EP0154796B1 - Manufacturing process for layered metallic multichannel plates for an image intensifier, and use of plates so manufactured - Google Patents

Manufacturing process for layered metallic multichannel plates for an image intensifier, and use of plates so manufactured Download PDF

Info

Publication number
EP0154796B1
EP0154796B1 EP85101037A EP85101037A EP0154796B1 EP 0154796 B1 EP0154796 B1 EP 0154796B1 EP 85101037 A EP85101037 A EP 85101037A EP 85101037 A EP85101037 A EP 85101037A EP 0154796 B1 EP0154796 B1 EP 0154796B1
Authority
EP
European Patent Office
Prior art keywords
layers
produced
plate
channels
intermediate layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85101037A
Other languages
German (de)
French (fr)
Other versions
EP0154796A2 (en
EP0154796A3 (en
Inventor
Erwin Prof. Dr. Becker
Wolfgang Dr. Ehrfeld
Frank Dr. Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to AT85101037T priority Critical patent/ATE38451T1/en
Publication of EP0154796A2 publication Critical patent/EP0154796A2/en
Publication of EP0154796A3 publication Critical patent/EP0154796A3/en
Application granted granted Critical
Publication of EP0154796B1 publication Critical patent/EP0154796B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • H01J9/125Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/32Secondary emission electrodes

Definitions

  • the invention relates to a method for producing layered multi-channel plates with metal dynodes for amplifying optical images or other areal signal distributions by means of secondary electron multiplication, and to the use of multi-channel plates produced in this way.
  • the invention is based on the object of proposing a method for producing layered multi-channel image intensifier plates of the generic type in which the separate production of the dynodes and their subsequent stacking and mutual alignment are avoided.
  • layered multi-channel plates with metal dynodes can be produced, with which a similarly high spatial resolution and a similarly high transparency can be achieved as with the known image intensifier plates made of glass, without the limitations in amplification factor and in typical for glass image intensifier plates the signal repetition frequency must be accepted.
  • a metallic positive mold is produced with a primary negative mold of the layered multi-channel plate using a metal electrode connected to it by galvanic molding and subsequent removal of the primary negative mold, after which several secondary moldings are made by repeated molding of the metallic positive mold
  • Negative forms of the layered multi-channel plate are produced, which assume the role of the primary negative form in the further implementation of the method.
  • Non-adhesive reactive resins are particularly suitable as impression materials. Further details relating to the impression can be found, for example, in DE-PS-3 206 820.
  • the dynodes are mutually electrically isolated by removing the intermediate layers. If layered multi-channel plates with a larger diameter are to be produced in this way, it can be advantageous to mount electrically insulating supports not only on the channel-free edge, but also within the image field of the multi-channel plate, which is penetrated by channels.
  • the supports in the area of the layered multi-channel plates, which are interspersed with channels cover only about 1 per mille of the image field, they can be perceived as a disadvantage if the transmission quality is particularly high.
  • a modification of the method of the invention according to claim 4 is provided.
  • Aluminum is particularly suitable for the subsequent conversion of the intermediate layer into an electrical insulator described there.
  • the small wall thicknesses typical of multi-channel plates with high transparency it can be converted in a known manner with oxidizing agent working in the liquid and / or gaseous phase into the electrically excellent insulating A1 2 0 3 .
  • the area penetrated by channels is to be surrounded by a channel-free area to facilitate assembly or the electrical connections, this area must consist of numerous thin walls to ensure the conversion of the more easily oxidizable material into an insulator.
  • the limitation to thin walls does not apply if the intermediate layers, according to claim 5, by complete or partial Oxidation of galvanically deposited aluminum layers can be produced.
  • the oxidation of the aluminum layers can be carried out both chemically and electrochemically.
  • an inclination of the channels against the plate surface favors the collision of the primary particles with the channel walls and thus the desired electron release.
  • the inclination of the channels is achieved by mutual displacement of the dynodes during stacking.
  • dislocations occur between the mutually assigned channels of the adjacent dynodes, which lead to a reduction in transparency and / or the spatial resolution.
  • the inclination of the channels can be brought about by appropriate orientation of the plate surface with respect to the direction of propagation of the high-energy radiation without loss of transparency and / or spatial resolution.
  • a channel curvature aimed at suppressing the acceleration of parasitic ions can likewise only be achieved in the previously known methods for producing layered multi-channel plates only by mutually displacing the dynodes with the disadvantages mentioned above.
  • these disadvantages can be avoided in that, according to claim 7, before the formation of the dynodes and intermediate layers, the negative shapes of the channels are bent at a higher temperature by a uniformly acting force, for example a centrifugal force.
  • the layered multi-channel plates can be assembled in such a way that the channel openings of layered multi-channel plates lying one on top of the other are aligned with one another. This avoids losses in transparency and / or spatial resolution.
  • Both corpuscular rays and electromagnetic waves can be considered as high-energy radiation. While the use of electromagnetic waves to produce the desired structures uses masks in a known manner, the structures can also be produced by electromagnetic control when using corpuscular beams.
  • the X-ray radiation (“synchrotron radiation”) generated by the electron synchrotons, which is characterized by high intensity with a small aperture angle, has proven particularly useful.
  • the choice of the material which can be changed by high-energy radiation depends on the type of high-energy radiation, corresponding regulations being found, for example, in DE-PS-2 922 642 and DE-OS-3 221 981.
  • synchrotron radiation polymethyl methacrylate (PMMA) has proven particularly useful, it being possible to use a developer according to DE-OS-3 039 110 to remove the irradiated areas.
  • the secondary electron yield factor of those with channels can be known in a manner known per se provided metal layers may be increased considerably.
  • the inventive method is in
  • the PMMA plate 1 is shown in FIG. 2 via an X-ray mask with synchrotron radiation 3 irradiated, which is directed obliquely to the surfaces of the PMMA plate 1 and the X-ray mask.
  • the X-ray mask consists of a carrier 4, which only weakly absorbs the X-radiation, and an absorber 5, which strongly absorbs the X-radiation, by means of which the cross-sectional shapes and the positions of the negative shapes of the channels are defined.
  • the individual structures of the absorber 5 correspond to the cross-sectional shapes of the negative shapes of the channels. Due to the high-intensity parallel synchrotron radiation, the PMMA in the areas 6 not covered by the absorber will undergo chemical radiation changes. These areas 6 irradiated in this way are removed by introducing the PMMA plate into a developer solution, so that a multichannel negative shape with columnar PMMA structures 7 and lattice-shaped free spaces 8 according to FIG. 3 is produced.
  • the columnar PMMA structures 7 have lm a hexagonal cross-sectional shape having a width of about 30 I, the width of the free spaces 8 between the PMMA structures 7 is approximately 4 to.
  • FIG. 4 When producing a multi-channel plate with individual dynodes, which are firmly connected to electrically insulating supports, the negative form shown in FIG. 4 is assumed, which, in addition to the metal electrode 2a, the columnar PMMA structures 7a with lattice-free spaces 8a, as they are were already shown in Figure 3, additionally contains supports 9 made of electrically insulating material. Layers of nickel 10 and copper 11 are alternately galvanically deposited in the free spaces 8a, so that a structure according to FIG. 5 is produced.
  • the PMMA structures 7a with an organic solvent and the copper layers 11 and the electrode 2a with an etch which does not attack the nickel layers 10 are first removed, so that a sequence of mutually insulated dynode layers which are fixed to the electrically insulating supports 9 connected, remains.
  • the negative mold 7 shown in FIG. 3 is used in the production of layered multi-channel plates made of dynodes and intermediate layers subsequently produced. 6, layers of nickel 12 and aluminum 13 are alternately deposited in the free spaces 8 of the negative mold 7. After removal of the negative mold 7 with an organic solvent and the electrode 2 with an etch which does not attack the nickel layers 12 or the aluminum layers 13, the aluminum layers are converted in a known manner by oxidation into aluminum oxide, so that according to FIG Layered multi-channel plate made of nickel dynodes 12 and insulating intermediate layers 13a made of aluminum oxide.
  • the negative mold 7 shown in FIG. 3 is again assumed.
  • An aluminum layer 14 made of an organic electrolyte is deposited into the free spaces 8b between the columnar PMMA structures 7b, as can be seen from the simplified illustration in FIG. 8, using the metal electrode 2b.
  • This layer is partially converted into aluminum oxide in a second electrolyte containing sulfuric acid by anodic oxidation, so that a firmly adhering aluminum oxide layer 15 is formed as shown in FIG. 9.
  • This is activated and coated by chemical reduction deposition with a thin metal layer 16 onto which an aluminum layer 14a is again galvanically deposited. This process sequence is repeated until the desired number of layer sequences is reached, whereupon the negative mold 7b and the electrode 2b are removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Tubes For Measurement (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Particle Accelerators (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

