EP0154796B1 - Verfahren zur Herstellung geschichteter Vielkanalplatten aus Metall für Bilderverstärker und Verwendung der so hergestellten Vielkanalplatten - Google Patents
Verfahren zur Herstellung geschichteter Vielkanalplatten aus Metall für Bilderverstärker und Verwendung der so hergestellten Vielkanalplatten Download PDFInfo
- Publication number
- EP0154796B1 EP0154796B1 EP85101037A EP85101037A EP0154796B1 EP 0154796 B1 EP0154796 B1 EP 0154796B1 EP 85101037 A EP85101037 A EP 85101037A EP 85101037 A EP85101037 A EP 85101037A EP 0154796 B1 EP0154796 B1 EP 0154796B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layers
- produced
- plate
- channels
- intermediate layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/18—Electrode arrangements using essentially more than one dynode
- H01J43/24—Dynodes having potential gradient along their surfaces
- H01J43/246—Microchannel plates [MCP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/12—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
- H01J9/125—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/32—Secondary emission electrodes
Definitions
- the invention relates to a method for producing layered multi-channel plates with metal dynodes for amplifying optical images or other areal signal distributions by means of secondary electron multiplication, and to the use of multi-channel plates produced in this way.
- the invention is based on the object of proposing a method for producing layered multi-channel image intensifier plates of the generic type in which the separate production of the dynodes and their subsequent stacking and mutual alignment are avoided.
- layered multi-channel plates with metal dynodes can be produced, with which a similarly high spatial resolution and a similarly high transparency can be achieved as with the known image intensifier plates made of glass, without the limitations in amplification factor and in typical for glass image intensifier plates the signal repetition frequency must be accepted.
- a metallic positive mold is produced with a primary negative mold of the layered multi-channel plate using a metal electrode connected to it by galvanic molding and subsequent removal of the primary negative mold, after which several secondary moldings are made by repeated molding of the metallic positive mold
- Negative forms of the layered multi-channel plate are produced, which assume the role of the primary negative form in the further implementation of the method.
- Non-adhesive reactive resins are particularly suitable as impression materials. Further details relating to the impression can be found, for example, in DE-PS-3 206 820.
- the dynodes are mutually electrically isolated by removing the intermediate layers. If layered multi-channel plates with a larger diameter are to be produced in this way, it can be advantageous to mount electrically insulating supports not only on the channel-free edge, but also within the image field of the multi-channel plate, which is penetrated by channels.
- the supports in the area of the layered multi-channel plates, which are interspersed with channels cover only about 1 per mille of the image field, they can be perceived as a disadvantage if the transmission quality is particularly high.
- a modification of the method of the invention according to claim 4 is provided.
- Aluminum is particularly suitable for the subsequent conversion of the intermediate layer into an electrical insulator described there.
- the small wall thicknesses typical of multi-channel plates with high transparency it can be converted in a known manner with oxidizing agent working in the liquid and / or gaseous phase into the electrically excellent insulating A1 2 0 3 .
- the area penetrated by channels is to be surrounded by a channel-free area to facilitate assembly or the electrical connections, this area must consist of numerous thin walls to ensure the conversion of the more easily oxidizable material into an insulator.
- the limitation to thin walls does not apply if the intermediate layers, according to claim 5, by complete or partial Oxidation of galvanically deposited aluminum layers can be produced.
- the oxidation of the aluminum layers can be carried out both chemically and electrochemically.
- an inclination of the channels against the plate surface favors the collision of the primary particles with the channel walls and thus the desired electron release.
- the inclination of the channels is achieved by mutual displacement of the dynodes during stacking.
- dislocations occur between the mutually assigned channels of the adjacent dynodes, which lead to a reduction in transparency and / or the spatial resolution.
- the inclination of the channels can be brought about by appropriate orientation of the plate surface with respect to the direction of propagation of the high-energy radiation without loss of transparency and / or spatial resolution.
- a channel curvature aimed at suppressing the acceleration of parasitic ions can likewise only be achieved in the previously known methods for producing layered multi-channel plates only by mutually displacing the dynodes with the disadvantages mentioned above.
- these disadvantages can be avoided in that, according to claim 7, before the formation of the dynodes and intermediate layers, the negative shapes of the channels are bent at a higher temperature by a uniformly acting force, for example a centrifugal force.
- the layered multi-channel plates can be assembled in such a way that the channel openings of layered multi-channel plates lying one on top of the other are aligned with one another. This avoids losses in transparency and / or spatial resolution.
- Both corpuscular rays and electromagnetic waves can be considered as high-energy radiation. While the use of electromagnetic waves to produce the desired structures uses masks in a known manner, the structures can also be produced by electromagnetic control when using corpuscular beams.
- the X-ray radiation (“synchrotron radiation”) generated by the electron synchrotons, which is characterized by high intensity with a small aperture angle, has proven particularly useful.
- the choice of the material which can be changed by high-energy radiation depends on the type of high-energy radiation, corresponding regulations being found, for example, in DE-PS-2 922 642 and DE-OS-3 221 981.
- synchrotron radiation polymethyl methacrylate (PMMA) has proven particularly useful, it being possible to use a developer according to DE-OS-3 039 110 to remove the irradiated areas.
- the secondary electron yield factor of those with channels can be known in a manner known per se provided metal layers may be increased considerably.
- the inventive method is in
- the PMMA plate 1 is shown in FIG. 2 via an X-ray mask with synchrotron radiation 3 irradiated, which is directed obliquely to the surfaces of the PMMA plate 1 and the X-ray mask.
- the X-ray mask consists of a carrier 4, which only weakly absorbs the X-radiation, and an absorber 5, which strongly absorbs the X-radiation, by means of which the cross-sectional shapes and the positions of the negative shapes of the channels are defined.
- the individual structures of the absorber 5 correspond to the cross-sectional shapes of the negative shapes of the channels. Due to the high-intensity parallel synchrotron radiation, the PMMA in the areas 6 not covered by the absorber will undergo chemical radiation changes. These areas 6 irradiated in this way are removed by introducing the PMMA plate into a developer solution, so that a multichannel negative shape with columnar PMMA structures 7 and lattice-shaped free spaces 8 according to FIG. 3 is produced.
- the columnar PMMA structures 7 have lm a hexagonal cross-sectional shape having a width of about 30 I, the width of the free spaces 8 between the PMMA structures 7 is approximately 4 to.
- FIG. 4 When producing a multi-channel plate with individual dynodes, which are firmly connected to electrically insulating supports, the negative form shown in FIG. 4 is assumed, which, in addition to the metal electrode 2a, the columnar PMMA structures 7a with lattice-free spaces 8a, as they are were already shown in Figure 3, additionally contains supports 9 made of electrically insulating material. Layers of nickel 10 and copper 11 are alternately galvanically deposited in the free spaces 8a, so that a structure according to FIG. 5 is produced.
- the PMMA structures 7a with an organic solvent and the copper layers 11 and the electrode 2a with an etch which does not attack the nickel layers 10 are first removed, so that a sequence of mutually insulated dynode layers which are fixed to the electrically insulating supports 9 connected, remains.
- the negative mold 7 shown in FIG. 3 is used in the production of layered multi-channel plates made of dynodes and intermediate layers subsequently produced. 6, layers of nickel 12 and aluminum 13 are alternately deposited in the free spaces 8 of the negative mold 7. After removal of the negative mold 7 with an organic solvent and the electrode 2 with an etch which does not attack the nickel layers 12 or the aluminum layers 13, the aluminum layers are converted in a known manner by oxidation into aluminum oxide, so that according to FIG Layered multi-channel plate made of nickel dynodes 12 and insulating intermediate layers 13a made of aluminum oxide.
- the negative mold 7 shown in FIG. 3 is again assumed.
- An aluminum layer 14 made of an organic electrolyte is deposited into the free spaces 8b between the columnar PMMA structures 7b, as can be seen from the simplified illustration in FIG. 8, using the metal electrode 2b.
- This layer is partially converted into aluminum oxide in a second electrolyte containing sulfuric acid by anodic oxidation, so that a firmly adhering aluminum oxide layer 15 is formed as shown in FIG. 9.
- This is activated and coated by chemical reduction deposition with a thin metal layer 16 onto which an aluminum layer 14a is again galvanically deposited. This process sequence is repeated until the desired number of layer sequences is reached, whereupon the negative mold 7b and the electrode 2b are removed.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electron Tubes For Measurement (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Electroplating Methods And Accessories (AREA)
- Paper (AREA)
- Particle Accelerators (AREA)
- Laminated Bodies (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung geschichteter Vielkanalplatten mit Dynoden aus Metall für die Verstärkung optischer Bilder oder anderer flächenhafter Signalverteilungen mittels Sekundärelektronenvervielfachung sowie die Verwendung so hergestellter Vielkanalplatten.
- Es ist bekannt, optische Bilder oder andere flächenhafte Signalverteilungen mit geschichteten Vielkanalplatten aus Metall zu verstärken (s. DE-OS-3 150 257 und DE-PS-2 414 658). Sie bestehen aus zahlreichen elektrisch gegeneinander isolierten, mit eng benachbarten Löchern versehenen Metallschichten, die so gestapelt sind, daß die Löcher eng benachbarte, senkrecht zur Plattenoberfläche verlaufende Kanäle bilden. Die Schichten sind einzeln so an eine Spannungsquelle angeschlossen, daß sich zwischen ihnen ein stufenweiser Potentialanstieg ergibt. Die Kanäle erhalten dadurch die Funktion von Sekundärelektronenvervielfachern, wobei die mit Löchern versehenen Metallschichten die Dynoden bilden. Die Löcher der einzelnen Dynoden können durch chemisches Ätzen durch belichtete und entwickelte Photolackmasken hindurch eingearbeitet werden. In der Praxis werden gute Ergebnisse erreicht, wenn die Lochdurchmesser und die Dicke der Dynode ungefähr gleich sind. Aus "Spektrum der Wissenschaft", Januar 1982, Seiten 44 bis 55, ist es ferner bekannt, bei Vielkanal-Bilderverstärkerplatten aus Glas die Kanäle gekrümmt oder im Zickzack auszuführen. Im letzteren Fall werden hierzu mehrere Platten mit schräg verlaufenden Kanälen gestapelt.
- Wenn bei geschichteten Vielkanal-Bildverstärkerplatten ein ähnlich hohes räumliches Auflösungsvermögen wie bei Bildverstärkerplatten aus Glas erreicht werden soll, müssen die Durchmesser der Löcher und damit die Stärken der Dynoden in der Größenordnung von 30 J.Lm und darunter liegen. Es ergeben sich dann erhebliche Probleme beim gegenseitigen Ausrichten und elektrischen Isolieren der getrennt hergestellten folienartigen Dynoden.
- Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung geschichteter Vielkanal-Bildverstärkerplatten der gattungsgemäßen Art vorzuschlagen, bei dem die getrennte Herstellung der Dynoden und deren nachfolgendes Stapeln und gegenseitiges Ausrichten vermieden werden.
- Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.
- Mit dem erfindungsgemäßen Verfahren lassen sich geschichtete Vielkanalplatten mit Dynoden aus Metall herstellen, mit denen ein ähnlich hohes räumliches Auflösungsvermögen und eine ähnlich hohe Transparenz wie bei den bekannten Bildverstärkerplatten aus Glas erreicht werden kann, ohne daß die für Bilderverstärkerplatten aus Glas typischen Begrenzungen im Verstärkungsfaktor und in der Signalfolgefrequenz in Kauf genommen werden müssen.
- Zur Verbilligung der Massenfertigung von Vielkanalplatten der in Anspruch 1 beschriebenen Art kann das Verfahren der Erfindung entsprechend Anspruch 2 abgewandelt werden. Dabei wird mit einer primären Negativ-Form der geschichteten Vielkanalplatte unter Verwendung einer mit ihr verbundenen Metallelektrode durch galvanische Abformung und anschließende Entfernung der primären Negativ-Form eine metallische Positiv-Form hergestellt, wonach durch wiederholtes Abformen der metallischen Positiv-Form mit einer Abformmasse mehrere sekundäre Negativ-Formen der geschichteten Vielkanalplatte hergestellt werden, die bei der weiteren Durchführung des Verfahrens die Rolle der primären Negativ-Form übernehmen. Als Abformmasse sind besonders nichthaftende Reaktionsharze geeignet. Weitere Einzelheiten in bezug auf die Abformung können beispielsweise der DE-PS-3 206 820 entnommen werden.
- Bei einer speziellen Ausführungsform entsprechend Anspruch 3 werden die Dynoden durch Herauslösen der Zwischenschichten gegenseitig elektrisch isoliert. Wenn auf diese Weise geschichtete Vielkanalplatten mit größerem Durchmesser hergestellt werden sollen, kann es vorteilhaft sein, elektrisch isolierende Stützen nicht nur am kanalfreien Rand, sondern auch innerhalb des von Kanälen durchsetzten Bildfeldes der Vielkanalplatte anzubringen.
- Obwohl die Stützen in dem von Kanälen durchsetzten Bereich der entsprechend Anspruch 3 hergestellten geschichteten Vielkanalplatten in der Praxis nur etwa 1 Promille des Bildfeldes verdecken, können sie bei besonders hohen Ansprüchen an die Übertragungsqualität als Nachteil empfunden werden. Für diesen Fall ist eine Abwandlung des Verfahrens der Erfindung entsprechend Anspruch 4 vorgesehen. Für die dort beschriebene nachträgliche Umwandlung der Zwischenschicht in einen elektrischen Isolator eignet sich vor allem Aluminium. Es läßt sich bei den für Vielkanalplatten hoher Transparenz typischen geringen Wandstärken in bekannter Weise mit in der flüssigen und/oder gasförmigen Phase arbeitenden Oxidationsmittels in das elektrisch ausgezeichnet isolierende A1203 überführen. Wenn bei den entsprechend Anspruch 4 hergestellten geschichteten Vielkanalplatten der von Kanälen durchsetzte Bereich zur Erleichterung der Montage oder der elektrischen Anschlüsse von einem kanalfreien Bereich umgeben sein soll, muß dieser zur Sicherstellung der Umwandlung des leichter oxidierbaren Materials in einen Isolator aus zahlreichen dünnen Wänden bestehen.
- Die Beschränkung auf dünne Wände entfällt, wenn die Zwischenschichten, entsprechend Anspruch 5, durch vollständige oder partielle Oxidation von galvanisch abgeschiedenen Aluminiumschichten hergestellt werden. Die Oxidation der Aluminiumschichten ist sowohl chemisch als auch elektrochemisch durchführbar. Zur Erleichterung der galvanischen Abscheidung der Aluminiumschichten auf den darunterliegenden Oxidschichten, kann es zweckmäßig sein, dünne Metallschichten auf den Oxidschichten abzuscheiden, die bei der nachfolgenden Galvanik eine Stromzuführung parallel zur Plattenoberfläche ermöglichen.
- In Fällen, wo Aluminium als Dynodenmaterial akzeptiert werden kann, läßt sich das im Zusammenhang mit Anspruch 5 beschriebene Verfahren entsprechend Anspruch 6 vereinfachen.
- Eine Schrägstellung der Kanäle gegenüber der Plattenoberfläche begünstigt die Kollision der Primärteilchen mit den Kanalwänden und damit die gewünschte Elektronenauslösung. Bei den vorbekannten Verfahren zur Herstellung geschichteter Vielkanalplatten wird die Schrägstellung der Kanäle durch gegenseitiges Verschieben der Dynoden beim Stapeln erreicht. Dabei treten jedoch Versetzungen zwischen den einander zugeordneten Kanälen der benachbarten Dynoden auf, die zur Verminderung der Transparenz und/oder des räumlichen Auflösungsvermögens führen. Bei den nach dem Verfahren der Erfindung hergestellten geschichteten Vielkanalplatten, kann die Schrägstellung der Kanäle durch entsprechende Orientierung der Plattenoberfläche gegenüber der Ausbreitungsrichtung der energiereichen Strahlung ohne Verluste an Transparenz und/oder räumlichem Auflösungsvermögen bewirkt werden.
- Eine zur Unterdrückung der Beschleunigung parasitärer Ionen angestrebte Kanalkrümmung läßt sich bei den vorbekannten Verfahren zur Herstellung geschichteter Vielkanalplatten ebenfalls nur durch gegenseitiges Verschieben der Dynoden mit den oben erwähnten Nachteilen erzielen. Bei dem Verfahren der Erfindung können diese Nachteile dadurch vermieden werden, daß entsprechend Anspruch 7, vor der Erzeugung der Dynoden und Zwischenschichten, die Negativ-Formen der Kanäle durch eine gleichmäßig angreifende Kraft, beispielsweise eine Zentrifugalkraft, bei erhöhter Temperatur gekrümmt werden.
- Eine Unterdrückung der Beschleunigung parasitärer Ionen ist aber auch dadurch möglich, daß man mindestens zwei erfindungsgemäß hergestellte geschichtete Vielkanalplatten mit zur Plattenoberfläche schrägen Kanälen in bekannter Weise zu einem Stapel so zusammensetzt, daß die Kanäle gemeinsam zick-zack-förmige Strukturen bilden. Da bei den erfindungsgemäß hergestellten geschichteten Vielkanalplatten die Querschnitte und Positionen der Kanäle genau vorgebbar sind, lassen sich die geschichteten Vielkanalplatten entsprechend Anspruch 8 so zusammensetzen, daß die Kanalöffnungen aufeinanderliegender geschichteter Vielkanalplatten gegenseitig ausgerichtet sind. Dadurch werden Verluste an Transparenz und/oder räumlichen Auflösungsvermögen vermieden.
- Als energiereiche Strahlung kommen sowohl Korpuskularstrahlen als auch elektromagnetische Wellen in Frage. Während man bei der Verwendung elektromagnetischer Wellen zur Erzeugung der gewünschten Strukturen in bekannter Weise mit Masken arbeitet, kann man bei Verwendung von Korpuskularstrahlen die Strukturen auch durch elektromagnetische Steuerung erzeugen. Besonders bewährt hat sich die von den Elektronensynchrotons erzeugte Röntgenstrahlung ("Synchrotronstrahlung"), die sich durch hohe Intensität bei kleinem Öffnungswinkel auszeichnet. Die Wahl des durch energiereiche Strahlung veränderbaren Materials richtet sich nach der Art der energiereichen Strahlung, wobei entsprechende Vorschriften beispielsweise der DE-PS-2 922 642 und DE-OS-3 221 981 entnommen werden können. Bei Verwendung von Synchrotronstrahlung hat sich besonders Polymethylmethacrylat (PMMA) bewährt, wobei zur Entfernung der bestrahlten Bereiche ein Entwickler gemäß DE-OS-3 039 110 verwendet werden kann.
- Durch geeignete Oberflächenbehandlung, beispielsweise eine schwache Oxidation mit Sauerstoff oder Chlor bei höherer Temperatur, eine elektrochemische Behandlung oder durch Abscheidung einer dünnen Materialschicht nach dem CVD-Verfahren bzw. durch Kombinationen solcher Verfahren, kann in an sich bekannter Weise der Sekundärelektronen-Ausbeutefaktor der mit Kanälen versehenen Metallschichten u.U. beträchtlich erhöht werden. Das erfindungsgemäße Verfahren wird im
- folgenden anhand der Zeichnungen beispielhaft erläutert:
- Die Figuren 1 bis 3 zeigen schematisch die einzelnen Schritte der Erzeugung der Negativ- Form für die Herstellung einer geschichteten Vielkanalplatte,
- die Figuren 4 und 5 zeigen schematisch die Herstellung von Dynodenschichten, die fest mit elektrisch isolierenden Stützen verbunden sind, die Figuren 6 und 7 zeigen schematisch die Herstellung einer geschichteten Vielkanalplatte, bei der die Zwischenschichten zwischen den Dynoden nachträglich in isolierende Metalloxidschichten umgewandelt werden,
- die Figuren 8 und 9 zeigen schematisch die Herstellung einer geschichteten Vielkanalplatte, bei der sukzessiv Dynoden und isolierende Zwischenschichten aufeinander aufgebaut werden.
- Als Ausgangsmaterial für die Herstellung der Negativ-Form einer geschichteten Vielkanalplatte dient gemäß Fig. 1 eine 0,5 mm starke Platte 1 aus Polymethylmethacrylat (PMMA), die fest mit einer Metallelektrode 2 verbunden ist. Die PMMA-Platte 1 wird gemäß Fig. 2 über eine Röntgenmaske mit Synchrotronstrahlung 3 bestrahlt, die schräg zu den Oberflächen der PMMA-Platte 1 und der Röntgenmaske gerichtet ist. Die Röntgenmaske besteht aus einem die Röntgenstrahlung nur schwach absorbierenden Träger 4 und einem die Röntgenstrahlung stark absorbierenden Absorber 5, durch den die Querschnittsformen und die Positionen der Negativ-Formen der Kanäle festgelegt werden. Die einzelnen Strukturen des Absorbers 5 entsprechen den Querschnittsformen der Negativ-Formen der Kanäle. Durch die hochintensive parallele Synchrotronstrahlung wird das PMMA in den nicht vom Absorber abgedeckten Bereichen 6 strahlenchemisch verändern. Diese so bestrahlten Bereiche 6 werden durch Einbringen der PMMA-Platte in eine Entwicklerlösung entfernt, so daß eine Vielkanalnegativ-Form mit säulenförmigen PMMA-Strukturen 7 und gitterförmigen Freiräumen 8 gemäß Fig. 3 entsteht. Die säulenförmigen PMMA-Strukturen 7 haben eine sechseckige Querschnittsform mit einer Weite von ca. 30 Ilm, die Breite der Freiräume 8 zwischen den PMMA-Strukturen 7 beträgt ca. 4 um.
- Bei der Herstellung einer Vielkanalplatte mit einzelnen Dynoden, die fest mit elektrisch isolierenden Stützen verbunden sind, wird von der in Fig. 4 gezeigten Negativ-Form ausgegangen, die neben der Metallelektrode 2a, den säulenförmigen PMMA-Strukturen 7a mit gitterförmigen Freiräumen 8a, wie sie bereits in Figur 3 gezeigt wurden, zusätzlich noch Stützen 9 aus elektrisch isolierendem Material enthält. In die freien Zwischenräume 8a werden galvanisch abwechselnd Schichten aus Nickel 10 und Kupfer 11 abgeschieden, so daß ein Aufbau gemäß Fig. 5 entsteht. Anschließend werden zunächst die PMMA-Strukturen 7a mit einem organischen Lösungsmittel und die Kupferschichten 11 sowie die Elektrode 2a mit einer Ätze, welche die Nickelschichten 10 nicht angreift, entfernt, so daß eine Folge von gegeneinander isolierten Dynodenschichten, die fest mit den elektrisch isolierenden Stützen 9 verbunden sind, verbleibt.
- Bei der Herstellung von geschichteten Vielkanalplatten aus Dynoden und nachträglich erzeugten Zwischenschichten wird von der in Fig. 3 gezeigten Negativ-Form 7 ausgegangen. Gemäß Fig. 6 werden in die Freiräume 8 der Negativ-Form 7 abwechselnd Schichten aus Nickel 12 und Aluminium 13 abgeschieden. Nach dem Entfernen der Negativ-Form 7 mit einem organischen Lösungsmittel und der Elektrode 2 mit einer Ätze, welche weder die Nickelschichten 12 noch die Aluminiumschichten 13 angreift, werden die Aluminiumschichten in bekannter Weise durch Oxidation in Aluminiumoxid umgewandelt, so daß gemäß Fig. 7 eine geschichtete Vielkanalplatte aus Nickeldynoden 12 und isolierenden Zwischenschichten 13a aus Aluminiumoxid entsteht.
- Bei der Herstellung von geschichteten Vielkanalplatten, bei denen sukzessiv Dynoden und isolierende Zwischenschichten aufeinander aufgebaut werden, wird wiederum von der in Fig. 3 gezeigten Negativ-Form 7 ausgegangen. In die Freiräume 8b zwischen den säulenförmigen PMMA-Strukturen 7b wird, wie aus der vereinfachten Darstellung in Fig. 8 hervorgeht, unter Verwendung der Metallelektrode 2b eine Aluminiumschicht 14 aus einem organischen Elektrolyten abgeschieden. Diese Schicht wird in einem zweiten, schwefelsäurehaltigen Elektrolyten durch anodische Oxidation teilweise in Aluminiumoxid umgewandelt, so daß sich gemäß Fig. 9 eine festhaftende Aluminiumoxidschicht 15 ausbildet. Diese wird aktiviert und durch chemische Reduktionsabscheidung mit einer dünnen Metallschicht 16 überzogen, auf die wieder eine Aluminiumschicht 14a galvanisch abgeschieden wird. Diese Prozeßfolge wird solange wiederholt, bis die gewünschte Zahl von Schichtfolgen erreicht ist, worauf die Negativ-Form 7b und die Elektrode 2b entfernt werden.
- Einzelheiten der galvanischen Herstellung dünner Aluminiumschichten findet man z. B. bei S.Birkle, J.Gering, K.Stöger, Zeitschrift Metall, Heft 4, April 1982, während Einzelheiten über die nachträgliche Umwandlung in Oxyd z. B. dem Handbuch der Galvanotechnik, Band 1, Teil 2, S. 1041-1043, Carl Hauser Verlag, München 1964, zu entnehmen sind.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT85101037T ATE38451T1 (de) | 1984-03-10 | 1985-02-01 | Verfahren zur herstellung geschichteter vielkanalplatten aus metall fuer bilderverstaerker und verwendung der so hergestellten vielkanalplatten. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE3408849A DE3408849C2 (de) | 1984-03-10 | 1984-03-10 | Verfahren zur Herstellung geschichteter Vielkanalplatten aus Metall für Bildverstärker und Verwendung der so hergestellten Vielkanalplatten |
| DE3408849 | 1984-03-10 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0154796A2 EP0154796A2 (de) | 1985-09-18 |
| EP0154796A3 EP0154796A3 (en) | 1986-12-30 |
| EP0154796B1 true EP0154796B1 (de) | 1988-11-02 |
Family
ID=6230129
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP85101037A Expired EP0154796B1 (de) | 1984-03-10 | 1985-02-01 | Verfahren zur Herstellung geschichteter Vielkanalplatten aus Metall für Bilderverstärker und Verwendung der so hergestellten Vielkanalplatten |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US4563251A (de) |
| EP (1) | EP0154796B1 (de) |
| JP (1) | JPS60208040A (de) |
| AT (1) | ATE38451T1 (de) |
| BR (1) | BR8501057A (de) |
| DE (1) | DE3408849C2 (de) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5189777A (en) * | 1990-12-07 | 1993-03-02 | Wisconsin Alumni Research Foundation | Method of producing micromachined differential pressure transducers |
| US5206983A (en) * | 1991-06-24 | 1993-05-04 | Wisconsin Alumni Research Foundation | Method of manufacturing micromechanical devices |
| US5190637A (en) * | 1992-04-24 | 1993-03-02 | Wisconsin Alumni Research Foundation | Formation of microstructures by multiple level deep X-ray lithography with sacrificial metal layers |
| US5378583A (en) * | 1992-12-22 | 1995-01-03 | Wisconsin Alumni Research Foundation | Formation of microstructures using a preformed photoresist sheet |
| US5412265A (en) * | 1993-04-05 | 1995-05-02 | Ford Motor Company | Planar micro-motor and method of fabrication |
| GB9717210D0 (en) * | 1997-08-14 | 1997-10-22 | Central Lab Of The Research Co | Electron multiplier array |
| US5943223A (en) * | 1997-10-15 | 1999-08-24 | Reliance Electric Industrial Company | Electric switches for reducing on-state power loss |
| DE10305427B4 (de) * | 2003-02-03 | 2006-05-24 | Siemens Ag | Herstellungsverfahren für eine Lochscheibe zum Ausstoßen eines Fluids |
| WO2004086964A2 (en) * | 2003-04-01 | 2004-10-14 | Council For The Central Laboratory Of The Research Councils | Large area detectors and displays |
| GB0307526D0 (en) * | 2003-04-01 | 2003-05-07 | Council Cent Lab Res Councils | Electron multiplier array |
| JP2007516634A (ja) * | 2003-07-09 | 2007-06-21 | カウンシル フォー ザ セントラル ラボラトリー オブ ザ リサーチ カウンシルズ | 大面積電子増倍管を用いた撮像機 |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1434053A (en) * | 1973-04-06 | 1976-04-28 | Mullard Ltd | Electron multipliers |
| US4193176A (en) * | 1978-10-30 | 1980-03-18 | Hughes Aircraft Company | Multiple grid fabrication method |
| DE2922642C2 (de) * | 1979-06-02 | 1981-10-01 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zum Herstellen von Platten für den Aufbau von Trenndüsenelementen |
| DE3007385A1 (de) * | 1980-02-27 | 1981-09-03 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur kontinuierlichen galvanoplastischen fertigung von praezisionsflachteilen |
| DE3039110A1 (de) * | 1980-10-16 | 1982-05-13 | Siemens AG, 1000 Berlin und 8000 München | Verfahren fuer die spannungsfreie entwicklung von bestrahlten polymethylmetacrylatschichten |
| GB2108314A (en) * | 1981-10-19 | 1983-05-11 | Philips Electronic Associated | Laminated channel plate electron multiplier |
| DE3150257A1 (de) * | 1981-12-18 | 1983-06-30 | Siemens AG, 1000 Berlin und 8000 München | Bildverstaerker |
| DE3206820C2 (de) * | 1982-02-26 | 1984-02-09 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zum Herstellen von Trenndüsenelementen |
| DE3221981C2 (de) * | 1982-06-11 | 1985-08-29 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zum Herstellen von aus Trennkörpern mit Abschlußplatten bestehenden Trenndüsenelementen zur Trennung gas- oder dampfförmiger Gemische |
-
1984
- 1984-03-10 DE DE3408849A patent/DE3408849C2/de not_active Expired
-
1985
- 1985-02-01 EP EP85101037A patent/EP0154796B1/de not_active Expired
- 1985-02-01 AT AT85101037T patent/ATE38451T1/de not_active IP Right Cessation
- 1985-03-06 US US06/708,842 patent/US4563251A/en not_active Expired - Fee Related
- 1985-03-08 BR BR8501057A patent/BR8501057A/pt not_active IP Right Cessation
- 1985-03-11 JP JP60046717A patent/JPS60208040A/ja active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| BR8501057A (pt) | 1985-10-29 |
| JPS60208040A (ja) | 1985-10-19 |
| EP0154796A3 (en) | 1986-12-30 |
| DE3408849A1 (de) | 1985-09-19 |
| DE3408849C2 (de) | 1987-04-16 |
| US4563251A (en) | 1986-01-07 |
| EP0154796A2 (de) | 1985-09-18 |
| JPH0535542B2 (de) | 1993-05-26 |
| ATE38451T1 (de) | 1988-11-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE2512086C3 (de) | Verfahren zur Herstellung freitragender, dünner Metallstrukturen | |
| DE69221689T2 (de) | Verfahren zum Herstellung von Ableiter-Elektrode Einheiten für dünnerschichten Generatoren, Ableiter-Elektrode Einheiten und daraus hergestellte Generatoren | |
| DE3106368C2 (de) | Gleichstrom-Gasentladungsanzeigevorrichtung | |
| EP0154796B1 (de) | Verfahren zur Herstellung geschichteter Vielkanalplatten aus Metall für Bilderverstärker und Verwendung der so hergestellten Vielkanalplatten | |
| DE2052424C3 (de) | Verfahren zum Herstellen elektrischer Leitungsverbindungen | |
| DE2036139A1 (de) | Dunnfümmetallisierungsverfahren fur Mikroschaltungen | |
| EP0168509B1 (de) | Herstellung von Verbindungslöchern in Kunstoffplatten und Anwendung des Verfahrens | |
| EP0154772A1 (de) | Bipolarplatte für einen aus mehreren elektrochemischen Zellen mit Feststoffelektrolyt aufgebauten stapelartigen Apparat und Verfahren zu deren Herstellung | |
| DE2951287A1 (de) | Verfahren zur herstellung von ebenen oberflaechen mit feinsten spitzen im mikrometer-bereich | |
| EP0283773B1 (de) | Mikro-Sekundärelektronenvervielfacher und Verfahren zu seiner Herstellung | |
| DE1800663A1 (de) | Fuer Elektronenstrahlen durchlaessige Vorrichtung und Verfahren zu deren Herstellung | |
| DE69601956T2 (de) | Herstellungsverfahren einer säulenförmigen Struktur für Feldemissionsvorrichtungen | |
| EP0154797B1 (de) | Verfahren zur Herstellung von Vielkanalplatten und deren Verwendung | |
| EP0774765A2 (de) | Verfahren zur Herstellung eines vielschichtigen keramischen Elektronikbauteils | |
| EP0836540A1 (de) | Verfahren zur herstellung von formeinsätzen | |
| DE3324968C2 (de) | ||
| DE4001399C1 (en) | Metallic microstructures - formed on substrates, by putting poly:methyl methacrylate] between moulding tool and silicon substrate | |
| DE112007002029B4 (de) | Verfahren zur Herstellung eines Brennstoffzellenseparators | |
| EP0204198A1 (de) | Kanalstruktur eines Elektronenvervielfachers | |
| DE112007002067T5 (de) | Brennstoffzellen-Separator, Verfahren zur Herstellung des Brennstoffzellen-Separators und Brennstoffzelle | |
| DE1765341B1 (de) | Verfahren zur herstellung einer mehrlagigen gedruckten schaltung | |
| DE2900430C3 (de) | Metallisches Wärmeaustauscherelement und Verfahren zur Herstellung desselben | |
| DE4201612C2 (de) | Verfahren zur galvanischen Metall- und Legierungseinbringung in strukturierte Glas- oder Glaskeramikkörper und Verwendung des Verfahrens zur Herstellung von Metallverbunden | |
| DE2724679A1 (de) | Verfahren zur herstellung von elektrischen widerstaenden | |
| DE19812873B4 (de) | Elektrolytkondensator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Designated state(s): AT CH FR GB IT LI NL SE |
|
| 17P | Request for examination filed |
Effective date: 19850805 |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH FR GB IT LI NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19880321 |
|
| ITF | It: translation for a ep patent filed | ||
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH FR GB IT LI NL SE |
|
| REF | Corresponds to: |
Ref document number: 38451 Country of ref document: AT Date of ref document: 19881115 Kind code of ref document: T |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| ITTA | It: last paid annual fee | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940224 Year of fee payment: 10 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19941116 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19941221 Year of fee payment: 11 |
|
| EAL | Se: european patent in force in sweden |
Ref document number: 85101037.1 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19950201 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950216 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950228 Year of fee payment: 11 Ref country code: FR Payment date: 19950228 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960201 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960202 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960228 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960901 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960201 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961031 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960901 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |