EP0154207A1 - Method and device for separating electrically conducting non-ferrous metals - Google Patents

Method and device for separating electrically conducting non-ferrous metals Download PDF

Info

Publication number
EP0154207A1
EP0154207A1 EP85101432A EP85101432A EP0154207A1 EP 0154207 A1 EP0154207 A1 EP 0154207A1 EP 85101432 A EP85101432 A EP 85101432A EP 85101432 A EP85101432 A EP 85101432A EP 0154207 A1 EP0154207 A1 EP 0154207A1
Authority
EP
European Patent Office
Prior art keywords
air
magnetic field
alternating magnetic
air duct
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85101432A
Other languages
German (de)
French (fr)
Other versions
EP0154207B1 (en
Inventor
Jörg Dr.-Ing. Julius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyndex Recycling Systems Ltd
Original Assignee
Lindemann Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lindemann Maschinenfabrik GmbH filed Critical Lindemann Maschinenfabrik GmbH
Priority to AT85101432T priority Critical patent/ATE34314T1/en
Publication of EP0154207A1 publication Critical patent/EP0154207A1/en
Application granted granted Critical
Publication of EP0154207B1 publication Critical patent/EP0154207B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/253Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a linear motor

Definitions

  • the invention relates to a method for separating non-magnetic, electrically conductive metals from a mixture of solids from their feed direction in an air stream under the action of an alternating magnetic field and a device for carrying out this method with the help of an alternating magnetic field generator in an air duct with air supply at the lower end, with at least one Air discharge at the other end and with a feed opening for the solids mixture.
  • Eddy current separation In the so-called eddy current separation, the feed material is passed between the poles of an alternating magnetic field generator, for example on a belt or in free fall. In this case, eddy currents are induced in the highly conductive components of the mixture to be separated, which build up their own magnetic fields which are opposed to the generating field and accordingly these components are accelerated by electromagnetic forces relative to the other components of the mixture. Eddy current separation can be used to separate non-ferromagnetic, highly electrically conductive materials, such as aluminum and copper, from scrap and waste, such as automobile shredder scrap, electronic scrap, glass waste and the like.
  • ferromagnetic parts are contained in this material, a magnetic separation must be provided before passing through the eddy current separating device, because ferromagnetic parts would clog the working gap of the eddy current separating device.
  • the latter are preceded by other treatment stages, for example a wind sifting, because the If possible, forces to be used in eddy current separation should not be compensated for by collision with other parts, which in themselves can be eliminated with less effort.
  • Wind sifting is particularly suitable for separating lighter parts from heavier parts.
  • the separation takes place according to the sinking speed in vertical or horizontal air flows.
  • the feed material has to be pre-classified very narrowly, if the grain shape is neglected, if the effort involved is to achieve appropriate separation results.
  • the air flow directed against the particle flow to be separated can be adjusted so that small (and of course large), specifically heavy particles, which often differ greatly in shape from the spherical shape, sink downwards, while small, specifically light particles decrease from the air flow be carried upwards.
  • Problems may arise from a proportion of relatively large, specifically light parts, which, in terms of its material, belongs to the lightweight material, but which decreases in accordance with its absolute weight or its ball-like form factor together with the specifically heavy proportion. If the strength of the air flow were increased, the larger, specifically lighter parts could also be carried with the light goods, but at the same time a significant proportion of the specifically heavier material would also be carried away with the light goods with a corresponding grain size and grain shape.
  • DE-OS 25 09 638 proposes a device for eddy current separation in an air duct which only favors the loosening of the feed material.
  • the individual pieces of the mixture to be separated reach the air flow in free fall through the gap of an alternating magnetic field generator, the field of which migrates transversely to the direction of fall.
  • a disadvantage of the known device is, above all, that the mixture pieces to be influenced electromagnetically in the sense of eddy current separation have to be moved laterally to the side of the falling particles and therefore collide with other parts and can be influenced accordingly.
  • the proportion of incorrect discharges, provided that the feed material flow is not largely isolated is quite high in both products due to hindrance or procrastination.
  • the air blown in should serve to loosen the sorted goods in the feed chute before reaching the viewing zone and not to separate substances of different densities.
  • a joint discharge of fine-grained, specifically lighter constituents together with the coarser, specifically lighter substances which are deflected by the alternating magnetic field generator are not taken into account.
  • the individual pieces have no defined position and can therefore be rotated by the alternating magnetic field in a direction in which the respective field can exert only a relatively small separating force (e.g. lateral acceleration) due to eddy current separation on the respective individual piece.
  • the invention has for its object to improve a method of the type mentioned in such a way that the electrically conductive particles influenced by the alternating magnetic field can be additionally accelerated in the desired manner essentially without interference from neighboring particles.
  • This object is achieved in that the mixture of solids is fed to a wind-sifting main air stream in a single-layer layer as possible at an angle to the air flow direction, that under the action of the alternating magnetic field in the area of the feed both the large-grained light components, each consisting of non-magnetic, conductive material, and those due to of the form factor in the case of pure air separation into the heavy fraction of such material are transferred to the light material discharge, and that, preferably by adding additional air, the flow in the discharge area for the light is in the discharge zone is accelerated well.
  • the above-mentioned object is achieved by an air classifier as an air duct whose material supply lies outside the air flow, the feed opening opening laterally into the air duct and in the mouth region a device for air acceleration in the flow direction and the alternating magnetic field generator with both in the direction of the air flow and also arranged transversely to a bottom edge of the material feed in the direction of force of the alternating magnetic field in the area of the feed opening.
  • the effect of the air acceleration is that the air flow velocity in the flow direction behind the feed opening is greater than before the feed opening; Due to the alternating magnetic field provided in this area of the speed jump of the air flow in the air classifier duct, with the polarity and direction of change appropriate according to the invention, it is achieved that electrically conductive particles can be raised from the area of lower air speed to the area of higher air speed up to a minimum grain size still to be detected by the eddy current separation . If the air classifier air flow is set to separate smaller (not covered by the eddy current separation), specifically lighter and specifically heavier particles, the eddy current separation combined with the additional or secondary air flow is an ideal means, even the relatively large, specifically light pieces of the mixture, e.g.
  • Aluminum pieces with a spherical shape factor to be sorted out by lifting these parts from the low air speed level to the higher air speed level and transporting them to the light goods with the stronger air flow.
  • the method according to the invention there is also no risk that relatively small, specifically heavy parts get into the light goods.
  • the bottom edge according to the invention which is preferably formed by an angular opening of the material feed into the air duct, the material is brought into the area of the air classifier and of the alternating magnetic field generator in a layer which is as single-layered as possible in contrast to the prior art.
  • the substances to be separated are sorted in the upward air flow 1 in a vertically arranged, zigzag-shaped air duct 2 designed as an air classifier.
  • a vertically arranged, zigzag-shaped air duct 2 designed as an air classifier.
  • differently shaped, vertical or horizontal air ducts can also be used.
  • the material to be separated is fed into the air duct 2, preferably via a cellular wheel sluice 3 as material feed, in the upper third of the air duct 2.
  • the associated feed opening 4 of the air duct 2 is optionally connected to the cellular wheel sluice 3 via a trough 5 or another conveying means.
  • the feed opening 4 is preferably provided in the upper third or, viewed in the direction of the air flow 1, in the last third of the air duct 2.
  • a bottom edge A is provided, which in its simplest embodiment is formed by the opening of the channel 5 into the air channel 2 at the feed opening 4, which opening is provided in this area at an angle to the longitudinal axis of the air channel 2.
  • the material to be separated via the feed opening 4 into the air duct 2 which can consist of specifically heavier particles 6 and specifically lighter particles 7 according to FIG. 2, falls in the air duct 2 and is sucked in via a main air supply 8 at the lower end of the duct 2 Air flow 1 sucked off via an air discharge 9 at the upper end of the duct.
  • a main air supply 8 at the lower end of the duct 2
  • Air flow 1 sucked off via an air discharge 9 at the upper end of the duct.
  • there is a highly turbulent air flow within the duct 2 which favors the desired separation, with so-called vortex rollers 10 and 11.
  • the upward main flow forms approximately accordingly in duct 2 arrows 12 and 13.
  • the air duct 2 according to FIGS. 1 and 2 has a secondary air supply 14 in the transition region B to the discharge zone 16, which is approximately at the level of the confluence (feed opening 4) of the material supply into the air duct 2, through which an additional air flow 15 is introduced into the duct 2 .
  • the additional air flow 15 is added to the air flow 1 sucked in via the main air supply 8, so that in the upper or second area, the discharge zone 16, of the air channel 2 adjoining the feed opening 4, a stronger air flow 13 is established than in the previous area 33 of the channel.
  • the secondary air supply 14 can - as shown - consist of a line; but it can also open into the discharge zone of channel 2 with several lines, even in a ring at several points.
  • the light material discharged upward in the air duct 2 is transported by the air flow 13 via a pipeline 17 into a cyclone 18 in which the solid parts are separated from the carrier air flow.
  • the solid particles separated in the cyclone 18 are expediently discharged via a rotary valve 19, while the cleaned air according to FIG. 3 is conducted to the suction side of a blower 21 via a pipeline 20 (see FIG. 3).
  • the air flow in the circuit can be directed back to air duct 2.
  • fresh air can be introduced into the circulating air circuit via a valve 22.
  • the pressure side of the blower 21 can be connected to the main air supply 8 of the air duct 2 via a pipe 23.
  • Partial air flows can be directed via a valve 24 for dust separation into a filter 25 and via a line 26 to the secondary air supply 14 of the air duct 2.
  • Valves 27 and 28, for example, are used to control the air quantities in the secondary air supply 14 and in the main air supply 8. While the light goods according to FIGS. 1 and 2 are transported with the air flow 13 to the cyclone 18, the heavier goods come against the air flow 12 to the channel floor 29 and is discharged there, for example, via a cellular wheel sluice 30 (FIG. 1).
  • the present device has, in addition to the secondary air supply 14, an alternating magnetic field generator 31 which, according to FIGS. 1 and 2, is arranged directly adjacent to the bottom edge A below the feed opening 4.
  • the variable magnetic field of the alternating magnetic field generator 31 is preferably oriented at right angles to the feed material flow 32, that is to say transversely to the bottom edge A.
  • alternating magnetic field generators can also be used, which are installed on the two side surfaces of the channel 2 in the area of the feed opening 4, the field of which migrates in the direction of the air flow 13 (see, for example, the exemplary embodiment according to FIGS. 4 and 5).
  • field generator 31 single or multi-phase controlled coil systems with mains frequency as well as those coils that are operated with voltages of higher frequency. Air coils or iron core coils can be used.
  • the separation process can be seen more precisely from the detailed drawing of the zigzag-shaped air duct 2 according to FIG. 2.
  • the strength of the air flow 13 after the secondary air supply 14 in the second channel area 16 is substantially higher than that of the air flow 12 in the channel area 33 in front of the feed opening 4.
  • the separation proceeds in such a way that the feed material via the rotary valve 3 and the Inlet nozzle 5 is passed into the zigzag-shaped air duct 2.
  • the bottom edge A in the invention ensures that the feed material is or can be brought into the area of the air classifier and of the alternating magnetic field generator in a layer which is as single-layered as possible.
  • the material to be sorted falls over the entire cross section of a vertical shaft into the separation zone.
  • a vertical feed is deliberately dispensed with and the material to be sorted is introduced laterally into the separation zone of the air duct, so that in the case of the embodiment according to FIGS. 1 and 2 it is constantly on a floor, namely the trough 5 up to the actual one Separation zone is brought up.
  • the material particles usually always have their largest area on the floor; this surface is then also exposed to the alternating magnetic field generated adjacent to the bottom edge A, which is known to achieve a maximum repelling effect in the direction transverse to the bottom edge A.
  • the air velocity in the first or lower channel region 33 of the air channel 2 lying in the flow direction in front of the feed opening 4 is set in such a way that small, specifically heavy particles sink downward and small, specifically light particles are carried upwards by the air flow and discharged to the light material.
  • the alternating magnetic field generator 31 is inserted into the light material.
  • the variable magnetic field 34 of this component eddy currents are induced in the larger, specifically lighter, electrically highly conductive pieces to be deflected.
  • the eddy currents are surrounded by a magnetic field which is directed towards the excitation field 34, as a result of which the (electrically conductive) larger, specifically lighter constituents 7 are discharged into the discharge or discharge zone 16 in the second or upper channel region which is subjected to higher air speeds.
  • the air speed in particular by the appropriately metered supply of air to the secondary air supply 14, the portions of the feed material deflected by means of the alternating magnetic field can be safely transported into the cyclone 18 connected downstream.
  • FIGS. 4 and 5 A second exemplary embodiment of the device for separating electrically highly conductive non-ferrous metals with a combined wind sifting and eddy current separation is explained with reference to FIGS. 4 and 5.
  • the separation takes place here in an air duct 35 which is vertical or inclined by up to 45 ° to the vertical with an air flow 36 flowing from bottom to top.
  • This passes through a main air supply 108 at the lower end of the air duct, which also has a cellular wheel sluice 130 for removing the heavy goods 3 through a pipe 117 to a cyclone, etc.
  • the air duct 35 like the air duct 2 according to FIGS.
  • a lateral feed opening 104 with a feed conveyor 105 and a rotary valve 103 and a secondary air supply 114, which is arranged so that there is a higher air speed above the feed opening 104 than in the lower part of the air duct 35.
  • Additional secondary air supply lines can be arranged above the supply line 114 in order to ensure that heavy parts are discharged more reliably.
  • the air duct 35 should preferably have a rectangular cross section.
  • a linear motor is preferably an alternating magnetic field generator 37.
  • a double stator design with opposite side faces of the air duct 35 arranged poles 38 and 39 is suitable (cf. the sectional view according to FIG. 5).
  • the direction 40 of the two linear motors of the Doppelsta are in the same direction as the air flow 36 in the channel 35.
  • the field change of the alternating magnetic field generator 37 thus runs with the excitation frequency always from bottom to top in the direction of arrow 40.
  • the linear motors are preferably subjected to electrical multiphase, with voltages at the mains frequency or higher frequency up to approx. 1000 Hz.
  • the coarser, specifically lighter portions of the feed material are raised with the help of an alternating magnetic field generator 37 into the area of higher air speed above the secondary air supply 14 and discharged to the light material with the stronger air flow.
  • the entire separation process proceeds similarly to that already described for the exemplary embodiment according to FIGS. 1 and 2.
  • the material or the individual particles tipping over the bottom edge A 1 initially only turns the surfaces of the alternating magnetic field generators to the unfavorable narrow side.
  • the individual particles are exposed to the air flow 36 in the air classifier 35, they turn, with certainty going through a position in which the larger area of each particle will face one of the surfaces of the alternating magnetic field generator 37, at which moment it will be full Eddy current magnetic pulse in the direction transverse to the bottom edge A 1 of the feed is obtained.
  • the bottom of the feed 105 may be approximately V-shaped, in order thereby to predefine the supplied particles a position which is more favorable in relation to the alignment with the alternating magnetic field generator, before reaching the channel 35.
  • the feed 105 does not necessarily have to run horizontally, as shown in FIG. 4, as long as a bottom edge is formed only in the region of its confluence with the channel 35.
  • the magnetic field generators (38, 39) do not necessarily have to be arranged in exactly opposite positions, as shown in FIG. 5, but could also be attached at the same height but offset from the plane of the drawing.

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Electrostatic Separation (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

In separating a mixture of solid material particles including non-magnetic electrically conductive metals into a light fraction and a heavy fraction, where the light fraction includes the non-magnetic particles, the mixture is directed into an upwardly extending airflow passageway from an inlet channel extending laterally from the passageway. The inlet channel is spaced between the inlet and outlet ends of the passageway. An alternating magnetic field is provided adjacent the entrance of the mixture into the airflow passageway for accelerating the particles in the desired direction. The mixture is fed through the inlet channel into the airflow passageway in layer form, preferably as a single layer. A main flow of air passes upwardly through the airflow passageway from the lower inlet end and develops a highly turbulent vortex-like airflow. The airflow, in combination with the magnetic field, effects separation of the light and heavy fractions of the material. A secondary flow of air is directed upwardly into the air flow passage in the region of the introduction of the mixture and accelerates the air flow and carries the light fraction upwardly to the outlet end of the passageway.

Description

Die Erfindung betrifft ein Verfahren zum Abtrennen von nichtmagnetischen, elektrisch leitfähigen Metallen aus einer Feststoffmischung aus ihrer Zuführrichtung in einem Luftstrom unter der Einwirkung eines Wechselmagnetfeldes sowie eine Vorrichtung zum Durchführen dieses Verfahrens mit Hilfe eines Wechselmagnetfelderzeugers in einem Luftkanal mit Luftzufuhr am unteren Ende, mit mindestens einer Luftabführung am anderen Ende und mit einer Aufgabeöffnung für die Feststoffmischung.The invention relates to a method for separating non-magnetic, electrically conductive metals from a mixture of solids from their feed direction in an air stream under the action of an alternating magnetic field and a device for carrying out this method with the help of an alternating magnetic field generator in an air duct with air supply at the lower end, with at least one Air discharge at the other end and with a feed opening for the solids mixture.

Bei der sogenannten Wirbelstromscheidung wird das Aufgabegut zwischen den Polen eines Wechselmagnetfelderzeugers,, beispielsweise auf einem Band oder im freien Fall, hindurchgeführt. Hierbei werden in den gut leitfähigen Bestandteilen der zu trennenden Mischung Wirbelströme induziert, die eigene, dem Erzeugerfeld entgegengerichtete Magnetfelder aufbauen und demgemäß diese Bestandteile durch elektromagnetische Kräfte relativ zu den übrigen Bestandteilen der Mischung beschleunigt werden. Durch Wirbelstromscheidung können nicht ferromagnetische, elektrisch gut leitende Stoffe, wie Aluminium und Kupfer, aus Schrott und Abfällen, wie Autoshredderschrott, Elektroschrott, Glasabfällen und dergleichen ausgesondert werden. Falls in diesem Material ferromagnetische Teile enthalten sind, muß vor dem Durchgang durch die Wirbelstromscheidevorrichtung eine Magnetscheidung vorgesehen werden, weil ferromagnetische Teile den Arbeitsspalt der Wirbelstromscheidevorrichtung verstopfen würden. Zweckmäßig werden der letzteren andere Aufbereitungsstufen, z.B. eine Windsichtung vorgeschaltet, weil die bei der Wirbelstromscheidung auszunutzenden Kräfte möglichst nicht durch Kollision mit anderen Teilen, die an sich mit weniger Aufwand auszuscheiden sind, kompensiert werden sollen.In the so-called eddy current separation, the feed material is passed between the poles of an alternating magnetic field generator, for example on a belt or in free fall. In this case, eddy currents are induced in the highly conductive components of the mixture to be separated, which build up their own magnetic fields which are opposed to the generating field and accordingly these components are accelerated by electromagnetic forces relative to the other components of the mixture. Eddy current separation can be used to separate non-ferromagnetic, highly electrically conductive materials, such as aluminum and copper, from scrap and waste, such as automobile shredder scrap, electronic scrap, glass waste and the like. If ferromagnetic parts are contained in this material, a magnetic separation must be provided before passing through the eddy current separating device, because ferromagnetic parts would clog the working gap of the eddy current separating device. Advantageously, the latter are preceded by other treatment stages, for example a wind sifting, because the If possible, forces to be used in eddy current separation should not be compensated for by collision with other parts, which in themselves can be eliminated with less effort.

Die Windsichtung eignet sich besonders dazu, spezifisch leichtere Teile von spezifisch schwereren Teilen zu trennen. Die Trennung erfolgt hierbei entsprechend der Sinkgeschwindigkeit in vertikalen oder horizontalen Luftströmungen. Zum Trennen in spezifisch leichte und schwere Produkte muß das Aufgabematerial bei Vernachlässigung der Kornform recht eng vorklassiert werden, wenn dem Aufwand entsprechende Trennergebnisse erzielt werden sollen.Wind sifting is particularly suitable for separating lighter parts from heavier parts. The separation takes place according to the sinking speed in vertical or horizontal air flows. To separate them into specifically light and heavy products, the feed material has to be pre-classified very narrowly, if the grain shape is neglected, if the effort involved is to achieve appropriate separation results.

In einem Windsichter läßt sich der dem zu trennenden Teilchenstrom entgegengerichtete Luftstrom so einstellen, daß kleine (und natürlich große), spezifisch schwere Teilchen, die in ihrem Formfaktor von der Kugelgestalt häufig stark abweichen, nach unten absinken, kleine, spezifisch leichte Teilchen dagegen vom Luftstrom nach oben getragen werden. Probleme bereitet gegebenenfalls ein Anteil relativ großer, spezifisch leichter Teile, der an sich seinem Material entsprechend zum Leichtgut gehört aber seinem absoluten Gewicht bzw. seinem kugelähnlichen Formfaktor entsprechend zusammen mit dem spezifisch schweren Anteil absinkt. Würde die Stärke des Luftstroms erhöht, könnten zwar die größeren, spezifisch leichteren Teile ebenfalls zum Leichtgut getragen werden, zugleich würde jedoch ein nennenswerter Anteil des spezifisch schwereren Materials bei entsprechender Korngröße und Kornform ebenfalls mit dem Leichtgut abgeführt werden.In an air classifier, the air flow directed against the particle flow to be separated can be adjusted so that small (and of course large), specifically heavy particles, which often differ greatly in shape from the spherical shape, sink downwards, while small, specifically light particles decrease from the air flow be carried upwards. Problems may arise from a proportion of relatively large, specifically light parts, which, in terms of its material, belongs to the lightweight material, but which decreases in accordance with its absolute weight or its ball-like form factor together with the specifically heavy proportion. If the strength of the air flow were increased, the larger, specifically lighter parts could also be carried with the light goods, but at the same time a significant proportion of the specifically heavier material would also be carried away with the light goods with a corresponding grain size and grain shape.

Während durch Windsichtung kleinere Stückgrößen verschiedenen spezifischen Gewichts relativ gut zu trennen sind, setzt, die Wirbelstromscheidung beim Abtrennen von Nichteisenmetallen aus einem Feststoffgemisch im veränderlichen Magnetfeld eine Mindestkorngröße voraus, denn ein kontinuierliches Sortieren mit vertretbarem Material- und Energieaufwand ist nach diesem Verfahren nur für Materialgemische sinnvoll, deren untere Korngröße bei ca. 15 bis 20 mm Durchmesser liegt.While smaller piece sizes of different specific weights can be separated relatively well by wind sifting, the eddy current separation requires a minimum grain size when separating non-ferrous metals from a solid mixture in a variable magnetic field, because a continuous Petite sorting with justifiable expenditure of material and energy is only meaningful using this method for material mixtures whose lower grain size is approximately 15 to 20 mm in diameter.

Eine Einrichtung zur Wirbelstromscheidung in einem lediglich die Auflockerung des Aufgabegutes begünstigenden Luftkanal wird in der DE-OS 25 09 638 vorgeschlagen. Hier gelangen die Einzelstücke des zu trennenden Gemisches im freien Fall dem Luftstrom entgegen durch den Spalt eines Wechselmagnetfelderzeugers, dessen Feld quer zur Fallrichtung 'wandert. Ein Nachteil der bekannten Einrichtung besteht vor allem darin, daß die elektromagnetisch im Sinne der Wirbelstromscheidung zu beeinflussenden Gemischstücke nach der Seite quer zum Strom fallender Teilchen bewegt werden müssen und daher mit anderen Teilen kollidieren und dementsprechend beeinflußt werden können. Dadurch liegt der Anteil an Fehlausträgen, unter der Voraussetzung eines nicht weitgehend vereinzelten Aufgabematerialstroms, durch Behinderung bzw. Verschleppung in beiden Produkten recht hoch. Die eingeblasene Luft soll zur Auflockerung des Sortiergutes im Zuführschacht vor Erreichen der Sichtzone dienen und nicht zur Trennung von Stoffen unterschiedlicher Dichte. Außerdem bleibt ein gemeinsamer Austrag feinkörniger, spezifisch leichterer Bestandteile zusammen mit den gröberen, spezifisch leichteren Stoffen, die vom Wechselmagnetfelderzeuger ausgelenkt werden, unberücksichtigt. Letztlich besitzen die Einzelstücke keine definierte Lage und können daher durch das Wechselmagnetfeld in eine Richtung gedreht werden, in der das jeweilige Feld nur eine relativ geringe durch Wirbelstromscheidung bedingte Trennkraft (z.B. Querbeschleunigung) auf das jeweilige Einzelstück ausüben kann.DE-OS 25 09 638 proposes a device for eddy current separation in an air duct which only favors the loosening of the feed material. Here the individual pieces of the mixture to be separated reach the air flow in free fall through the gap of an alternating magnetic field generator, the field of which migrates transversely to the direction of fall. A disadvantage of the known device is, above all, that the mixture pieces to be influenced electromagnetically in the sense of eddy current separation have to be moved laterally to the side of the falling particles and therefore collide with other parts and can be influenced accordingly. As a result, the proportion of incorrect discharges, provided that the feed material flow is not largely isolated, is quite high in both products due to hindrance or procrastination. The air blown in should serve to loosen the sorted goods in the feed chute before reaching the viewing zone and not to separate substances of different densities. In addition, a joint discharge of fine-grained, specifically lighter constituents together with the coarser, specifically lighter substances which are deflected by the alternating magnetic field generator are not taken into account. Ultimately, the individual pieces have no defined position and can therefore be rotated by the alternating magnetic field in a direction in which the respective field can exert only a relatively small separating force (e.g. lateral acceleration) due to eddy current separation on the respective individual piece.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so zu verbessern, daß die durch das Wechselmagnetfeld beeinflußten elektrisch leitenden Teilchen im wesentlichen ohne Behinderung durch Nachbarteilchen in der gewünschten Weise zusätzlich zu beschleunigen sind. Ausgehend von dem Gedanken, das-Aufgabegut zugleich einer Windsichtung und einer Wirbelstromscheidung zu unterwerfen, um sowohl die kleineren Teile (durch Windsichtung) als auch die größeren Teile (durch Wirbelstromscheidung) in spezifisch schwerere und spezifisch leichtere bzw. leitende und nichtleitende Stücke zu trennen, wird diese Aufgabe dadurch gelöst, daß die Feststoffmischung einem windsichtenden Hauptluftstrom in möglichst einlagiger Schicht im Winkel zur Luftstromrichtung zugeführt wird, daß unter der Einwirkung des Wechselmagnetfeldes im Bereich der Zuführung zusätzlich sowohl die jeweils aus nichtmagnetischem, leitfähigem Material bestehenden, großkörnigeren Leichtanteile als auch die aufgrund des Formfaktors bei reiner Windsichtung in die Schwerfraktion gelangenden Teile solchen Materials in den Leichtgutaustrag überführt werden, und daß, vorzugsweise durch Zugabe von Zusatzluft, im Bereich der Gutzuführung die Strömung in der Austragszone für das Leichtgut beschleunigt wird.The invention has for its object to improve a method of the type mentioned in such a way that the electrically conductive particles influenced by the alternating magnetic field can be additionally accelerated in the desired manner essentially without interference from neighboring particles. Based on the idea of subjecting the feed material to both air separation and eddy current separation in order to separate both the smaller parts (by wind separation) and the larger parts (by eddy current separation) into specifically heavier and specifically lighter or conductive and non-conductive pieces, This object is achieved in that the mixture of solids is fed to a wind-sifting main air stream in a single-layer layer as possible at an angle to the air flow direction, that under the action of the alternating magnetic field in the area of the feed both the large-grained light components, each consisting of non-magnetic, conductive material, and those due to of the form factor in the case of pure air separation into the heavy fraction of such material are transferred to the light material discharge, and that, preferably by adding additional air, the flow in the discharge area for the light is in the discharge zone is accelerated well.

Wie einleitend bereits erwähnt, gelangen bei normaler Windsichtung aufgrund ihres Formfaktors auch Teilchen in die Schwerfraktion, die eigentlich zum Leichtgut gehören; dabei handelt es sich meistens um kugelähnlich gestaltete Teilchen. Wenn im Rahmen der erfindungsgemäßen Lehre vom "Bereich der Gutzuführung" gesprochen wird, dann kann diese Stelle der Zusatzluftzuführung in Strömungsrichtung sowohl kurz nach der Materialzuführung liegen als auch - bei entsprechender Anordnung der Wechselfelderzeuger - im Bereich der Wechselfelderzeuger in Strömungsrichtung noch vor der Gutzuführung vorgesehen werden.As already mentioned in the introduction, due to their shape factor, particles that actually belong to the light goods also get into the heavy fraction in normal wind sifting; these are mostly spherically shaped particles. If, within the framework of the teaching according to the invention, one speaks of the "area of the material supply", then this point of the additional air supply in the flow direction can be located shortly after the material supply as well as - in the case of a corresponding arrangement of the alternating field generators - in the area of the alternating field generators in the flow direction even before the material supply .

Mit einer Vorrichtung zum Durchführen des Verfahrens wird die erwähnte Aufgabe gelöst durch einen Windsichter als Luftkanal dessen Materialzuführung außerhalb des Luftstromes liegt, wobei die Aufgabeöffnung seitlich in den Luftkanal einmündet und im Mündungsbereich eine Vorrichtung zur Luftbeschleunigung in Strömungsrichtung und der Wechselmagnetfelderzeuger mit sowohl in Richtung der Luftströmung als auch quer zu einer Bodenkante der Materialzuführung im Bereich der Aufgabeöffnung ausgerichteter Kraftrichtung des Wechselmagnetfeldes angeordnet sind.With a device for performing the method, the above-mentioned object is achieved by an air classifier as an air duct whose material supply lies outside the air flow, the feed opening opening laterally into the air duct and in the mouth region a device for air acceleration in the flow direction and the alternating magnetic field generator with both in the direction of the air flow and also arranged transversely to a bottom edge of the material feed in the direction of force of the alternating magnetic field in the area of the feed opening.

Durch die Luftbeschleunigung wird erreicht, daß die Luftstromgeschwindigkeit in Stromrichtung hinter der Aufgabeöffnung größer ist als vor der Aufgabeöffnung; durch das in diesem Bereich des Geschwindigkeitssprungs des Luftstroms im Windsichterkanal vorgesehene Wechselmagnetfeld wird bei erfindungsgemäß passender Polarität und Änderungsrichtung erreicht, daß elektrisch gut leitende Teilchen bis zu einer durch die Wirbelstromscheidung noch zu erfassenden Mindestkorngröße aus dem Bereich niedrigerer Luftgeschwindigkeit in den Bereich höherer Luftgeschwindigkeit angehoben werden können. Wenn der Windsichterluftstrom zum Trennen kleinerer (von der Wirbelstromscheidung nicht erfaßter), spezifisch leichterer und spezifisch schwererer Teilchen eingestellt wird, ist die Wirbelstromscheidung kombiniert mit dem Zusatz- bzw. Nebenluftstrom ein ideales Mittel, auch die relativ großen, spezifisch leichten Stücke des Gemisches, z.B. Aluminiumstücke mit kugelähnlichem Formfaktor, dadurch auszusortieren, daß diese Teile aus dem Niveau niedriger Luftgeschwindigkeit in das Niveau höherer Luftgeschwindigkeit angehoben und mit dem stärkeren Luftstrom zum Leichtgut transportiert werden. Bei dem erfindungsgemäßen Verfahren besteht also auch nicht die Gefahr, daß relativ kleine, spezifisch schwere Teile mit in das Leichtgut gelangen. Durch die erfindungsgemäße Bodenkante, die vorzugsweise durch winklige Einmündung der Materialzuführung in den Luftkanal gebildet wird, wird das Material im Unterschied zum Stand der Technik in möglichst einlagiger Schicht sowohl in den Bereich des Windsichters als auch des Wechselmagnetfelderzeugers gebracht.The effect of the air acceleration is that the air flow velocity in the flow direction behind the feed opening is greater than before the feed opening; Due to the alternating magnetic field provided in this area of the speed jump of the air flow in the air classifier duct, with the polarity and direction of change appropriate according to the invention, it is achieved that electrically conductive particles can be raised from the area of lower air speed to the area of higher air speed up to a minimum grain size still to be detected by the eddy current separation . If the air classifier air flow is set to separate smaller (not covered by the eddy current separation), specifically lighter and specifically heavier particles, the eddy current separation combined with the additional or secondary air flow is an ideal means, even the relatively large, specifically light pieces of the mixture, e.g. Aluminum pieces with a spherical shape factor, to be sorted out by lifting these parts from the low air speed level to the higher air speed level and transporting them to the light goods with the stronger air flow. In the method according to the invention, there is also no risk that relatively small, specifically heavy parts get into the light goods. By means of the bottom edge according to the invention, which is preferably formed by an angular opening of the material feed into the air duct, the material is brought into the area of the air classifier and of the alternating magnetic field generator in a layer which is as single-layered as possible in contrast to the prior art.

Anhand der schematischen Darstellung von Ausführungsbeispielen werden Einzelheiten der Erfindung erläutert. Es zeigen:

  • Fig. 1 den prinzipiellen Aufbau eines Luftkanals mit Windsichtung und Wirbelstromscheidung;
  • Fig. 2 den prinzipiellen Strömungsverlauf im Luftkanal angrenzend an die Aufgabeöffnung;
  • Fig. 3 das Fließschema der Luftströmung im gesamten System;
  • Fig. 4 eine Alternativ-Ausführung des Luftkanals mit kombinierter Windsichtung und Wirbelstromscheidung; und
  • Fig. 5 einen Schnitt längs der Linie V-V von Fig. 4.
Details of the invention are explained on the basis of the schematic representation of exemplary embodiments. Show it:
  • Figure 1 shows the basic structure of an air duct with wind separation and eddy current separation.
  • 2 shows the basic flow pattern in the air duct adjacent to the feed opening;
  • 3 shows the flow diagram of the air flow in the entire system;
  • 4 shows an alternative embodiment of the air duct with combined wind sifting and eddy current separation; and
  • 5 shows a section along the line VV of FIG. 4th

Im Ausführungsbeispiel nach Fig. 1 erfolgt das Sortieren der zu trennenden Stoffe im aufwärts gerichteten Luftstrom 1 in einem vertikal angeordneten, als Windsichter gestalteten, zick-zack-förmigen Luftkanal 2. Alternativ können auch anders geformte, vertikale oder horizontale Luftkanäle eingesetzt werden. Die Aufgabe des zu trennenden Materials in den Luftkanal 2 erfolgt, vorzugsweise über eine Zellenradschleuse 3 als Materialzuführung, im oberen Drittel des Luftkanals 2. Die zugehörige Aufgabeöffnung 4 des Luftkanals 2 wird gegebenenfalls über eine Rinne 5 oder ein anderes Fördermittel mit der Zellenradschleuse 3 verbunden. Vorzugsweise wird die Aufgabeöffnung 4 im oberen Drittel bzw. in Richtung des Luftstroms 1 gesehen im letzten Drittel des Luftkanals 2 vorgesehen. Am Übergang von der Rinne 5 in den Luftkanal 2, d.h. im Bereich der Aufgabeöffnung 4 ist eine Bodenkante A vorgesehen, die in ihrer einfachsten Ausführung durch die winklig zur Längsachse des Luftkanals 2 in diesem Bereich vorgesehene Einmündung der Rinne 5 in den Luftkanal 2 an der Aufgabeöffnung 4 gebildet wird. Das über die Aufgabeöffnung 4 in den Luftkanal 2 gelangende, zu trennende Material, das nach Fig. 2 aus spezifisch schwereren Teilchen 6 und spezifisch leichteren Teilchen 7 bestehen kann, fällt im Luftkanal 2 dem über eine Hauptluftzuführung 8 am unteren Ende des Kanals 2 angesaugten und über eine Luftabführung 9 am oberen Kanalende abgesaugten Luftstrom 1 entgegen. Bei einer Zick-Zack-Ausführung des Luftkanals gemäß der Detailzeichnung nach Fig. 2 ergibt sich innerhalb des Kanals 2 eine stark turbulente, die gewünschte Trennung begünstigende Luftströmung mit sogenannten Wirbelwalzen 10 und 11. Die nach oben gerichtete Hauptströmung bildet sich im Kanal 2 ungefähr entsprechend den eingezeichneten Pfeilen 12 und 13 aus.In the exemplary embodiment according to FIG. 1, the substances to be separated are sorted in the upward air flow 1 in a vertically arranged, zigzag-shaped air duct 2 designed as an air classifier. Alternatively, differently shaped, vertical or horizontal air ducts can also be used. The material to be separated is fed into the air duct 2, preferably via a cellular wheel sluice 3 as material feed, in the upper third of the air duct 2. The associated feed opening 4 of the air duct 2 is optionally connected to the cellular wheel sluice 3 via a trough 5 or another conveying means. The feed opening 4 is preferably provided in the upper third or, viewed in the direction of the air flow 1, in the last third of the air duct 2. At the transition from the channel 5 into the air duct 2, ie in the area of the feed opening 4 a bottom edge A is provided, which in its simplest embodiment is formed by the opening of the channel 5 into the air channel 2 at the feed opening 4, which opening is provided in this area at an angle to the longitudinal axis of the air channel 2. The material to be separated via the feed opening 4 into the air duct 2, which can consist of specifically heavier particles 6 and specifically lighter particles 7 according to FIG. 2, falls in the air duct 2 and is sucked in via a main air supply 8 at the lower end of the duct 2 Air flow 1 sucked off via an air discharge 9 at the upper end of the duct. In a zigzag design of the air duct according to the detailed drawing according to FIG. 2, there is a highly turbulent air flow within the duct 2, which favors the desired separation, with so-called vortex rollers 10 and 11. The upward main flow forms approximately accordingly in duct 2 arrows 12 and 13.

Der Luftkanal 2 gemäß Fig. 1 und 2 besitzt im Übergangsbereich B zur Austragszone 16, der etwa in Höhe der Einmündung (Aufgabeöffnung 4) der Materialzuführung in den Luftkanal 2 liegt, eine Nebenluftzuführung 14, durch die ein Zusatzluftstrom 15 in den Kanal 2 eingeleitet wird. Der Zusatzluftstrom 15 addiert sich zum über die Hauptluftzuführung 8 angesaugten Luftstrom 1, so daß sich im in Strömungsrichtung an die Aufgabeöffnung 4 anschließenden oberen oder zweiten Bereich, der Austragszone 16, des Luftkanals 2 ein stärkerer Luftstrom 13 als im vorhergehenden Bereich 33 des Kanals einstellt. Die Nebenluftzuführung 14 kann - wie dargestellt - aus einer Leitung bestehen; sie kann aber auch mit mehreren Leitungen, sogar ringförmig an mehreren Stellen in die Austragszone des Kanals 2 münden.The air duct 2 according to FIGS. 1 and 2 has a secondary air supply 14 in the transition region B to the discharge zone 16, which is approximately at the level of the confluence (feed opening 4) of the material supply into the air duct 2, through which an additional air flow 15 is introduced into the duct 2 . The additional air flow 15 is added to the air flow 1 sucked in via the main air supply 8, so that in the upper or second area, the discharge zone 16, of the air channel 2 adjoining the feed opening 4, a stronger air flow 13 is established than in the previous area 33 of the channel. The secondary air supply 14 can - as shown - consist of a line; but it can also open into the discharge zone of channel 2 with several lines, even in a ring at several points.

Das im Luftkanal 2 nach oben ausgetragene Leichtgut wird vom Luftstrom 13 über eine Rohrleitung 17 in einen Zyklon 18 transportiert, in welchem die Feststoffteile vom Trägerluftstrom getrennt werden. Der Austrag der im Zyklon 18 abgeschiedenen Feststoffteile erfolgt zweckmäßig über eine Zellenradschleuse 19, während die gereinigte Luft gemäß Fig. 3 über eine Rohrleitung 20 zur Saugseite eines Gebläses 21 geführt wird (s. Fig. 3). Im weiteren Verlauf kann der Luftstrom im Kreislauf zurück zum Luftkanal 2 geleitet werden. Zusätzlich kann über ein Ventil 22 Frischluft in den Umluftkreislauf eingeleitet werden. Die Druckseite des Gebläses 21 kann über eine Rohrleitung 23 mit der Hauptluftzuführung 8 des Luftkanals 2 verbunden werden. Dabei können Teilluftströme über ein Ventil 24 zur Staubabscheidung in ein Filter 25 und über eine Leitung 26 zur Nebenluftzuführung 14 des Luftkanals 2 geleitet werden. Zum Steuern der Luftmengen in der Nebenluftzuführung 14 und in der Hauptluftzuführung 8 dienen beispielsweise Ventile 27 bzw. 28. Während das Leichtgut nach Fig. 1 und 2 mit dem Luftstrom 13 zum Zyklon 18 transportiert wird, gelangt das schwerere Gut gegen den Luftstrom 12 zum Kanalboden 29 und wird dort beispielsweise über eine Zellenradschleuse 30 (Fig. 1) ausgetragen.The light material discharged upward in the air duct 2 is transported by the air flow 13 via a pipeline 17 into a cyclone 18 in which the solid parts are separated from the carrier air flow. The solid particles separated in the cyclone 18 are expediently discharged via a rotary valve 19, while the cleaned air according to FIG. 3 is conducted to the suction side of a blower 21 via a pipeline 20 (see FIG. 3). In the further course, the air flow in the circuit can be directed back to air duct 2. In addition, fresh air can be introduced into the circulating air circuit via a valve 22. The pressure side of the blower 21 can be connected to the main air supply 8 of the air duct 2 via a pipe 23. Partial air flows can be directed via a valve 24 for dust separation into a filter 25 and via a line 26 to the secondary air supply 14 of the air duct 2. Valves 27 and 28, for example, are used to control the air quantities in the secondary air supply 14 and in the main air supply 8. While the light goods according to FIGS. 1 and 2 are transported with the air flow 13 to the cyclone 18, the heavier goods come against the air flow 12 to the channel floor 29 and is discharged there, for example, via a cellular wheel sluice 30 (FIG. 1).

Die vorliegende Vorrichtung besitzt abweichend von einem üblichen Windsichter außer der Nebenluftzuführung 14 einen Wechselmagnetfelderzeuger 31, der nach Fig. 1 und 2 unterhalb der Aufgabeöffnung 4 direkt benachbart zür Bodenkante A angeordnet wird. Das veränderliche Magnetfeld des Wechselmagnetfelderzeugers 31 wird im Ausführungsbeispiel nach Fig. 1 und 2 vorzugsweise rechtwinklig zum Aufgabematerialstrom 32, d.h. quer zur Bodenkante A ausgerichtet. Alternativ können auch Wechselmagnetfelderzeuger verwendet werden, die auf den beiden Seitenflächen des Kanals 2 im Bereich der Aufgabeöffnung 4 installiert sind, deren Feld in Richtung der Luftströmung 13 wandert (s. z.B. das Ausführungsbeispiel gemäß den Figuren 4 und 5). Als Felderzeuger 31 kommen ein- oder mehrphasig mit Netzfrequenz angesteuerte Spulensysteme sowie solche Spulen in Frage, die mit Spannungen höherer Frequenz betrieben werden. Es können Luftspulen oder Eisenkernspulen eingesetzt werden.In contrast to a conventional air classifier, the present device has, in addition to the secondary air supply 14, an alternating magnetic field generator 31 which, according to FIGS. 1 and 2, is arranged directly adjacent to the bottom edge A below the feed opening 4. In the exemplary embodiment according to FIGS. 1 and 2, the variable magnetic field of the alternating magnetic field generator 31 is preferably oriented at right angles to the feed material flow 32, that is to say transversely to the bottom edge A. Alternatively, alternating magnetic field generators can also be used, which are installed on the two side surfaces of the channel 2 in the area of the feed opening 4, the field of which migrates in the direction of the air flow 13 (see, for example, the exemplary embodiment according to FIGS. 4 and 5). As field generator 31, single or multi-phase controlled coil systems with mains frequency as well as those coils that are operated with voltages of higher frequency. Air coils or iron core coils can be used.

Der Trennvorgang geht im Ausführungsbeispiel genauer aus der Detailzeichnung des zick-zack-förmigen Luftkanals 2 nach Fig. 2 hervor. Wie bereits erläutert, ist die Stärke des Luftstroms 13 anschließend an die Nebenluftzuführung 14 im zweiten Kanalbereich 16 wesentlich höher als diejenige des Luftstroms 12 im Kanalbereich 33 vor der Aufgabeöffnung 4. Die Trennung verläuft in der Weise, daß das Aufgabegut über die Zellenradschleuse 3 und den Einlaufstutzen 5 in den zick-zack-förmigen Luftkanal 2 geleitet wird.In the exemplary embodiment, the separation process can be seen more precisely from the detailed drawing of the zigzag-shaped air duct 2 according to FIG. 2. As already explained, the strength of the air flow 13 after the secondary air supply 14 in the second channel area 16 is substantially higher than that of the air flow 12 in the channel area 33 in front of the feed opening 4. The separation proceeds in such a way that the feed material via the rotary valve 3 and the Inlet nozzle 5 is passed into the zigzag-shaped air duct 2.

Im Gegensatz zum Stand der Technik wird bei der Erfindung durch die Bodenkante A erreicht, daß das Aufgabematerial in möglichst einlagiger Schicht sowohl in den Bereich des Windsichters als auch des Wechselmagnetfelderzeugers gebracht wird bzw. gebracht werden kann. Demgegenüber fällt nämlich beim Stand der Technik das Sortiergut über den gesamten Querschnitt eines senkrechten Schachtes verteilt in die Trennzone ein.In contrast to the prior art, the bottom edge A in the invention ensures that the feed material is or can be brought into the area of the air classifier and of the alternating magnetic field generator in a layer which is as single-layered as possible. In contrast, in the prior art, the material to be sorted falls over the entire cross section of a vertical shaft into the separation zone.

Bei der Erfindung wird ganz bewußt auf eine senkrechte Zuführung verzichtet und das Sortiergut seitlich in die Trennzone des Luftkanals eingeführt, so daß es im Falle der Ausführungsform nach den Fig. 1 und 2 ständig über einen Boden, nämlich die Rinne 5 bis dicht an die eigentliche Trennzone herangeführt wird. Bei dieser Ausführung liegen die Materialteilchen in der Regel immer mit ihrer größten Fläche auf dem Boden; diese Fläche ist dann auch dem benachbart zur Bodenkante A erzeugten Wechselmagnetfeld ausgesetzt, wodurch bekanntlich eine maximale Abstoßwirkung in Richtung quer zur Bodenkante A erzielt wird.In the invention, a vertical feed is deliberately dispensed with and the material to be sorted is introduced laterally into the separation zone of the air duct, so that in the case of the embodiment according to FIGS. 1 and 2 it is constantly on a floor, namely the trough 5 up to the actual one Separation zone is brought up. In this version lie the material particles usually always have their largest area on the floor; this surface is then also exposed to the alternating magnetic field generated adjacent to the bottom edge A, which is known to achieve a maximum repelling effect in the direction transverse to the bottom edge A.

Auf die oben erwähnte Alternativmöglichkeit, bei der das Feld in Richtung der Luftströmung wandert bei auf den beiden Seitenflächen des Kanals installierten Wechselmagnetfelderzeugern, wird im Zusammenhang mit der Erläuterung des Ausführungsbeispiels nach den Fig. 4 und 5 näher eingegangen werden.The alternative possibility mentioned above, in which the field moves in the direction of the air flow in the case of alternating magnetic field generators installed on the two side surfaces of the channel, will be discussed in more detail in connection with the explanation of the exemplary embodiment according to FIGS. 4 and 5.

Die Luftgeschwindigkeit in dem in Strömungsrichtung vor der Aufgabeöffnung 4 liegenden, ersten oder unteren Kanalbereich 33 des Luftkanals 2 wird so eingestellt, daß kleine, spezifisch schwere Teilchen nach unten absinken und kleine, spezifisch leichte Teilchen vom Luftstrom nach oben getragen sowie zum Leichtgut abgeführt werden. Zum Austrag auch großer, spezifisch leichter Teile, z.B. aus Aluminium, in das Leichtgut wird der Wechselmagnetfelderzeuger 31 eingesetzt. Im veränderlichen Magnetfeld 34 dieses Bauteils werden in den auszulenkenden, größeren, spezifisch leichteren, elektrisch gut leitenden Stücken Wirbelströme induziert. Die Wirbelströme wiederum sind von einem dem Erregerfeld 34 entgegengerichteten Magnetfeld umgeben, wodurch es zu einem Abstoßen der (elektrisch leitenden) größeren, spezifisch leichteren Bestandteile 7 in den mit höherer Luftgeschwindigkeit beaufschlagten, zweiten oder oberen Kanalbereich, die Austragszone 16 kommt. Bei entsprechender Vorgabe der Luftgeschwindigkeit, insbesondere durch die passend dosierte Zuführung von Luft an der Nebenluftzuführung 14, können die mit Hilfe des Wechselmagnetfeldes ausgelenkten Anteile des Aufgabegutes sicher in den nachgeschalteten Zyklon 18 transportiert werden.The air velocity in the first or lower channel region 33 of the air channel 2 lying in the flow direction in front of the feed opening 4 is set in such a way that small, specifically heavy particles sink downward and small, specifically light particles are carried upwards by the air flow and discharged to the light material. For the discharge of large, specifically light parts, e.g. made of aluminum, the alternating magnetic field generator 31 is inserted into the light material. In the variable magnetic field 34 of this component, eddy currents are induced in the larger, specifically lighter, electrically highly conductive pieces to be deflected. The eddy currents, in turn, are surrounded by a magnetic field which is directed towards the excitation field 34, as a result of which the (electrically conductive) larger, specifically lighter constituents 7 are discharged into the discharge or discharge zone 16 in the second or upper channel region which is subjected to higher air speeds. With a corresponding specification of the air speed, in particular by the appropriately metered supply of air to the secondary air supply 14, the portions of the feed material deflected by means of the alternating magnetic field can be safely transported into the cyclone 18 connected downstream.

Ein zweites Ausführungsbeispiel der Vorrichtung zum Abtrennen elektrisch gut leitfähiger Nichteisenmetalle mit einer kombinierten Windsichtung und Wirbelstromscheidung wird anhand der Fig. 4 und 5.erläutert. Die Trennung erfolgt hier in einem senkrecht stehenden oder um bis zu 45° zur Vertikalen geneigten Luftkanal 35 mit von unten nach oben fließendem Luftstrom 36. Dieser gelangt über eine Hauptluftzuführung 108 am unteren Ende des Luftkanals, das auch eine Zellenradschleuse 130 zum Abführen des Schwerguts aufweisen kann, durch den Kanal zur Luftabführung 109 am oberen Kanalende und von dort ähnlich wie im Ausführungsbeispiel nach Fig. 3 über eine Rohrleitung 117 zu einem Zyklon usw. Der Luftkanal 35 besitzt ebenso wie der Luftkanal 2 nach Fig. 1 und 2 eine seitliche Aufgabeöffnung 104 mit einem Zuführfördermittel 105 und einer Zellenradschleuse 103 sowie eine Nebenluftzuführung 114, die so angeordnet ist, daß oberhalb der Aufgabeöffnung 104 eine höhere Luftgeschwindigkeit als im unteren Teil des Luftkanals 35 herrscht. Weitere Nebenluftzuführungen können oberhalb der Zuführung 114 angeordnet sein, um einen sichereren Austrag schwerer Teile zu gewährleisten.A second exemplary embodiment of the device for separating electrically highly conductive non-ferrous metals with a combined wind sifting and eddy current separation is explained with reference to FIGS. 4 and 5. The separation takes place here in an air duct 35 which is vertical or inclined by up to 45 ° to the vertical with an air flow 36 flowing from bottom to top. This passes through a main air supply 108 at the lower end of the air duct, which also has a cellular wheel sluice 130 for removing the heavy goods 3 through a pipe 117 to a cyclone, etc. The air duct 35, like the air duct 2 according to FIGS. 1 and 2, has a lateral feed opening 104 with a feed conveyor 105 and a rotary valve 103 and a secondary air supply 114, which is arranged so that there is a higher air speed above the feed opening 104 than in the lower part of the air duct 35. Additional secondary air supply lines can be arranged above the supply line 114 in order to ensure that heavy parts are discharged more reliably.

Das Zuführfördermittel 105 geht gemäß Fig. 4 im Bereich der Aufgabeöffnung 104 ähnlich wie beim zuvor beschriebenen Ausführungsbeispiel über eine Bodenkante A1 in den Luftkanal 35 über, und zwar in der einfachsten Ausführung wiederum durch lediglich winklige Relativlage der Längsachsen von Zuführung 105 und Kanal 35.4, in the area of the feed opening 104, similar to the exemplary embodiment described above, merges into the air duct 35 via a bottom edge A 1 , and in the simplest embodiment again by merely angular relative position of the longitudinal axes of the feed 105 and duct 35.

Der Luftkanal 35 soll vorzugsweise einen rechteckigen Querschnitt besitzen. Als Wechselmagnetfelderzeuger 37 kommt vorzugsweise ein Linearmotor in Frage. Beispielsweise eignet sich eine Doppelstator-Ausführung mit aneinander gegenüberliegenden Seitenflächen des Luftkanals 35 angeordneten Polen 38 und 39 (vgl. das Schnittbild nach Fig. 5). Die Richtung 40 der von den beiden Linearmotoren der Doppelstatorausführung erzeugten Wanderfelder ist im gezeichneten Ausführungsbeispiel gleichsinnig zum Luftstrom 36 im Kanal 35. Die Feldänderung des Wechselmagnetfelderzeugers - 37 läuft also mit der Erregerfrequenz stets von unten nach oben in Pfeilrichtung 40. Die Linearmotoren werden im vorliegenden Fall vorzugsweise mehrphasig elektrisch beaufschlagt, wobei Spannungen mit Netzfrequenz oder höherer Frequenz bis zu ca. 1000 Hz angelegt werden können.The air duct 35 should preferably have a rectangular cross section. A linear motor is preferably an alternating magnetic field generator 37. For example, a double stator design with opposite side faces of the air duct 35 arranged poles 38 and 39 is suitable (cf. the sectional view according to FIG. 5). The direction 40 of the two linear motors of the Doppelsta The traveling fields generated in the embodiment shown are in the same direction as the air flow 36 in the channel 35. The field change of the alternating magnetic field generator 37 thus runs with the excitation frequency always from bottom to top in the direction of arrow 40. In the present case, the linear motors are preferably subjected to electrical multiphase, with voltages at the mains frequency or higher frequency up to approx. 1000 Hz.

Im Ausführungsbeispiel nach Fig. 4 und 5 werden die gröberen, spezifisch leichteren Anteile des Aufgabegutes mit Hilfe eines Wechselmagnetfelderzeugers 37 in den Bereich höherer Luftgeschwindigkeit oberhalb der Nebenluftzuführung 14 angehoben und mit dem stärkeren Luftstrom zum Leichtgut ausgetragen. Der gesamte Trennvorgang verläuft ähnlich wie schon für das Ausführungsbeispiel gemäß Fig. 1 und 2 beschrieben.In the exemplary embodiment according to FIGS. 4 and 5, the coarser, specifically lighter portions of the feed material are raised with the help of an alternating magnetic field generator 37 into the area of higher air speed above the secondary air supply 14 and discharged to the light material with the stronger air flow. The entire separation process proceeds similarly to that already described for the exemplary embodiment according to FIGS. 1 and 2.

Die etwas andere Anordnung des Wechselmagnetfelderzeugers 37 gegenüber dem Ausführungsbeispiel nach den Fig. 1 und 2 führt allerdings im Bereich der Aufgabeöffnung 104 zunächst zu einem etwas anderen Verhalten des Aufgabeguts. Hier wendet nämlich das über die Bodenkante A1 abkippende Material bzw. die einzelnen Teilchen den Flächen der Wechselmagnetfelderzeuger zunächst nur die ungünstige Schmalseite zu. Sobald die einzelnen Teilchen aber dem Luftstrom 36 im Windsichter 35 ausgesetzt werden, wenden sie sich, wobei mit Sicherheit eine Position durchlaufen wird, bei der die jeweils größere Fläche jedes Teilchens einer der Flächen des Wechselmagnetfelderzeugers 37 zugewandt sein wird, in welchem Augenblick es den vollen Wirbelstrom-Magnetimpuls in Richtung quer zur Bodenkante A1 der Zuführung erhalten wird. Im Rahmen der Erfindung besteht für dieses Ausführungsbeispiel auch die Möglichkeit, den Boden der Zuführung 105 etwa V-förmig zu gestalten, um dadurch den zugeführten Teilchen schon vor Erreichen des Kanals 35 eine in Bezug auf die Ausrichtung zum Wechselmagnetfelderzeuger günstigere Lage vorzugeben. Selbstverständlich braucht die Zuführung 105 nicht unbedingt, wie in Fig. 4 gezeichnet, horizontal zu verlaufen, solange nur im Bereich ihrer Einmündung in den Kanal 35 eine Bodenkante gebildet wird. Außerdem brauchen die Magnetfelderzeuger (38, 39) nicht - wie in Fig. 5 dargestellt - unbedingt in genau gegenüberliegender Position angeordnet zu werden, sondern könnten auch zwar in gleicher Höhe aber aus der Zeichenebene heraus versetzt angebracht werden.The slightly different arrangement of the alternating magnetic field generator 37 compared to the exemplary embodiment according to FIGS. 1 and 2, however, initially leads to a somewhat different behavior of the feed material in the area of the feed opening 104. Here, the material or the individual particles tipping over the bottom edge A 1 initially only turns the surfaces of the alternating magnetic field generators to the unfavorable narrow side. However, as soon as the individual particles are exposed to the air flow 36 in the air classifier 35, they turn, with certainty going through a position in which the larger area of each particle will face one of the surfaces of the alternating magnetic field generator 37, at which moment it will be full Eddy current magnetic pulse in the direction transverse to the bottom edge A 1 of the feed is obtained. Within the scope of the invention there is also the possibility for this embodiment of the bottom of the feed 105 to be approximately V-shaped, in order thereby to predefine the supplied particles a position which is more favorable in relation to the alignment with the alternating magnetic field generator, before reaching the channel 35. Of course, the feed 105 does not necessarily have to run horizontally, as shown in FIG. 4, as long as a bottom edge is formed only in the region of its confluence with the channel 35. In addition, the magnetic field generators (38, 39) do not necessarily have to be arranged in exactly opposite positions, as shown in FIG. 5, but could also be attached at the same height but offset from the plane of the drawing.

Claims (8)

1. Verfahren zum Abtrennen von nichtmagnetischen, elektrisch leitfähigen Metallen aus einer Feststoffmischung aus ihrer Zuführrichtung in einem Luftstrom unter der Einwirkung eines Wechselmagnetfeldes, dadurch gekennzeichnet, daß die Feststoffmischung einem windsichtenden Hauptluftstrom in möglichst einlagiger Schicht im Winkel zur Luftströmrichtung zugeführt wird, daß unter der Einwirkung des Wechselmagnetfeldes im Bereich der Zuführung zusätzlich sowohl die jeweils aus nichtmagnetischem leitfähigem Material bestehenden, großkörnigeren Leichtanteile als auch die aufgrund des Formfaktors bei reiner Windsichtung in die Schwerfraktion gelangenden Teile solchen Materials in den Leichtgutaustrag überführt werden, und daß vorzugsweise durch Zugabe von Zusatzluft, im Bereich der Gutzuführung die Strömung-in der Austragszone für das Leichtgut beschleunigt wird.1. A method for separating non-magnetic, electrically conductive metals from a solid mixture from their feed direction in an air stream under the action of an alternating magnetic field, characterized in that the solid mixture is fed to a wind-sifting main air stream in a single-layer layer as possible at an angle to the air flow direction that under the action of the alternating magnetic field in the area of the feeder, both the large-grained light components, each consisting of non-magnetic conductive material, and the parts of such material that reach the heavy fraction due to the form factor in pure wind separation are transferred to the light material discharge, and preferably by adding additional air in the area the flow of goods in the discharge zone for the light goods is accelerated. 2. Vorrichtung zum Durchführen des Verfahrens nach Anspruch 1, mit Hilfe eines Wechselmagnetfelderzeugers (31, 37) in einem Luftkanal (2, 35) mit Luftzufuhr am unteren Ende, mit mindestens einer Luftabführung am anderen Ende und mit einer Aufgabeöffnung für die Feststoffmischung (6, 7) gekennzeichnet durch einen Windsichter als Luftkanal (2, 35) dessen Materialzuführung (3, 4, 5) außerhalb des Luftstromes (1, 36) liegt, wobei die Aufgabeöffnüng (4, 104) seitlich in den Luftkanal (2, 35) einmündet und im Mündungsbereich (B, B1) eine Vorrichtung zur Luftbeschleunigung in Strömüngsrichtung und der Wechselmagnetfelderzeuger (31, 37) mit sowohl in Richtung der Luftströmung als auch quer zu einer Bodenkante (A, A1) der Materialzuführung (3, 4, 5) im Bereich der Aufgabeöffnung (4, 104) ausgerichteter Kraftrichtung des Wechselmagnetfeldes angeordnet sind.2. Device for performing the method according to claim 1, with the help of an alternating magnetic field generator (31, 37) in an air duct (2, 35) with air supply at the lower end, with at least one air discharge on at the other end and with a feed opening for the solid mixture (6, 7) characterized by an air classifier as an air duct (2, 35) whose material feed (3, 4, 5) lies outside the air flow (1, 36), the feed opening (4, 104) opens laterally into the air duct (2, 35) and in the mouth region (B, B 1 ) a device for air acceleration in the direction of flow and the alternating magnetic field generator (31, 37) with both in the direction of the air flow and transversely to a bottom edge (A, A 1 ) of the material feed (3, 4, 5) in the area of the feed opening (4, 104) aligned with the direction of force of the alternating magnetic field. 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Vorrichtung zur Luftbeschleunigung aus einer in den Übergangsbereich zur Austragszone der Leichtstofffraktion einmündenden Nebenluftzuführung (14) besteht.3. Apparatus according to claim 2, characterized in that the device for accelerating air consists of a secondary air supply (14) opening into the transition region to the discharge zone of the light material fraction. 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Vorrichtung zur Luftbeschleunigung aus einer Querschnittsverengung der Austragszone (16) gegenüber dem lichten Querschnitt des unteren Luftkanals (33) besteht.4. The device according to claim 3, characterized in that the device for accelerating air consists of a cross-sectional constriction of the discharge zone (16) relative to the clear cross section of the lower air duct (33). 5. Vorrichtung nach einem oder mehreren der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der Wechselmagnetfelderzeuger (31, 37) am Übergang der Aufgabeöffnung (4, 104) zum Luftkanal (2, 35) angeordnet ist.5. The device according to one or more of claims 2 to 4, characterized in that the alternating magnetic field generator (31, 37) is arranged at the transition of the feed opening (4, 104) to the air duct (2, 35). 6. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 4, gekennzeichnet durch eine zick-zack-förmige Ausführung des Luftkanals (2).6. The device according to one or more of claims 1 to 4, characterized by a zigzag design of the air duct (2). 7. Vorrichtung nach einem oder mehreren der Ansprüche 2 bis 6, gekennzeichnet durch die Verwendung eines ein oder mehrphasig angesteuerten Spulensystems als Wechselmagnetfelderzeuger (31).7. The device according to one or more of claims 2 to 6, characterized by the use of a single or multi-phase controlled coil system as an alternating magnetic field generator (31). 8. Vorrichtung nach einem oder mehreren der Ansprüche 2 bis 4, gekennzeichnet durch die Anordnung des an die Aufgabeöffnung (104) und die Nebenluftzuführung (114) angrenzenden Bereichs des Luftkanals (35) zwischen den Polen (38, 39) eines Wechselmagnetfelderzeugers (37) mit in Richtung des Luftstroms (36) wanderndem Magnetfeld (40) (Fig. 4 und 5).8. The device according to one or more of claims 2 to 4, characterized by the arrangement of the area of the air duct (35) adjoining the feed opening (104) and the secondary air supply (114) between the poles (38, 39) of an alternating magnetic field generator (37) with moving in the direction of the air flow (36) magnetic field (40) (Fig. 4 and 5).
EP85101432A 1984-02-29 1985-02-11 Method and device for separating electrically conducting non-ferrous metals Expired EP0154207B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85101432T ATE34314T1 (en) 1984-02-29 1985-02-11 METHOD AND DEVICE FOR SEPARATING ELECTRICALLY CONDUCTIVE NON-FERROUS METALS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3407326A DE3407326C2 (en) 1984-02-29 1984-02-29 Method and device for separating electrically conductive non-ferrous metals
DE3407326 1984-02-29

Publications (2)

Publication Number Publication Date
EP0154207A1 true EP0154207A1 (en) 1985-09-11
EP0154207B1 EP0154207B1 (en) 1988-05-18

Family

ID=6229131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85101432A Expired EP0154207B1 (en) 1984-02-29 1985-02-11 Method and device for separating electrically conducting non-ferrous metals

Country Status (6)

Country Link
US (2) US4668381A (en)
EP (1) EP0154207B1 (en)
JP (1) JPS60202755A (en)
AT (1) ATE34314T1 (en)
DE (2) DE3407326C2 (en)
ES (1) ES8606024A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452025A1 (en) * 1990-04-10 1991-10-16 Peter Thomas Reid Magnetic methods of separating electrically conductive materials
US5060871A (en) * 1987-09-11 1991-10-29 Alcan International Limited Method of separating metal alloy particles

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3407326C2 (en) * 1984-02-29 1987-02-05 Lindemann Maschinenfabrik GmbH, 4000 Düsseldorf Method and device for separating electrically conductive non-ferrous metals
DE3906422C1 (en) * 1989-03-01 1990-10-18 Lindemann Maschinenfabrik Gmbh, 4000 Duesseldorf, De
US5190635A (en) * 1989-04-03 1993-03-02 Ashland Oil, Inc. Superparamagnetic formation of FCC catalyst provides means of separation of old equilibrium fluid cracking catalyst
US5035331A (en) * 1989-08-14 1991-07-30 Paulson Jerome I Method and apparatus for removing dust and debris from particulate product
US5171424A (en) * 1990-10-22 1992-12-15 Ashland Oil, Inc. Magnetic separation of old from new cracking catalyst by means of heavy rare earth "magnetic hooks"
DE4100346A1 (en) * 1991-01-08 1992-07-09 Preussag Ag Mechanical prepn. of unsorted scrap from electronic equipment - by four-stage sorting with intermediate electrical or magnetic sepn. of ferrous from non-ferrous metal parts
US5269424A (en) * 1991-06-26 1993-12-14 Corcon Mobile separation method system for abrasive blasting material
US5275292A (en) * 1992-05-18 1994-01-04 Brugger Richard D Eddy current separator
DE4222364A1 (en) * 1992-07-08 1994-01-13 Claas Ohg Sieve classifying device for natural prods. - and suitable for use as winnower in a combine harvester
US5538624A (en) * 1994-10-21 1996-07-23 Ashland Inc. Process, apparatus and compositions for recycle of cracking catalyst additives
US5626233A (en) * 1995-03-07 1997-05-06 Venturedyne, Ltd. Eddy current separator
CA2304266A1 (en) 1999-04-02 2000-10-02 Norman L. Arrison Apparatus and process for separating fluids and particles
US6595369B2 (en) * 2001-08-16 2003-07-22 Jerome I. Paulson Particulate material dedusting apparatus
US7681736B2 (en) * 2004-10-13 2010-03-23 Exportech Company, Inc. VacuMag magnetic separator and process
JP4690372B2 (en) * 2007-09-03 2011-06-01 株式会社御池鐵工所 Plant to increase bulk specific gravity of waste sheet material
CN102962244B (en) * 2012-12-07 2015-07-08 桑德环境资源股份有限公司 Waste PCB (printed circuit board) crushing and sorting system
DE102013215062A1 (en) * 2013-07-31 2015-02-05 Krones Ag Zig-zag separator for separating separating material, for example plastic flakes, and method for separating separating material, for example plastic flakes, by means of a zig-zag separator
CN115283254B (en) * 2022-07-29 2023-08-25 中触媒新材料股份有限公司 Rapid screening and activating system and method for air flow of oxygen-making adsorbent particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1185440A (en) * 1968-10-30 1970-03-25 Standard Telephones Cables Ltd A Method of and Apparatus for Separating Non-Magnetic Particles from Magnetic Particles.
SU722609A1 (en) * 1978-09-20 1980-04-05 Всесоюзный Научно-Исследовательский И Проектный Институт Вторичных Цветных Металлов "Вниипвторцветмет" Pneumatic separator of loose materials
EP0038767A2 (en) * 1980-04-22 1981-10-28 CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT Société dite: Method and apparatus for separating particles of materials by induction

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB468212A (en) * 1935-12-27 1937-06-28 Windham Francis Carey Improvements in and relating to the classification of materials
SU74167A1 (en) * 1947-07-17 1948-11-30 С.Я. Бурдианов Gramophone record holder
SU74169A1 (en) * 1948-06-15 1948-11-30 П.А. Караваев An apparatus for producing periodic pulses of adjustable shape
US2959284A (en) * 1955-06-28 1960-11-08 Exxon Research Engineering Co Transporting and classifying fluid solids
FR1347498A (en) * 1963-02-15 1963-12-27 Sorting process for non-ferrous metals
DE1482424A1 (en) * 1963-04-03 1969-06-04 Alpine Ag Sifter
US3441131A (en) * 1965-10-18 1969-04-29 Scient Separators Inc Particle separation apparatus and method
GB1500990A (en) * 1974-03-11 1978-02-15 Occidental Petroleum Corp Separation of non-magnetic conductive metals
US4010096A (en) * 1975-10-09 1977-03-01 Allis-Chalmers Corporation Pneumatic classifier for refuse material with adjustable air intake
US4137156A (en) * 1975-03-21 1979-01-30 Occidental Petroleum Corporation Separation of non-magnetic conductive metals
JPS5253569A (en) * 1975-10-28 1977-04-30 Agency Of Ind Science & Technol Metal recovering apparatus
JPS5274167A (en) * 1975-12-16 1977-06-21 Agency Of Ind Science & Technol Recovery of metals out of solid waste pieces
JPS5274169A (en) * 1975-12-16 1977-06-21 Agency Of Ind Science & Technol Separation of metallic and non-metallic pieces
US4069145A (en) * 1976-05-24 1978-01-17 Magnetic Separation Systems, Inc. Electromagnetic eddy current materials separator apparatus and method
SU848093A1 (en) * 1979-11-12 1981-07-23 Харьковский Инженерно-Экономическийинститут Pneumatic classifier
NL8000791A (en) * 1980-02-08 1981-09-01 Esmil Bv METHOD AND APPARATUS FOR SEPARATING PAPER AND PLASTIC FOIL IN A SIFTER.
DE3407326C2 (en) * 1984-02-29 1987-02-05 Lindemann Maschinenfabrik GmbH, 4000 Düsseldorf Method and device for separating electrically conductive non-ferrous metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1185440A (en) * 1968-10-30 1970-03-25 Standard Telephones Cables Ltd A Method of and Apparatus for Separating Non-Magnetic Particles from Magnetic Particles.
SU722609A1 (en) * 1978-09-20 1980-04-05 Всесоюзный Научно-Исследовательский И Проектный Институт Вторичных Цветных Металлов "Вниипвторцветмет" Pneumatic separator of loose materials
EP0038767A2 (en) * 1980-04-22 1981-10-28 CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT Société dite: Method and apparatus for separating particles of materials by induction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOVIET INVENTIONS ILLUSTRATED, Derwent Publications Ltd., Woche C44, Zusammenfassung Nr. K6164, 10. Dezember 1980; & SU-A1-722 609 (VNIIPVTORTSVETMET) 05.04.1980 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060871A (en) * 1987-09-11 1991-10-29 Alcan International Limited Method of separating metal alloy particles
EP0452025A1 (en) * 1990-04-10 1991-10-16 Peter Thomas Reid Magnetic methods of separating electrically conductive materials

Also Published As

Publication number Publication date
US4772381A (en) 1988-09-20
US4668381A (en) 1987-05-26
ES8606024A1 (en) 1986-04-16
DE3407326A1 (en) 1985-08-29
DE3407326C2 (en) 1987-02-05
EP0154207B1 (en) 1988-05-18
JPS60202755A (en) 1985-10-14
DE3562713D1 (en) 1988-06-23
ES540725A0 (en) 1986-04-16
ATE34314T1 (en) 1988-06-15
JPH0155901B2 (en) 1989-11-28

Similar Documents

Publication Publication Date Title
EP0154207B1 (en) Method and device for separating electrically conducting non-ferrous metals
EP0898496B1 (en) Device and process for separating particles with a rotary magnet system
EP3568237B1 (en) Magnetic separator
CH657541A5 (en) METHOD AND DEVICE FOR SEPARATING MAGNETIC FROM UNMAGNETIC PARTICLES.
WO1987005829A1 (en) Process and device for sorting of paramagnetic particles in the fine and very fine grain range in a strongly magnetic field
EP2506978B1 (en) Apparatus and method for separating particles having a different electric conductivities
DE8002678U1 (en) METAL SORTING DEVICE
DE1207901B (en) Process and device for the electrostatic separation of ores and other fine-grained substances
DE19832828A1 (en) Method, plant and apparatus for eddy current separation of nonferrous metal particles with different electric conductivity's in an iron-free material mixture
DE19931931A1 (en) Separating mixture of different electrically neutral particles e.g. synthetic plastic material in sorting and recovery of waste and trash by triboelectric method
EP0881952B1 (en) Method and device for increasing separation accuracy in an eddy current separators
EP0550867B1 (en) Device for separating non-magnetisable metals from a mixture of solids
DE2555798C3 (en) Device for separating strongly magnetic particles
DE2509638A1 (en) SEPARATION PROCESS AND DEVICE FOR IMPLEMENTATION
DE3912385C2 (en)
DE19737161A1 (en) Separation of shredded ferrous and nonferrous metals
DE19634802A1 (en) Device and method for particle separation with a rotating magnet system
DE19629110C1 (en) Magnetic field separation system for fine particle mixture
DE3423866C2 (en) Device for separating non-magnetizable electrically conductive metal parts from a solid mixture
DE3321102C2 (en) Magnetohydrostatic separator
DE19535397C2 (en) Method and device for separating mixtures of abrasive and abrasion particles resulting from cutting, separating or machining processes
DE2649598C2 (en) Centrifugal magnetic separator
EP3260203A1 (en) Device for separating particles with different electrical conductivity in a non-homogeneous sorting set
DE3117063C1 (en) Device for separating magnetisable substances from a mixture containing magnetisable and non-magnetisable substances
DE2902219C2 (en) Magnetic separator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19851223

17Q First examination report despatched

Effective date: 19860723

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 34314

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3562713

Country of ref document: DE

Date of ref document: 19880623

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910422

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920229

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920304

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920318

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930211

Ref country code: GB

Effective date: 19930211

Ref country code: AT

Effective date: 19930211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930228

Ref country code: CH

Effective date: 19930228

Ref country code: BE

Effective date: 19930228

BERE Be: lapsed

Owner name: LINDEMANN MASCHINENFABRIK G.M.B.H.

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930211

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85101432.4

Effective date: 19930912