A method for producing a multichannel plate containing metal dynodes and having a plurality of generally parallel channels for use in structures for amplifying or converting optical images or other two-dimensional signal patterns by secondary electron multiplication, which method includes: producing a negative mold of the plate by: (i) providing a body having at least the thickness of the plate to be produced and made of an electrically insulating material whose ability to be removed from the body is altered by exposure to a selected radiation; (ii) irradiating the body with the selected radiation in a pattern corresponding to the plate to be produced and in a manner to render portions of the body having the form of a grid surrounding the channels more easily removable than the remaining portions of the body; and (iii) removing the more easily removable portions of the body to leave columnar structures corresponding to the channels in the plate; depositing metal layers and intermediate layers alternatingly in the openings in the negative mold or in a secondary negative mold produced therefrom, the metal layers being deposited electrolytically and forming dynodes which are spaced apart in the direction of the channels; and removing the negative mold from the deposited layers.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung geschichteter Vielkanalplatten mit Dynoden aus Metall für die Verstärkung optischer Bilder oder anderer flächenhafter Signalverteilungen mittels Sekundärelektronenvervielfachung sowie die Verwendung so hergestellter Vielkanalplatten.The invention relates to a method for producing layered multi-channel plates with metal dynodes for amplifying optical images or other areal signal distributions by means of secondary electron multiplication, and to the use of multi-channel plates produced in this way.

Es ist bekannt, optische Bilder oder andere flächenhafte Signalverteilungen mit geschichteten Vielkanalplatten aus Metall zu verstärken (s. DE-OS-3 150 257 und DE-PS-2 414 658). Sie bestehen aus zahlreichen elektrisch gegeneinander isolierten, mit eng benachbarten Löchern versehenen Metallschichten, die so gestapelt sind, daß die Löcher eng benachbarte, senkrecht zur Plattenoberfläche verlaufende Kanäle bilden. Die Schichten sind einzeln so an eine Spannungsquelle angeschlossen, daß sich zwischen ihnen ein stufenweiser Potentialanstieg ergibt. Die Kanäle erhalten dadurch die Funktion von Sekundärelektronenvervielfachern, wobei die mit Löchern versehenen Metallschichten die Dynoden bilden. Die Löcher der einzelnen Dynoden können durch chemisches Ätzen durch belichtete und entwickelte Photolackmasken hindurch eingearbeitet werden. In der Praxis werden gute Ergebnisse erreicht, wenn die Lochdurchmesser und die Dicke der Dynode ungefähr gleich sind. Aus "Spektrum der Wissenschaft", Januar 1982, Seiten 44 bis 55, ist es ferner bekannt, bei Vielkanal-Bilderverstärkerplatten aus Glas die Kanäle gekrümmt oder im Zickzack auszuführen. Im letzteren Fall werden hierzu mehrere Platten mit schräg verlaufenden Kanälen gestapelt.It is known to amplify optical images or other areal signal distributions with layered multi-channel plates made of metal (see DE-OS-3 150 257 and DE-PS-2 414 658). They consist of numerous metal layers which are electrically insulated from one another and provided with closely adjacent holes and are stacked in such a way that the holes form closely adjacent channels which run perpendicular to the plate surface. The layers are individually connected to a voltage source in such a way that there is a gradual increase in potential between them. The channels thereby have the function of secondary electron multipliers, the metal layers provided with holes forming the dynodes. The holes of the individual dynodes can be worked in by chemical etching through exposed and developed photoresist masks. In practice, good results are achieved when the hole diameter and the thickness of the dynode are approximately the same. From "Spectrum of Science", January 1982, pages 44 to 55, it is also known to design the channels curved or zigzag in multi-channel image intensifier plates made of glass. In the latter case, several plates with sloping channels are stacked for this purpose.

Wenn bei geschichteten Vielkanal-Bildverstärkerplatten ein ähnlich hohes räumliches Auflösungsvermögen wie bei Bildverstärkerplatten aus Glas erreicht werden soll, müssen die Durchmesser der Löcher und damit die Stärken der Dynoden in der Größenordnung von 30 J.Lm und darunter liegen. Es ergeben sich dann erhebliche Probleme beim gegenseitigen Ausrichten und elektrischen Isolieren der getrennt hergestellten folienartigen Dynoden.If a similarly high spatial resolution is to be achieved with layered multi-channel image intensifier plates as with glass image intensifier plates, the diameter of the holes and thus the strengths of the dynodes must be in the order of magnitude of 30 J.Lm and below. There are then considerable problems with the mutual alignment and electrical insulation of the separately produced film-like dynodes.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung geschichteter Vielkanal-Bildverstärkerplatten der gattungsgemäßen Art vorzuschlagen, bei dem die getrennte Herstellung der Dynoden und deren nachfolgendes Stapeln und gegenseitiges Ausrichten vermieden werden.The invention is based on the object of proposing a method for producing layered multi-channel image intensifier plates of the generic type in which the separate production of the dynodes and their subsequent stacking and mutual alignment are avoided.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claim 1.

Mit dem erfindungsgemäßen Verfahren lassen sich geschichtete Vielkanalplatten mit Dynoden aus Metall herstellen, mit denen ein ähnlich hohes räumliches Auflösungsvermögen und eine ähnlich hohe Transparenz wie bei den bekannten Bildverstärkerplatten aus Glas erreicht werden kann, ohne daß die für Bilderverstärkerplatten aus Glas typischen Begrenzungen im Verstärkungsfaktor und in der Signalfolgefrequenz in Kauf genommen werden müssen.With the method according to the invention, layered multi-channel plates with metal dynodes can be produced, with which a similarly high spatial resolution and a similarly high transparency can be achieved as with the known image intensifier plates made of glass, without the limitations in amplification factor and in typical for glass image intensifier plates the signal repetition frequency must be accepted.

Zur Verbilligung der Massenfertigung von Vielkanalplatten der in Anspruch 1 beschriebenen Art kann das Verfahren der Erfindung entsprechend Anspruch 2 abgewandelt werden. Dabei wird mit einer primären Negativ-Form der geschichteten Vielkanalplatte unter Verwendung einer mit ihr verbundenen Metallelektrode durch galvanische Abformung und anschließende Entfernung der primären Negativ-Form eine metallische Positiv-Form hergestellt, wonach durch wiederholtes Abformen der metallischen Positiv-Form mit einer Abformmasse mehrere sekundäre Negativ-Formen der geschichteten Vielkanalplatte hergestellt werden, die bei der weiteren Durchführung des Verfahrens die Rolle der primären Negativ-Form übernehmen. Als Abformmasse sind besonders nichthaftende Reaktionsharze geeignet. Weitere Einzelheiten in bezug auf die Abformung können beispielsweise der DE-PS-3 206 820 entnommen werden.To reduce the cost of mass production of multi-channel plates of the type described in claim 1, the method of the invention can be modified in accordance with claim 2. In this case, a metallic positive mold is produced with a primary negative mold of the layered multi-channel plate using a metal electrode connected to it by galvanic molding and subsequent removal of the primary negative mold, after which several secondary moldings are made by repeated molding of the metallic positive mold Negative forms of the layered multi-channel plate are produced, which assume the role of the primary negative form in the further implementation of the method. Non-adhesive reactive resins are particularly suitable as impression materials. Further details relating to the impression can be found, for example, in DE-PS-3 206 820.

Bei einer speziellen Ausführungsform entsprechend Anspruch 3 werden die Dynoden durch Herauslösen der Zwischenschichten gegenseitig elektrisch isoliert. Wenn auf diese Weise geschichtete Vielkanalplatten mit größerem Durchmesser hergestellt werden sollen, kann es vorteilhaft sein, elektrisch isolierende Stützen nicht nur am kanalfreien Rand, sondern auch innerhalb des von Kanälen durchsetzten Bildfeldes der Vielkanalplatte anzubringen.In a special embodiment according to claim 3, the dynodes are mutually electrically isolated by removing the intermediate layers. If layered multi-channel plates with a larger diameter are to be produced in this way, it can be advantageous to mount electrically insulating supports not only on the channel-free edge, but also within the image field of the multi-channel plate, which is penetrated by channels.

Obwohl die Stützen in dem von Kanälen durchsetzten Bereich der entsprechend Anspruch 3 hergestellten geschichteten Vielkanalplatten in der Praxis nur etwa 1 Promille des Bildfeldes verdecken, können sie bei besonders hohen Ansprüchen an die Übertragungsqualität als Nachteil empfunden werden. Für diesen Fall ist eine Abwandlung des Verfahrens der Erfindung entsprechend Anspruch 4 vorgesehen. Für die dort beschriebene nachträgliche Umwandlung der Zwischenschicht in einen elektrischen Isolator eignet sich vor allem Aluminium. Es läßt sich bei den für Vielkanalplatten hoher Transparenz typischen geringen Wandstärken in bekannter Weise mit in der flüssigen und/oder gasförmigen Phase arbeitenden Oxidationsmittels in das elektrisch ausgezeichnet isolierende A1203 überführen. Wenn bei den entsprechend Anspruch 4 hergestellten geschichteten Vielkanalplatten der von Kanälen durchsetzte Bereich zur Erleichterung der Montage oder der elektrischen Anschlüsse von einem kanalfreien Bereich umgeben sein soll, muß dieser zur Sicherstellung der Umwandlung des leichter oxidierbaren Materials in einen Isolator aus zahlreichen dünnen Wänden bestehen.Although in practice the supports in the area of the layered multi-channel plates, which are interspersed with channels, cover only about 1 per mille of the image field, they can be perceived as a disadvantage if the transmission quality is particularly high. In this case, a modification of the method of the invention according to claim 4 is provided. Aluminum is particularly suitable for the subsequent conversion of the intermediate layer into an electrical insulator described there. In the case of the small wall thicknesses typical of multi-channel plates with high transparency, it can be converted in a known manner with oxidizing agent working in the liquid and / or gaseous phase into the electrically excellent insulating A1 2 0 3 . If, in the layered multi-channel plates produced in accordance with claim 4, the area penetrated by channels is to be surrounded by a channel-free area to facilitate assembly or the electrical connections, this area must consist of numerous thin walls to ensure the conversion of the more easily oxidizable material into an insulator.

Die Beschränkung auf dünne Wände entfällt, wenn die Zwischenschichten, entsprechend Anspruch 5, durch vollständige oder partielle Oxidation von galvanisch abgeschiedenen Aluminiumschichten hergestellt werden. Die Oxidation der Aluminiumschichten ist sowohl chemisch als auch elektrochemisch durchführbar. Zur Erleichterung der galvanischen Abscheidung der Aluminiumschichten auf den darunterliegenden Oxidschichten, kann es zweckmäßig sein, dünne Metallschichten auf den Oxidschichten abzuscheiden, die bei der nachfolgenden Galvanik eine Stromzuführung parallel zur Plattenoberfläche ermöglichen.The limitation to thin walls does not apply if the intermediate layers, according to claim 5, by complete or partial Oxidation of galvanically deposited aluminum layers can be produced. The oxidation of the aluminum layers can be carried out both chemically and electrochemically. To facilitate the galvanic deposition of the aluminum layers on the oxide layers underneath, it may be expedient to deposit thin metal layers on the oxide layers, which enable current to be supplied parallel to the plate surface in the subsequent electroplating.

In Fällen, wo Aluminium als Dynodenmaterial akzeptiert werden kann, läßt sich das im Zusammenhang mit Anspruch 5 beschriebene Verfahren entsprechend Anspruch 6 vereinfachen.In cases where aluminum can be accepted as a dynode material, the method described in connection with claim 5 can be simplified in accordance with claim 6.

Eine Schrägstellung der Kanäle gegenüber der Plattenoberfläche begünstigt die Kollision der Primärteilchen mit den Kanalwänden und damit die gewünschte Elektronenauslösung. Bei den vorbekannten Verfahren zur Herstellung geschichteter Vielkanalplatten wird die Schrägstellung der Kanäle durch gegenseitiges Verschieben der Dynoden beim Stapeln erreicht. Dabei treten jedoch Versetzungen zwischen den einander zugeordneten Kanälen der benachbarten Dynoden auf, die zur Verminderung der Transparenz und/oder des räumlichen Auflösungsvermögens führen. Bei den nach dem Verfahren der Erfindung hergestellten geschichteten Vielkanalplatten, kann die Schrägstellung der Kanäle durch entsprechende Orientierung der Plattenoberfläche gegenüber der Ausbreitungsrichtung der energiereichen Strahlung ohne Verluste an Transparenz und/oder räumlichem Auflösungsvermögen bewirkt werden.An inclination of the channels against the plate surface favors the collision of the primary particles with the channel walls and thus the desired electron release. In the previously known methods for producing layered multi-channel plates, the inclination of the channels is achieved by mutual displacement of the dynodes during stacking. However, dislocations occur between the mutually assigned channels of the adjacent dynodes, which lead to a reduction in transparency and / or the spatial resolution. In the layered multi-channel plates produced according to the method of the invention, the inclination of the channels can be brought about by appropriate orientation of the plate surface with respect to the direction of propagation of the high-energy radiation without loss of transparency and / or spatial resolution.

Eine zur Unterdrückung der Beschleunigung parasitärer Ionen angestrebte Kanalkrümmung läßt sich bei den vorbekannten Verfahren zur Herstellung geschichteter Vielkanalplatten ebenfalls nur durch gegenseitiges Verschieben der Dynoden mit den oben erwähnten Nachteilen erzielen. Bei dem Verfahren der Erfindung können diese Nachteile dadurch vermieden werden, daß entsprechend Anspruch 7, vor der Erzeugung der Dynoden und Zwischenschichten, die Negativ-Formen der Kanäle durch eine gleichmäßig angreifende Kraft, beispielsweise eine Zentrifugalkraft, bei erhöhter Temperatur gekrümmt werden.A channel curvature aimed at suppressing the acceleration of parasitic ions can likewise only be achieved in the previously known methods for producing layered multi-channel plates only by mutually displacing the dynodes with the disadvantages mentioned above. In the method of the invention, these disadvantages can be avoided in that, according to claim 7, before the formation of the dynodes and intermediate layers, the negative shapes of the channels are bent at a higher temperature by a uniformly acting force, for example a centrifugal force.

Eine Unterdrückung der Beschleunigung parasitärer Ionen ist aber auch dadurch möglich, daß man mindestens zwei erfindungsgemäß hergestellte geschichtete Vielkanalplatten mit zur Plattenoberfläche schrägen Kanälen in bekannter Weise zu einem Stapel so zusammensetzt, daß die Kanäle gemeinsam zick-zack-förmige Strukturen bilden. Da bei den erfindungsgemäß hergestellten geschichteten Vielkanalplatten die Querschnitte und Positionen der Kanäle genau vorgebbar sind, lassen sich die geschichteten Vielkanalplatten entsprechend Anspruch 8 so zusammensetzen, daß die Kanalöffnungen aufeinanderliegender geschichteter Vielkanalplatten gegenseitig ausgerichtet sind. Dadurch werden Verluste an Transparenz und/oder räumlichen Auflösungsvermögen vermieden.Suppression of the acceleration of parasitic ions is also possible, however, by assembling at least two layered multi-channel plates according to the invention with channels inclined to the plate surface in a known manner in such a way that the channels together form zigzag structures. Since the cross-sections and positions of the channels can be precisely specified in the layered multi-channel plates produced according to the invention, the layered multi-channel plates can be assembled in such a way that the channel openings of layered multi-channel plates lying one on top of the other are aligned with one another. This avoids losses in transparency and / or spatial resolution.

Als energiereiche Strahlung kommen sowohl Korpuskularstrahlen als auch elektromagnetische Wellen in Frage. Während man bei der Verwendung elektromagnetischer Wellen zur Erzeugung der gewünschten Strukturen in bekannter Weise mit Masken arbeitet, kann man bei Verwendung von Korpuskularstrahlen die Strukturen auch durch elektromagnetische Steuerung erzeugen. Besonders bewährt hat sich die von den Elektronensynchrotons erzeugte Röntgenstrahlung ("Synchrotronstrahlung"), die sich durch hohe Intensität bei kleinem Öffnungswinkel auszeichnet. Die Wahl des durch energiereiche Strahlung veränderbaren Materials richtet sich nach der Art der energiereichen Strahlung, wobei entsprechende Vorschriften beispielsweise der DE-PS-2 922 642 und DE-OS-3 221 981 entnommen werden können. Bei Verwendung von Synchrotronstrahlung hat sich besonders Polymethylmethacrylat (PMMA) bewährt, wobei zur Entfernung der bestrahlten Bereiche ein Entwickler gemäß DE-OS-3 039 110 verwendet werden kann.Both corpuscular rays and electromagnetic waves can be considered as high-energy radiation. While the use of electromagnetic waves to produce the desired structures uses masks in a known manner, the structures can also be produced by electromagnetic control when using corpuscular beams. The X-ray radiation ("synchrotron radiation") generated by the electron synchrotons, which is characterized by high intensity with a small aperture angle, has proven particularly useful. The choice of the material which can be changed by high-energy radiation depends on the type of high-energy radiation, corresponding regulations being found, for example, in DE-PS-2 922 642 and DE-OS-3 221 981. When using synchrotron radiation, polymethyl methacrylate (PMMA) has proven particularly useful, it being possible to use a developer according to DE-OS-3 039 110 to remove the irradiated areas.

Durch geeignete Oberflächenbehandlung, beispielsweise eine schwache Oxidation mit Sauerstoff oder Chlor bei höherer Temperatur, eine elektrochemische Behandlung oder durch Abscheidung einer dünnen Materialschicht nach dem CVD-Verfahren bzw. durch Kombinationen solcher Verfahren, kann in an sich bekannter Weise der Sekundärelektronen-Ausbeutefaktor der mit Kanälen versehenen Metallschichten u.U. beträchtlich erhöht werden. Das erfindungsgemäße Verfahren wird imBy means of suitable surface treatment, for example a weak oxidation with oxygen or chlorine at a higher temperature, an electrochemical treatment or by deposition of a thin material layer by the CVD method or by combinations of such methods, the secondary electron yield factor of those with channels can be known in a manner known per se provided metal layers may be increased considerably. The inventive method is in

folgenden anhand der Zeichnungen beispielhaft erläutert:

  • Die Figuren 1 bis 3 zeigen schematisch die einzelnen Schritte der Erzeugung der Negativ- Form für die Herstellung einer geschichteten Vielkanalplatte,
  • die Figuren 4 und 5 zeigen schematisch die Herstellung von Dynodenschichten, die fest mit elektrisch isolierenden Stützen verbunden sind, die Figuren 6 und 7 zeigen schematisch die Herstellung einer geschichteten Vielkanalplatte, bei der die Zwischenschichten zwischen den Dynoden nachträglich in isolierende Metalloxidschichten umgewandelt werden,
  • die Figuren 8 und 9 zeigen schematisch die Herstellung einer geschichteten Vielkanalplatte, bei der sukzessiv Dynoden und isolierende Zwischenschichten aufeinander aufgebaut werden.
the following are explained using the drawings as an example:
  • FIGS. 1 to 3 schematically show the individual steps in the production of the negative mold for the production of a layered multi-channel plate,
  • FIGS. 4 and 5 schematically show the production of dynode layers which are firmly connected to electrically insulating supports, FIGS. 6 and 7 schematically show the production of a layered multi-channel plate in which the intermediate layers between the dynodes are subsequently converted into insulating metal oxide layers,
  • FIGS. 8 and 9 show schematically the production of a layered multi-channel plate, in which the dynodes and insulating intermediate layers are successively built up on top of one another.

Als Ausgangsmaterial für die Herstellung der Negativ-Form einer geschichteten Vielkanalplatte dient gemäß Fig. 1 eine 0,5 mm starke Platte 1 aus Polymethylmethacrylat (PMMA), die fest mit einer Metallelektrode 2 verbunden ist. Die PMMA-Platte 1 wird gemäß Fig. 2 über eine Röntgenmaske mit Synchrotronstrahlung 3 bestrahlt, die schräg zu den Oberflächen der PMMA-Platte 1 und der Röntgenmaske gerichtet ist. Die Röntgenmaske besteht aus einem die Röntgenstrahlung nur schwach absorbierenden Träger 4 und einem die Röntgenstrahlung stark absorbierenden Absorber 5, durch den die Querschnittsformen und die Positionen der Negativ-Formen der Kanäle festgelegt werden. Die einzelnen Strukturen des Absorbers 5 entsprechen den Querschnittsformen der Negativ-Formen der Kanäle. Durch die hochintensive parallele Synchrotronstrahlung wird das PMMA in den nicht vom Absorber abgedeckten Bereichen 6 strahlenchemisch verändern. Diese so bestrahlten Bereiche 6 werden durch Einbringen der PMMA-Platte in eine Entwicklerlösung entfernt, so daß eine Vielkanalnegativ-Form mit säulenförmigen PMMA-Strukturen 7 und gitterförmigen Freiräumen 8 gemäß Fig. 3 entsteht. Die säulenförmigen PMMA-Strukturen 7 haben eine sechseckige Querschnittsform mit einer Weite von ca. 30 Ilm, die Breite der Freiräume 8 zwischen den PMMA-Strukturen 7 beträgt ca. 4 um.According to FIG. 1, a 0.5 mm thick plate 1 made of polymethyl methacrylate (PMMA), which is firmly connected to a metal electrode 2, serves as the starting material for the production of the negative form of a layered multi-channel plate. The PMMA plate 1 is shown in FIG. 2 via an X-ray mask with synchrotron radiation 3 irradiated, which is directed obliquely to the surfaces of the PMMA plate 1 and the X-ray mask. The X-ray mask consists of a carrier 4, which only weakly absorbs the X-radiation, and an absorber 5, which strongly absorbs the X-radiation, by means of which the cross-sectional shapes and the positions of the negative shapes of the channels are defined. The individual structures of the absorber 5 correspond to the cross-sectional shapes of the negative shapes of the channels. Due to the high-intensity parallel synchrotron radiation, the PMMA in the areas 6 not covered by the absorber will undergo chemical radiation changes. These areas 6 irradiated in this way are removed by introducing the PMMA plate into a developer solution, so that a multichannel negative shape with columnar PMMA structures 7 and lattice-shaped free spaces 8 according to FIG. 3 is produced. The columnar PMMA structures 7 have lm a hexagonal cross-sectional shape having a width of about 30 I, the width of the free spaces 8 between the PMMA structures 7 is approximately 4 to.

Bei der Herstellung einer Vielkanalplatte mit einzelnen Dynoden, die fest mit elektrisch isolierenden Stützen verbunden sind, wird von der in Fig. 4 gezeigten Negativ-Form ausgegangen, die neben der Metallelektrode 2a, den säulenförmigen PMMA-Strukturen 7a mit gitterförmigen Freiräumen 8a, wie sie bereits in Figur 3 gezeigt wurden, zusätzlich noch Stützen 9 aus elektrisch isolierendem Material enthält. In die freien Zwischenräume 8a werden galvanisch abwechselnd Schichten aus Nickel 10 und Kupfer 11 abgeschieden, so daß ein Aufbau gemäß Fig. 5 entsteht. Anschließend werden zunächst die PMMA-Strukturen 7a mit einem organischen Lösungsmittel und die Kupferschichten 11 sowie die Elektrode 2a mit einer Ätze, welche die Nickelschichten 10 nicht angreift, entfernt, so daß eine Folge von gegeneinander isolierten Dynodenschichten, die fest mit den elektrisch isolierenden Stützen 9 verbunden sind, verbleibt.When producing a multi-channel plate with individual dynodes, which are firmly connected to electrically insulating supports, the negative form shown in FIG. 4 is assumed, which, in addition to the metal electrode 2a, the columnar PMMA structures 7a with lattice-free spaces 8a, as they are were already shown in Figure 3, additionally contains supports 9 made of electrically insulating material. Layers of nickel 10 and copper 11 are alternately galvanically deposited in the free spaces 8a, so that a structure according to FIG. 5 is produced. Subsequently, the PMMA structures 7a with an organic solvent and the copper layers 11 and the electrode 2a with an etch which does not attack the nickel layers 10 are first removed, so that a sequence of mutually insulated dynode layers which are fixed to the electrically insulating supports 9 connected, remains.

Bei der Herstellung von geschichteten Vielkanalplatten aus Dynoden und nachträglich erzeugten Zwischenschichten wird von der in Fig. 3 gezeigten Negativ-Form 7 ausgegangen. Gemäß Fig. 6 werden in die Freiräume 8 der Negativ-Form 7 abwechselnd Schichten aus Nickel 12 und Aluminium 13 abgeschieden. Nach dem Entfernen der Negativ-Form 7 mit einem organischen Lösungsmittel und der Elektrode 2 mit einer Ätze, welche weder die Nickelschichten 12 noch die Aluminiumschichten 13 angreift, werden die Aluminiumschichten in bekannter Weise durch Oxidation in Aluminiumoxid umgewandelt, so daß gemäß Fig. 7 eine geschichtete Vielkanalplatte aus Nickeldynoden 12 und isolierenden Zwischenschichten 13a aus Aluminiumoxid entsteht.The negative mold 7 shown in FIG. 3 is used in the production of layered multi-channel plates made of dynodes and intermediate layers subsequently produced. 6, layers of nickel 12 and aluminum 13 are alternately deposited in the free spaces 8 of the negative mold 7. After removal of the negative mold 7 with an organic solvent and the electrode 2 with an etch which does not attack the nickel layers 12 or the aluminum layers 13, the aluminum layers are converted in a known manner by oxidation into aluminum oxide, so that according to FIG Layered multi-channel plate made of nickel dynodes 12 and insulating intermediate layers 13a made of aluminum oxide.

Bei der Herstellung von geschichteten Vielkanalplatten, bei denen sukzessiv Dynoden und isolierende Zwischenschichten aufeinander aufgebaut werden, wird wiederum von der in Fig. 3 gezeigten Negativ-Form 7 ausgegangen. In die Freiräume 8b zwischen den säulenförmigen PMMA-Strukturen 7b wird, wie aus der vereinfachten Darstellung in Fig. 8 hervorgeht, unter Verwendung der Metallelektrode 2b eine Aluminiumschicht 14 aus einem organischen Elektrolyten abgeschieden. Diese Schicht wird in einem zweiten, schwefelsäurehaltigen Elektrolyten durch anodische Oxidation teilweise in Aluminiumoxid umgewandelt, so daß sich gemäß Fig. 9 eine festhaftende Aluminiumoxidschicht 15 ausbildet. Diese wird aktiviert und durch chemische Reduktionsabscheidung mit einer dünnen Metallschicht 16 überzogen, auf die wieder eine Aluminiumschicht 14a galvanisch abgeschieden wird. Diese Prozeßfolge wird solange wiederholt, bis die gewünschte Zahl von Schichtfolgen erreicht ist, worauf die Negativ-Form 7b und die Elektrode 2b entfernt werden.In the production of layered multi-channel plates in which dynodes and insulating intermediate layers are successively built up on one another, the negative mold 7 shown in FIG. 3 is again assumed. An aluminum layer 14 made of an organic electrolyte is deposited into the free spaces 8b between the columnar PMMA structures 7b, as can be seen from the simplified illustration in FIG. 8, using the metal electrode 2b. This layer is partially converted into aluminum oxide in a second electrolyte containing sulfuric acid by anodic oxidation, so that a firmly adhering aluminum oxide layer 15 is formed as shown in FIG. 9. This is activated and coated by chemical reduction deposition with a thin metal layer 16 onto which an aluminum layer 14a is again galvanically deposited. This process sequence is repeated until the desired number of layer sequences is reached, whereupon the negative mold 7b and the electrode 2b are removed.

Einzelheiten der galvanischen Herstellung dünner Aluminiumschichten findet man z. B. bei S.Birkle, J.Gering, K.Stöger, Zeitschrift Metall, Heft 4, April 1982, während Einzelheiten über die nachträgliche Umwandlung in Oxyd z. B. dem Handbuch der Galvanotechnik, Band 1, Teil 2, S. 1041-1043, Carl Hauser Verlag, München 1964, zu entnehmen sind.Details of the galvanic production of thin aluminum layers can be found, for. B. S.Birkle, J.Gering, K.Stöger, Zeitschrift Metall, Issue 4, April 1982, while details about the subsequent conversion into oxide z. B. the manual of electroplating, Volume 1, Part 2, pp. 1041-1043, Carl Hauser Verlag, Munich 1964, can be found.

Claims (8)

1. A process for the manufacture of layered multichannel plates with metal dynodes for the intensification of optical images or other signal distributions over a surface by means of secondary electron multiplication, characterised in that
a) first a negative form of the layered multichannel plate which is to be manufactured consisting of column-like structures (7) on a metal electrode (2) with intermediate lattice-like open spaces (8) is produced, in which lattice-like open spaces (8) are produced in a plate (1) which has at least the thickness of the multichannel plate and consists of electrically insulating material whose properties can be changed by high energy radiation, vertically or obliquely to the plate surface through partial irradition and partial removal of this material using the different material properties produced by the radiation,
b) Dynode layers (10, 12) are produced by electrochemical means alternating with electrochemically conducting or insulating intermediate layers (11, 13) in the lattice-like open space (8) of the negative form using the metal electrode associated with it (2), whereupon
c) The negative form is removed and in the case of the production of electrically conducting intermediate layers these are removed or converted into an electrical insulator.
2. A process according to Claim 1, characterised in that a metal positive form is produced after step a) by galvanic duplication and subsequent removal of the primary negative form, after which several secondary negative forms of the layered multichannel plate are produced by repeated duplication of the metal positive form in which in accordance with step b) the dynode layers are produced by electrochemical means alternating with electrically conducting or insulating intermediate layers, whereupon in accordance with step c) the secondary negative forms are removed and in the case of the production of electrically conducting intermediate layers these are removed or converted into an electrical insulator.
3. The process according to Claims 1 or 2, characterised in that the dynode layers (10) are firmly fixed to electrically insulated supports (9) in the process of electrochemical manufacture and the intermediate layers (11) consist of a more soluble material in comparison with the dynode layers which is dissolved out after removal of the negative form.
4. A process according to Claims 1 or 2, characterised in that the intermediate layers (13) consist of a more readily oxidisable material than the dynode layers (12) which is converted into an electrical insulator by oxidation after removal of the negative form.
5. A process according to Claims 1 or 2, characterised in that the intermediate layers (13) are produced by the complete or partial oxidation of electrochemically deposited aluminium layers. 6. A process according to Claims 1 or 2, characterised in that aluminium is used as the material for the dynode layers (14a) and the intermediate layers (15) are produced by partial oxidation of the dynode layers.
7. A process according to one of the Claims 1 to 6, characterised in that the negative forms of the channels are bent by means of a uniformly applied force, for example a centrifugal force, at a raised temperature prior to production of the dynode layers and the intermediate layers.
8. The use of layered multichannel plates manufactured in accordance with one of claims 1 to 6 to produce stack of at least two multichannel plates with channels oblique to the plate surface in which the channels which are directed together jointly form structures of a zigzag shape.
EP85101037A 1984-03-10 1985-02-01 Manufacturing process for layered metallic multichannel plates for an image intensifier, and use of plates so manufactured Expired EP0154796B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85101037T ATE38451T1 (en) 1984-03-10 1985-02-01 METHOD OF MANUFACTURE OF LAYERED MULTI-CHANNEL PLATES OF METAL FOR IMAGE INTENSER AND USE OF THE MULTI-CHANNEL PLATES SO MANUFACTURED.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3408849A DE3408849C2 (en) 1984-03-10 1984-03-10 Process for producing layered metal multi-channel plates for image intensifiers and use of the multi-channel plates thus produced
DE3408849 1984-03-10

Publications (3)

Publication Number Publication Date
EP0154796A2 EP0154796A2 (en) 1985-09-18
EP0154796A3 EP0154796A3 (en) 1986-12-30
EP0154796B1 true EP0154796B1 (en) 1988-11-02

Family

ID=6230129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85101037A Expired EP0154796B1 (en) 1984-03-10 1985-02-01 Manufacturing process for layered metallic multichannel plates for an image intensifier, and use of plates so manufactured

Country Status (6)

Country Link
US (1) US4563251A (en)
EP (1) EP0154796B1 (en)
JP (1) JPS60208040A (en)
AT (1) ATE38451T1 (en)
BR (1) BR8501057A (en)
DE (1) DE3408849C2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189777A (en) * 1990-12-07 1993-03-02 Wisconsin Alumni Research Foundation Method of producing micromachined differential pressure transducers
US5206983A (en) * 1991-06-24 1993-05-04 Wisconsin Alumni Research Foundation Method of manufacturing micromechanical devices
US5190637A (en) * 1992-04-24 1993-03-02 Wisconsin Alumni Research Foundation Formation of microstructures by multiple level deep X-ray lithography with sacrificial metal layers
US5378583A (en) * 1992-12-22 1995-01-03 Wisconsin Alumni Research Foundation Formation of microstructures using a preformed photoresist sheet
US5412265A (en) * 1993-04-05 1995-05-02 Ford Motor Company Planar micro-motor and method of fabrication
GB9717210D0 (en) * 1997-08-14 1997-10-22 Central Lab Of The Research Co Electron multiplier array
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
DE10305427B4 (en) * 2003-02-03 2006-05-24 Siemens Ag Production method for a perforated disk for ejecting a fluid
GB0307526D0 (en) * 2003-04-01 2003-05-07 Council Cent Lab Res Councils Electron multiplier array
WO2004086964A2 (en) * 2003-04-01 2004-10-14 Council For The Central Laboratory Of The Research Councils Large area detectors and displays
EP1642449A1 (en) * 2003-07-09 2006-04-05 Council For The Central Laboratory Of The Research Councils Image machine using a large area electron multiplier

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1434053A (en) * 1973-04-06 1976-04-28 Mullard Ltd Electron multipliers
US4193176A (en) * 1978-10-30 1980-03-18 Hughes Aircraft Company Multiple grid fabrication method
DE2922642C2 (en) * 1979-06-02 1981-10-01 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the manufacture of plates for the construction of separation nozzle elements
DE3007385A1 (en) * 1980-02-27 1981-09-03 Siemens AG, 1000 Berlin und 8000 München Galvanoplastic prodn. of precision planographic elements - e.g. for integrated circuit prodn., pref. using continuous poly:methyl methacrylate composite photo-film
DE3039110A1 (en) * 1980-10-16 1982-05-13 Siemens AG, 1000 Berlin und 8000 München METHOD FOR THE STRESS-FREE DEVELOPMENT OF IRRADIATED POLYMETHYL META ACRYLATE LAYERS
GB2108314A (en) * 1981-10-19 1983-05-11 Philips Electronic Associated Laminated channel plate electron multiplier
DE3150257A1 (en) * 1981-12-18 1983-06-30 Siemens AG, 1000 Berlin und 8000 München Image intensifier
DE3206820C2 (en) * 1982-02-26 1984-02-09 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for making separation nozzle elements
DE3221981C2 (en) * 1982-06-11 1985-08-29 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the production of separating nozzle elements consisting of separating bodies with end plates for separating gaseous or vaporous mixtures

Also Published As

Publication number Publication date
EP0154796A2 (en) 1985-09-18
EP0154796A3 (en) 1986-12-30
BR8501057A (en) 1985-10-29
DE3408849C2 (en) 1987-04-16
DE3408849A1 (en) 1985-09-19
JPS60208040A (en) 1985-10-19
JPH0535542B2 (en) 1993-05-26
US4563251A (en) 1986-01-07
ATE38451T1 (en) 1988-11-15

Similar Documents

Publication Publication Date Title
DE2512086C3 (en) Process for the production of self-supporting, thin metal structures
DE69221689T2 (en) Process for the production of arrester electrode units for thin-film generators, arrester electrode units and generators made from them
DE3106368C2 (en) DC gas discharge indicator
EP0154796B1 (en) Manufacturing process for layered metallic multichannel plates for an image intensifier, and use of plates so manufactured
DE2052424C3 (en) Process for making electrical line connections
DE2036139A1 (en) Thin-film metallization process for microcircuits
EP0168509B1 (en) Manufacture of connection holes in plastic plates and application of the method
DE2951287A1 (en) METHOD FOR PRODUCING PLANE SURFACES WITH THE FINEST TIPS IN THE MICROMETER AREA
EP0283773B1 (en) Miniaturized secondary electron multiplier and its manufacturing procedure
DE1800663A1 (en) Device permeable to electron beams and process for their production
DE69601956T2 (en) Method of manufacturing a columnar structure for field emission devices
DE3408848C2 (en) Process for the production of multi-channel plates
DE4432725C1 (en) Forming three-dimensional components on surface of semiconductor chips etc.
EP0774765A2 (en) Manufacturing method of a multilayer ceramic electronic component
DE2454413C2 (en)
DE10256922A1 (en) Fuel cell metallic separator used in proton-exchange membrane fuel cell includes flattened ridge portions which are brought into contact with a membrane electrode assembly
WO1997002108A1 (en) Process for manufacturing mould inserts
DE3324968C2 (en)
DE4001399C1 (en) Metallic microstructures - formed on substrates, by putting poly:methyl methacrylate] between moulding tool and silicon substrate
EP0204198A1 (en) Channel structure of an electron multiplier
DE112007002067T5 (en) Fuel cell separator, method for producing the fuel cell separator and fuel cell
DE112007002029B4 (en) Method for manufacturing a fuel cell separator
DE1765341B1 (en) METHOD OF MANUFACTURING A MULTI-LAYER PRINTED CIRCUIT
DE2900430C3 (en) Metallic heat exchanger element and method of making the same
DE4201612C2 (en) Process for the galvanic introduction of metal and alloy into structured glass or glass ceramic bodies and use of the process for the production of metal composites

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850805

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19880321

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 38451

Country of ref document: AT

Date of ref document: 19881115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941116

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941221

Year of fee payment: 11

EAL Se: european patent in force in sweden

Ref document number: 85101037.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950228

Year of fee payment: 11

Ref country code: FR

Payment date: 19950228

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST