher pitch than the drive rotor 10 and stator 11. As a result, the pump 6 rolls ten times the volume in comparison with each rotor revolution to drive 5 um. In operation, the volume pumped up is composed of one part of pressure medium 30 and nine parts of flowable substances 8. Assuming loss-free conditions, the drive 5 would have to be pressurized with ten times the pressure that the pump 6 overcomes, but taking into account the overall efficiencies of the drive 5 and pump 6 according to the following formula
Figure imgb0002
wherein
  • V A : working chamber volume of the drive,
  • Vp: working chamber volume of the pump,
  • AP A : pressure difference across the actuator,
  • APp: pressure difference across the pump,
  • TJGA : overall efficiency of the drive,
  • η GP : total efficiency of the pump and assumed value for the overall efficiencies of 70% for OP A twenty times of APp.

Zur Bewältigung des Druckabfalls über dem Antrieb 5 durch die Dichtkanten seiner Arbeitskammern 18 ist der Antrieb 5 mit der zwanzigfachen Stufenzahl der Pumpe 6 versehen. Der an jeder Dichtkante angreifende Druckanteil entspricht somit demjenigen der Pumpe 6, so daß beide Rotationsmaschinen gleich belastet werden.To cope with the pressure drop across the drive 5 through the sealing edges of its working chambers 18, the drive 5 is provided with twenty times the number of stages of the pump 6. The pressure portion acting on each sealing edge thus corresponds to that of the pump 6, so that both rotary machines are loaded equally.

Bei der dargestellten Anordnung 4 treten die fließfähigen Stoffe 8 durch Öffnungen 15 in die Pumpe ein und gemeinsam mit dem Druckmittel 29 durch Öffnungen 16 in den Ringraum 34, der als Förderleitung 33 dient, aus.. Ein direkter Kurzschluß zwischen den Öffnungen 15 und 16 wird durch einen Packer 17 verhindert, der zwischen dem Gehäuse 7 und der Bohrlochauskleidung 9 angeordnet ist.In the arrangement 4 shown, the flowable substances 8 enter the pump through openings 15 and together with the pressure medium 29 through openings 16 into the annular space 34, which serves as a delivery line 33, from. A direct short circuit between the openings 15 and 16 is prevented by a packer 17 which is arranged between the housing 7 and the borehole lining 9.

Die Wendelungen von Rotor (10; 12) und Stator (11; 13) bei dem Antrieb 5 und der Pumpe 6 sind noch im entgegengesetzten Drehsinn ausgeführt, wodurch eine Addition der axialen Reaktionskräfte erfolgt.The turns of the rotor (10; 12) and stator (11; 13) in the drive 5 and the pump 6 are still carried out in the opposite direction of rotation, whereby the axial reaction forces are added.

Die in Fig. 2 gezeigte Alternative hingegen umfaßt einen Antrieb 5 und eine Pumpe 6 mit im gleichen Drehsinn verlaufenden Wendelungen. Während die Pumpe 6 mit derjenigen in Fig. 1 identisch ist, wird der Antrieb 5 in umgekehrter Richtung, d.h. von unten nach oben mit Druckmittel 29 durchströmt. Dazu ist die Druckmittelleitung 3 an den Arbeitskammern 18 des Antriebs 5 parallel vorbeigeführt und mündet in diesen von unten ein. Die gleiche Durchströmungsrichtung von Antrieb 5 und Pumpe 6 führt zu entgegengesetzten Richtungen der axialen Reaktionskräfte auf die Rotoren 10, 12, so daß diese sich gegenseitig kompensieren können und das Axiallager 14 entlasten. Die dargestellte Alternative erfordert jedoch noch eine Abdichtung 20 der Arbeitskammern 18 des Antriebs 5 gegenüber denen 19 der Pumpe 6.The alternative shown in Fig. 2, however, comprises a drive 5 and a pump 6 with coils running in the same direction. While the pump 6 is identical to that in Fig. 1, the drive 5 is reversed, i.e. flows through from bottom to top with pressure medium 29. For this purpose, the pressure medium line 3 is guided parallel to the working chambers 18 of the drive 5 and opens into it from below. The same flow direction of drive 5 and pump 6 leads to opposite directions of the axial reaction forces on the rotors 10, 12, so that they can compensate each other and relieve the thrust bearing 14. The alternative shown, however, still requires sealing 20 of the working chambers 18 of the drive 5 from those 19 of the pump 6.

Auch bei der in Fig. 3 dargestellten Alternative wird dem Antrieb 5 das Druckmittel 29 von unten zugeführt. Gegenüber Fig. 2 ist aber die räumliche Anordnung von Antrieb 5 und Pumpe 6 im Gehäuse 7 vertauscht, wodurch eine Abdichtung zwischen den Arbeitskammern 18 des Antriebs 5 und denen 19 der Pumpe 6 entfallen kann.In the alternative shown in FIG. 3, the pressure medium 29 is supplied to the drive 5 from below. Compared to FIG. 2, however, the spatial arrangement of drive 5 and pump 6 in the housing 7 is reversed, as a result of which a seal between the working chambers 18 of the drive 5 and those 19 of the pump 6 can be omitted.

Die in Fig. 4 dargestellte Alternative entspricht hinsichtlich der Anordnung von Antrieb 5 und Pumpe 6 wieder derjenigen in Fig. 1 wobei auch die Ausgestaltung des Antriebs 5 und die Druckmittelzuführung gleich jener Version ist. Indessen ist die Wendelung bei der Pumpe 6 im gleichen Richtungssinn wie beim Antrieb 5 ausgeführt, so daß die fließfähigen Stoffe 8 die Pumpe 6 von oben nach unten durchströmen und nach Richtungsumkehr durch eine parallel zur Arbeitskammer 19 der Pumpe 6 verlaufende Leitung 21 nach oben gefördert werden.The alternative shown in FIG. 4 corresponds again to that in FIG. 1 with regard to the arrangement of drive 5 and pump 6, the design of drive 5 and the pressure medium supply also being the same version. Meanwhile, the spiral in the pump 6 is carried out in the same direction as in the drive 5, so that the flowable substances 8 flow through the pump 6 from top to bottom and are conveyed upward after a reversal of direction through a line 21 running parallel to the working chamber 19 of the pump 6 .

Mögliche Ausführungsformen einer solchen Leitung 3, 21 zeigen Fig. 5 und 6 am Beispiel von Multilobe-Verdrängungsmaschinen. In Fig. 5 ist der Stator 11; 13 in Gestalt einer geformten Hülse 22 im Gehäuse 7 untergebracht. Der Zwischenraum zwischen den einwärts gerichteten Wendeln der Formhülse 22 und dem Gehäuse 7 dient hierbei als parallel zur Arbeitskammer 18,19 geführte Leitung 3, 21. Wie durch die Symbole 23 und 24 angedeutet ist, durchströmen Druckmittel 29 oder fließfähige Stoffe 8 die Arbeitskammern 18, 19 in einer in die Zeichenebene hineinweisende Richtung, während sie die Leitung 21, 3 in einer aus der Zeichnung herausweisenden Richtung durchströmen. Entsprechend der Ausführungen in Fig. 6 ist es auch möglich, zusätzlich oder alternativ den Rotor 10, 12 als eine auf einer Trägerhülse 30 festgelegte Hülse 31 auszubilden und den Zwischenraum zwischen der nach außen vorspringenden Wendelung der Hülse 31 und der Trägerhülse 30 als Leitung 3, 21 zu benutzen oder den Rotor 10, 12 hohl auszubilden und den Innenraum für diesen Zweck zu verwenden.Possible embodiments of such a line 3, 21 are shown in FIGS. 5 and 6 using the example of multilobe displacement machines. 5, the stator 11; 13 housed in the form of a shaped sleeve 22 in the housing 7. The space between the inwardly directed coils of the shaped sleeve 22 and the housing 7 serves here as a line 3, 21 which runs parallel to the working chamber 18, 19. As is indicated by the symbols 23 and 24, pressure medium 29 or flowable substances 8 flow through the working chambers 18, 19 in a direction pointing into the plane of the drawing, while flowing through the line 21, 3 in a direction pointing out from the drawing. 6, it is also possible to additionally or alternatively To form rotor 10, 12 as a sleeve 31 fixed on a carrier sleeve 30 and to use the space between the outwardly projecting spiral of the sleeve 31 and the carrier sleeve 30 as a line 3, 21 or to make the rotor 10, 12 hollow and the interior space for this Use purpose.

Bei der in Fig. 7 dargestellten Ausführungsform sind Antrieb 5 und Pumpe 6 ineinander verschachtelt. Der Antrieb wird hierbei durch den Innenstator 11 und den inneren Bereich 26 eines gemeinsamen Rotors 25 gebildet. Der Pumpe sind der Außenstator 13 und der äußere Bereich 27 des gemeinsamen Rotors 25 zugeordnet.In the embodiment shown in FIG. 7, drive 5 and pump 6 are interleaved. The drive is formed by the inner stator 11 and the inner region 26 of a common rotor 25. The outer stator 13 and the outer region 27 of the common rotor 25 are assigned to the pump.

Dem Axiallager 14 ist zusätzlich eine Axialleitung 28 zugeordnet. Das Druckmittel 29 wird dem Antriebsteil 5 über den hohlen Innenstator 11 zugeführt und durchströmt die zugehörige Arbeitskammer 18. Auch die fließfähigen Stoffe 8, die im unteren Bereich in die Arbeitskammer 19 des Pumpenteils 6 eintreten, durchströmen diese in Aufwärtsrichtung. Druckmittel 29 und fließfähige Stoffe 8 verlassen das Gehäuse 7 über gemeinsame Austrittsöffnungen 16. Wie die Darstellung zeigt, läßt sich mit dieser Alternative eine besonders kurze, kompakte Ausführung realisieren.An axial line 28 is additionally assigned to the axial bearing 14. The pressure medium 29 is supplied to the drive part 5 via the hollow inner stator 11 and flows through the associated working chamber 18. The flowable substances 8, which enter the working chamber 19 of the pump part 6 in the lower region, also flow through them in the upward direction. Pressure medium 29 and flowable substances 8 leave the housing 7 via common outlet openings 16. As the illustration shows, a particularly short, compact design can be realized with this alternative.

Fig. 8 zeigt eine Alternative der erfindungsgemäßen Vorrichtung bei der das Druckmittel 29 statt durch das Gestängerohr 32 durch den Ringraum 34 zwischen Gestängerohr 32 und Bohrlochauskleidung 9 geleitet wird und die fließfähigen Stoffe 8 durch das Gestängerohr 32 gefördert werden. Als Grundlage für die Anordnung von Antrieb 5 und Pumpe 6 dient die Ausführungsform in Fig. 3, jedoch läßt sich auch jede andere der vorgestellten Ausführungsformen für die quasi vertauschte Zuführung von Druckmittel 29 und die Förderung der fließfähigen Stoffe 8 verwenden. Diese Alternative ist bei chemisch aggressiven fließfähigen Stoffen 8 zur Schonung der Bohrlochauskleidung 9 geboten und zwar unter dem Aspekt, daß sich ein Gestängerohr 32 bei Korrosionsschäden leichter auswechseln läßt als die Bohrlochauskleidung 9.8 shows an alternative of the device according to the invention in which the pressure medium 29 is passed through the annular space 34 between the drill pipe 32 and the borehole lining 9 instead of through the drill pipe 32 and the flowable materials 8 are conveyed through the drill pipe 32. The embodiment in FIG. 3 serves as the basis for the arrangement of drive 5 and pump 6, but any other of the embodiments presented can also be used for the quasi-reversed supply of pressure medium 29 and the conveyance of the flowable substances 8. This alternative is required in the case of chemically aggressive flowable materials 8 to protect the borehole lining 9, specifically from the point that a drill pipe 32 can be replaced more easily than the borehole lining 9 in the event of corrosion damage.

Claims (10)

1. An apparatus for conveying flowable substances out of a production well, consisting of a pressure-fluid source, of a pressure-fluid conduit (3) which conveys the pressure fluid (29) into the bottom region of the well, of a drive (5) which is fed with the pressure fluid and coupled to a pump (6) and which is in a housing (7) which comprises openings (15) for the entry of the flowable substances into the pump and others (16) for their exit from the pump and for the discharge of pressure fluid out of the drive into the conveying conduit, and having a packer (17) between the housing and a lining (9) of the well to separate the inlets for the flowable substances from further openings in the housing, the drive and the pump each being constructed in the form of a rotary displacement machine with a helical rotor describing an eccentric path of movement inside a helical stator housing, characterised in that the rotor (10) and stator (11) of the drive (5) and the rotor (12) and stator (13) of the pump (6) have the same eccentricity and are rigidly connected to one another.
2. An apparatus according to claim 1, characterised in that the pump (6) encompasses a substantially greater working-chamber volume than the drive (5) while the drive (5) has a higher number of stages than the pump (6).
3. An apparatus according to claim 2, characterised in that the rotor (12) and stator (13) of pump (6) has a greater helical pitch and/or a larger cross-sectional area of the working chamber than the drive (5).
4. An apparatus according to claim 2, characterised in that the ratio of the number of stages of the drive (5) to that of the pump (6) is approximately equal to the product of the ratio of a working-chamber volume of the pump (6) to that of the drive (5) and of the reciprocal values of the overall efficiencies of drive (5) and pump (6).
5. An apparatus according to any one of claims 1 to 4, characterised in that the direction of turning of the helix is the same for drive (5) and pump (6), and in that arranged parallel to the drive (5) or to the pump (6) is a conduit (3; 21) by means of which, pressure fluid (29) or flowable substances (8) are conveyed past the associated working chamber (18; 19) of the drive (5) or of the pump (6), with a reversal of direction, before entering the drive (5) or after emerging from the pump (6).
6. An apparatus according to claim 5, characterised in that the conduit (3; 12) arranged parallel is formed by a gap between a helical stator sleeve (22) or rotor sleeve (3) and a supporting sleeve (7; 30) associated with each of these respectively.
7. An apparatus according to any one or more of claims 1 to 6, characterised in that one of the two stators of pump (6) and drive (5) is constructed in the form of an outer stator (13) and the other in the form of an inner stator (11), and the rotors are formed by a rotor (25) which is common to both stators and is disposed between the outer stator (13) and the inner stator (11).
8. An apparatus according to claim 7, characterised in that the stators (11, 13) of pump (6) and drive (5) lie axially one inside the other.
9. An apparatus according to any one or more of claims 1 to 8, characterised in that the pressure-fluid conduit (3) is formed by a drill pipe (32) let into the well (2) and the-conveying conduit (33) is formed by the annular space (34) between the drill pipe (32) and the lining (9) of the well (2).
10. An apparatus according to any one or more of claims 1 to 8, characterised in that the conveying conduit (33) is formed by a drill pipe (32) let into the well (2), and the pressure-fluid conduit (3) is formed by the annular space (34) between the drill pipe (32) and the lining (9) of the well (2).
EP85102033A 1984-03-19 1985-02-23 Apparatus for the transport of flowable materials Expired EP0155544B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85102033T ATE43408T1 (en) 1984-03-19 1985-02-23 DEVICE FOR CONVEYING FLOWABLE SUBSTANCES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3409970A DE3409970C1 (en) 1984-03-19 1984-03-19 Device for conveying flowable substances
DE3409970 1984-03-19

Publications (3)

Publication Number Publication Date
EP0155544A2 EP0155544A2 (en) 1985-09-25
EP0155544A3 EP0155544A3 (en) 1987-05-27
EP0155544B1 true EP0155544B1 (en) 1989-05-24

Family

ID=6230907

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85102033A Expired EP0155544B1 (en) 1984-03-19 1985-02-23 Apparatus for the transport of flowable materials

Country Status (5)

Country Link
US (1) US4614232A (en)
EP (1) EP0155544B1 (en)
JP (1) JPS611789A (en)
AT (1) ATE43408T1 (en)
DE (1) DE3409970C1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216406B1 (en) * 1985-09-04 1991-07-31 Shell Internationale Researchmaatschappij B.V. Fluid driven pumping apparatus
GB8605033D0 (en) * 1986-02-28 1986-04-09 Shell Int Research Fluid driven pumping apparatus
US5417281A (en) * 1994-02-14 1995-05-23 Steven M. Wood Reverse Moineau motor and pump assembly for producing fluids from a well
US5611397A (en) * 1994-02-14 1997-03-18 Wood; Steven M. Reverse Moineau motor and centrifugal pump assembly for producing fluids from a well
US4828036A (en) * 1987-01-05 1989-05-09 Shell Oil Company Apparatus and method for pumping well fluids
FR2609754A1 (en) * 1987-01-21 1988-07-22 Nicolas Yves MULTIFUNCTION SCREW MOTOR WITHOUT CARDAN SEAL
US4886920A (en) * 1987-04-06 1989-12-12 Mallinckrodt, Inc. Process for preparing aromatic fluorides
US4923376A (en) * 1988-03-24 1990-05-08 Wright John L Moineau pump with rotating closed end outer member and nonrotating hollow inner member
GB2237312B (en) * 1989-10-28 1993-04-14 Antony Duncan Cameron Downhole pump assembly
FR2656035B1 (en) * 1989-12-15 1996-01-12 Inst Francais Du Petrole DEVICE FOR PUMPING A LIQUID AND IN PARTICULAR A HIGH VISCOSITY LIQUID.
US5171138A (en) * 1990-12-20 1992-12-15 Drilex Systems, Inc. Composite stator construction for downhole drilling motors
US6059031A (en) * 1998-03-09 2000-05-09 Oil & Gas Consultants International, Inc. Utilization of energy from flowing fluids
US6247533B1 (en) 1998-03-09 2001-06-19 Seismic Recovery, Llc Utilization of energy from flowing fluids
US6550534B2 (en) 1998-03-09 2003-04-22 Seismic Recovery, Llc Utilization of energy from flowing fluids
WO2001044615A2 (en) * 1999-11-10 2001-06-21 Ewm Technology, Inc. Composite stator for drilling motors and method of constructing same
US6454010B1 (en) * 2000-06-01 2002-09-24 Pan Canadian Petroleum Limited Well production apparatus and method
RU2003134142A (en) * 2001-04-24 2005-05-20 СиДиэКС ГЭС Л.Л.К. (US) HYDRAULIC REGULATED PUMPING SYSTEM AND METHOD OF ITS OPERATION
US6497556B2 (en) 2001-04-24 2002-12-24 Cdx Gas, Llc Fluid level control for a downhole well pumping system
US6604910B1 (en) 2001-04-24 2003-08-12 Cdx Gas, Llc Fluid controlled pumping system and method
HRP20010739B1 (en) * 2001-10-12 2009-05-31 Tomislav Ni�eti� Gas turbine driven oil lifting device
CA2377631C (en) * 2002-03-20 2005-03-01 Sheldon Cote Pc pump inlet backwash method and apparatus
WO2005042910A2 (en) * 2003-10-27 2005-05-12 Dyna-Drill Technologies, Inc. Asymmetric contouring of elastomer liner on lobes in a moineau style power section stator
US7517202B2 (en) * 2005-01-12 2009-04-14 Smith International, Inc. Multiple elastomer layer progressing cavity stators
US20070248454A1 (en) * 2006-04-19 2007-10-25 Davis Walter D Device for changing the pressure of a fluid
US9393648B2 (en) 2010-03-30 2016-07-19 Smith International Inc. Undercut stator for a positive displacment motor
GB2482861B (en) 2010-07-30 2014-12-17 Hivis Pumps As Pump/motor assembly
US20150114722A1 (en) * 2012-05-30 2015-04-30 Alibi Akhmejanov Downhole screw motor
US9441627B2 (en) * 2012-11-01 2016-09-13 National Oilwell Varco, L.P. Lightweight and flexible rotors for positive displacement devices
CO6980133A1 (en) * 2012-12-26 2014-06-27 Serinpet Ltda Representaciones Y Servicios De Petróleos Artificial lifting system with progressive cavity motor in the background for hydrocarbon extraction
US10612381B2 (en) 2017-05-30 2020-04-07 Reme Technologies, Llc Mud motor inverse power section
US10927625B2 (en) 2018-05-10 2021-02-23 Colorado School Of Mines Downhole tractor for use in a wellbore
US11959666B2 (en) 2021-08-26 2024-04-16 Colorado School Of Mines System and method for harvesting geothermal energy from a subterranean formation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2269189A (en) * 1939-03-20 1942-01-06 Harold R Downs Fluid pump
US2483370A (en) * 1946-06-18 1949-09-27 Robbins & Myers Helical multiple pump
US2739650A (en) * 1951-09-19 1956-03-27 Perfect Circle Corp Pumping apparatus
US3203350A (en) * 1962-11-05 1965-08-31 Robbins & Myers Helical multiple pump
US3840080A (en) * 1973-03-26 1974-10-08 Baker Oil Tools Inc Fluid actuated down-hole drilling apparatus
US3912426A (en) * 1974-01-15 1975-10-14 Smith International Segmented stator for progressive cavity transducer
US4083660A (en) * 1975-08-04 1978-04-11 Newbrough Joseph S Gas drive oil well pumping system having mixing means for the gas/oil mixture
DE3019308C2 (en) * 1980-05-21 1982-09-02 Christensen, Inc., 84115 Salt Lake City, Utah Chisel direct drive for deep drilling tools
US4386654A (en) * 1981-05-11 1983-06-07 Becker John A Hydraulically operated downhole oil well pump

Also Published As

Publication number Publication date
DE3409970C1 (en) 1985-07-18
JPS611789A (en) 1986-01-07
US4614232A (en) 1986-09-30
ATE43408T1 (en) 1989-06-15
EP0155544A3 (en) 1987-05-27
EP0155544A2 (en) 1985-09-25

Similar Documents

Publication Publication Date Title
EP0155544B1 (en) Apparatus for the transport of flowable materials
DE3609111C2 (en)
DE3800336C2 (en)
DE1403890A1 (en) Rotary vane pump
DE1503586B2 (en) Liquid ring compressor
DE2405655A1 (en) PITOT CENTRIFUGAL PUMP WITH SLOTTED INLET CHANNELS IN THE ROTOR HOUSING
DE3319776C2 (en) SPIRAL COMPRESSOR
DE3228038A1 (en) Liquid/gas separator
DE102013101164B4 (en) Screw Pump
DE2523298A1 (en) ROTARY DISPLACEMENT PUMP OR -ENGINE
DE69722412T2 (en) DRIVE DEVICE LIKE e.g. LIQUID RING MACHINE AND METHOD FOR DRIVING SUCH A DEVICE, E.g. DELIVERY OF LIQUID
DE3121529C2 (en)
DE4110392A1 (en) Rotary vane pump for vehicle steering - has compact double rotor with double vanes mounted on drive shaft
DE2249591A1 (en) VANE PUMP
DE7321836U (en) DEVICE FOR LUBRICATING THE BEARINGS OF THE ROTORS OF SCREW COMPRESSORS
EP1413757A2 (en) Assembly of a motor and a pump
DE2462734B1 (en) Rotary piston pump
DE102008013335A1 (en) Vane cell machine for use as e.g. vane cell pump to convey liquid into common pipe line, has hollow rotor with rotor slots for vane, and outer chambers and inner chambers provided with inlets and outlets
EP0520943B1 (en) Positive displacement pump
DE3030203A1 (en) INTERIOR AXIAL PISTON MACHINE
DE4103848C2 (en) Rotary piston pump
DE3916339C2 (en)
DE102016009028A1 (en) Rotor-stator system with an inlet funnel for an eccentric screw pump
DE1242100B (en) Rotary lobe pump
DE2718148A1 (en) Internal gear ring pump or motor - has rotary distributor valve connected to tooth interspaces via housing fixing screw bore clearances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT FR GB IT NL

17P Request for examination filed

Effective date: 19870814

17Q First examination report despatched

Effective date: 19881026

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EASTMAN CHRISTENSEN COMPANY

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB IT NL

REF Corresponds to:

Ref document number: 43408

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910128

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920223

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940111

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST