EP0153541B1 - Fenêtre circulaire pour guide d'onde hyperfréquence - Google Patents

Fenêtre circulaire pour guide d'onde hyperfréquence Download PDF

Info

Publication number
EP0153541B1
EP0153541B1 EP84402742A EP84402742A EP0153541B1 EP 0153541 B1 EP0153541 B1 EP 0153541B1 EP 84402742 A EP84402742 A EP 84402742A EP 84402742 A EP84402742 A EP 84402742A EP 0153541 B1 EP0153541 B1 EP 0153541B1
Authority
EP
European Patent Office
Prior art keywords
circular
guide
window
waveguide
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84402742A
Other languages
German (de)
English (en)
Other versions
EP0153541A1 (fr
Inventor
Jean-Claude Kuntzmann
Jacques Tikes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0153541A1 publication Critical patent/EP0153541A1/fr
Application granted granted Critical
Publication of EP0153541B1 publication Critical patent/EP0153541B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/08Dielectric windows

Definitions

  • the present invention relates to a window for a microwave waveguide, more particularly a circular window.
  • microwave devices which operate at a pressure different from atmospheric pressure generally require a sealed window intended both to isolate it from external pressure and to allow propagation of microwave waves without producing internal reflection or resonance. , this is the case, for example, for:
  • microwave tubes and accelerators which operate at substantially zero pressures
  • microwave windows used in these devices must have sufficient solidity to withstand a pressure which may be greater than 3 kg / cm 2 in the most unfavorable case, that is to say when they are associated with a device operating at high pressure.
  • microwave windows must also be able to withstand temperature variations of up to 800 ° C during final brazing in the component.
  • the microwave windows can be used in a wide bandwidth corresponding substantially to the bandwidth of the microwave devices in which they are mounted, band in which they do not have internal parasitic resonances generally designated by the term Anglo-Saxon " ghost-modes ”.
  • the “pill-box” type window is known in particular.
  • the "pill-box" window consists of a thin dielectric strip 1 brazed in a section of circular waveguide 2 connected on either side to a rectangular waveguide 3.
  • the propagation modes are respectively TE 01 mode in the rectangular guides 3 and TE mode 11 in the circular guide 2.
  • the diameter D of the circular guide is substantially equal at the diagonal of the rectangular guide 3 so as not to modify the electrical wavelength Xg between the rectangular guide and the circular guide.
  • the length L of the circular guide is electrically equal to half the guided wavelength ⁇ g.
  • the pill-box window therefore behaves like a half-wave impedance transformer.
  • this type of window has many parasitic modes or "ghost-modes " , which reduces its operating band, to a useful band of about 10% compared to its central frequency.
  • all the dimensions of the “pill-box” window are chosen so as to cause no problem in terms of microwave operation. Those skilled in the art can possibly modify the dimensions of these windows to move the frequency band while remaining suitable but without substantially modifying this frequency band.
  • the pill-box window has many drawbacks in terms of the width of the useful frequency band, particularly for high-power CW tubes used for telecommunications, for which the natural amplification band is much greater than the useful band, which leads to a risk of destruction in the event of accidental piloting outside the normal band of use.
  • the present invention which results from research carried out for many years, therefore aims to remedy these drawbacks.
  • the present invention therefore relates to a circular window for microwave waveguide constituted by a circular blade of dielectric material mounted in a section of circular guide connected on either side to a waveguide operating in a band of frequency centered around a central frequency, characterized in that the diameter 0 of the circular blade is identical to the diameter of the section of circular guide and is chosen to reject the parasitic modes or "ghost-modes" outside the frequency band , in that the length of the circular guide section is chosen so that the reactance of the blade and circular guide assembly is canceled for the central frequency and so that the impedance of the assembly is a pure reactance which progressively passes through inductive, zero and capacitive values in the direction of increasing frequencies and in that it comprises a half-wave impedance transformer, the wavelength Xg considered being the electrical wavelength corresponding to the central frequency, transformer whose height is chosen so that the reactance of the transformer varies in the opposite direction to the reactance of said assembly thus achieving adaptation in the operating frequency band.
  • Figure 9 is a schematic sectional view along the short side of the guide illustrating an embodiment of a circular window according to the present invention.
  • Figures 3a to 3c and Figure 4 show different views of an embodiment of a circular window according to the present invention used in a waveguide 5 of rectangular section.
  • the circular window according to the invention comprises a thin blade 6 of a dielectric material, preferably of a ceramic such as alumina or the like, mounted in a section of waveguide 7 brazed on either side on the rectangular waveguide 5.
  • the thickness of the dielectric strip was chosen so as to obtain the desired rigidity and tightness.
  • the diameter 0 of the dielectric strip which is also the diameter of the circular guide is chosen to reject the parasitic modes or “ghost-modes largely beyond the frequency band F i , F 2 to be transmitted by the rectangular waveguide in which the window is inserted. As shown clearly in FIGS.
  • the diameter ⁇ of the circular guide is between the dimension a of the short side of the rectangular guide and the dimension b of the long side of the rectangular guide. Therefore, it creates at the circular guide inductive parts 8 and parts 9 which correspond to a lack of capacity. Parts 8 and 9 associated with the dielectric strip 6 give pure reactance. Consequently, the length L of the circular guide section 7 is chosen so that the reactance of the assembly constituted by the dielectric strip 6 and by the parts 8 and 9 of the circular guide is canceled out for the central frequency F o .
  • the window also includes a half-wave impedance transformer 10 consisting of two elements of the same length placed on each side of the circular guide in the rectangular guide and covering, for example, one of the long sides of the rectangular wave guide 5 It can also be distributed on the two long sides. It can be achieved, as shown in Figure 3a, by an asymmetrical reduction in the height of the guide.
  • the transformer can be produced using a metal plate attached to one of the long sides of the guide.
  • the height h of the transformer is chosen to carry out the adaptation in the operating frequency band F 1 F 2 .
  • the Smith diagram shows the variations in the frequency band F 1 , F 2 , of the impedance presented by the assembly consisting of the dielectric strip 6 of the inductive parts 8 and of the parts 9 of the circular guide section 7.
  • the thickness e of the dielectric strip, the diameter ⁇ and the length L of the circular guide section have been chosen so that the impedance of the above assembly is a pure reactance which progressively passes through inductive values, zero and capacitive in the direction of increasing frequencies from F 1 to F 2 and vanishes for F o .
  • FIG. 6 there has been shown on the Smith chart the variations in impedance presented at different points by a half-wave impedance transformer mounted in a rectangular waveguide and connected to a suitable termination, these variations being data for frequencies F i , F o , and F 2 .
  • the impedance transformer Before the impedance transformer, at the plane ⁇ 1, there is adaptation whatever the frequency, the impedance is represented by the point A in the center of the Smith chart.
  • the displacement of the plane ⁇ 2 to the plane ⁇ 4 over the length ⁇ g / 2 causes a rotation on a circle of radius AB centered at point A in the trigonometric direction.
  • the angle of rotation depends on the operating frequency: thus it is 2 ⁇ for F o of 2 ⁇ .
  • F i / F o for F 1 and 2 ⁇ F 2 / F o for F 2 .
  • the impedance is represented by the point C located on the circle above the point B for F i .
  • the impedance is represented by point B for F o and by point E located on the circle below point B for F 2 .
  • the transformer is crossed and there is an increase in purely resistive impedance which compensates for the decrease that had occurred at the plane ⁇ 2.
  • the impedance on the plane ⁇ 5 is therefore represented at the frequencies F i , F o and F 2 by the points DA and F which are substantially aligned on the axis q of the impedances. Points D and F are located on either side of A.
  • the impedance in the median plane ⁇ 3 distant from ⁇ g / 4 from the plane ⁇ 5 is deduced from the impedance at the plane ⁇ 5 by a 180 ° rotation of the line segment D A F ..
  • the impedance of the half-wave transformer is therefore an impedance which successively takes on purely capacitive values, zero and purely inductive, in the direction of increasing frequencies from F 1 to F 2 , namely from D to F.
  • the dimensions of the dielectric strip and of the circular guide as well as the height h of the transformer are determined so that the impedance of the transformer and that of the assembly formed by the dielectric strip and the elements of the circular guide are compensated in the frequency band F i , F 2 so as to be adapted with a standing wave ratio substantially equal to 1 and without having parasitic modes or “ghost-modes” in the frequency band F 1 , F 2 , as can be seen in FIG. 8 which represents a diagram giving the standing wave ratio as a function of the frequency in a circular window according to the present invention.
  • the circular guide section 7 is at the cutoff frequency.
  • the length of the section of the circular guide is very short compared to the electrical wavelength xg, there is no problem of wave transmission.
  • a circular window in accordance with the present invention was tested on a waveguide of rectangular section with internal dimensions 15.80 x 34.85 mm.
  • the dimensions of the window are as follows: blade of dielectric material (alumina) thickness 0.8 mm, diameter 28 mm; cylindrical guide: length 6 mm; transformer: length 26 mm, height 1.3 mm;
  • the standing wave ratio is 1.15 in a frequency band of 5.15 to 8.15 GHz without parasitic mode.
  • the width of the operating band relative to the central frequency has thus been increased to 45%.
  • the first “ghost-mode” is at 8.18 GHz.
  • a practical embodiment of a circular window according to the present invention will now be described with reference to FIG. 9.
  • the ceramic dielectric strip 6 is brazed on a circular jacket 11 made of a metallic material such as copper or metallized.
  • a circular jacket 11 made of a metallic material such as copper or metallized.
  • the jacket 11 also forms the wall of the circular guide 7.
  • the jacket 11 is inserted into a cylindrical frame 12 of U-shaped cross section.
  • Two metal connection pieces 13 are provided on each side of the frame 12 to make the connection between the circular guide and the rectangular wave guide 5 in accordance with the present invention.
  • the internal lateral walls of the connection pieces 13 form, at the long sides of the rectangular waveguide, the inductive parts 8.
  • connection elements 13 are brazed respectively to the frame 12 and to the ends of the two sections of rectangular guide 5.
  • the half-wave transformer 10 is constituted killed by two metal blades which were brazed on one of the long sides of the rectangular waveguide 5.
  • FIG. 9 The assembly represented by FIG. 9 with the dimensions mentioned above allows a very wide band of use with a high power in continuous waves as shown in the characteristic of FIG. 8.
  • the circular window is used in a waveguide of rectangular section.
  • the circular windows according to the present invention can also be used in waveguides of any cross section such as elliptical guides, for example.
  • the waveguides of the present invention are used more particularly in satellite telecommunications equipment, for example, in the bands for "Intelsat".

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

  • La présente invention concerne une fenêtre pour guide d'onde hyperfréquence, plus particulièrement une fenêtre circulaire.
  • En effet, les dispositifs hyperfréquences qui fonctionnent à une pression différente de la pression atmosphérique nécessitent en général une fenêtre étanche destinée à la fois à l'isoler de la pression extérieure et à permettre la propagation des ondes hyperfréquences sans produire de réflexion ni de résonance interne, c'est le cas, par exemple, pour :
  • les tubes hyperfréquences et les accélérateurs qui fonctionnent à des pressions sensiblement nulles ;
  • les circulateurs, les isolateurs, les lignes coaxiales et les guides d'onde dans lesquels un gaz peut être emprisonné pour augmenter leur tenue en puissance. La pression de ce gaz peut atteindre 3 kg/cm2 ou plus.
  • Il résulte de ceci que les fenêtres hyperfréquences utilisées dans ces dispositifs doivent présenter une solidité suffisante pour résister à une pression qui peut être supérieure à 3 kg/cm2 dans le cas le plus défavorable, c'est-à-dire lorsqu'elles sont associées à un dispositif fonctionnant à pression élevée. D'autre part, les fenêtres hyperfréquences doivent également être en mesure de supporter des variations de température pouvant atteindre 800 °C lors du brasage final dans le composant.
  • Il est souhaitable que les fenêtres hyperfréquences puissent être utilisées dans une large bande passante correspondant sensiblement à la bande passante des dispositifs hyperfréquences dans lesquels elles sont montées, bande dans laquelle elles ne présentent pas de résonances internes parasites généralement désignées par le terme anglo-saxon « ghost-modes ». De plus, il est aussi préférable que dans cette bande de fréquences le rapport d'onde stationnaire soit faible et en conséquence les réflexions peu importantes.
  • Parmi les fenêtres de l'art antérieur utilisées dans les dispositifs ci-dessus, on connaît notamment la fenêtre de type « pill-box ».
  • Comme représenté sur les figures 1 a et 1b, la fenêtre « pill-box » est constituée par une lame diélectrique mince 1 brasée dans un tronçon de guide d'onde circulaire 2 connecté de part et d'autre à un guide d'onde rectangulaire 3. Dans ce cas, les modes de propagation sont respectivement le mode TE 01 dans les guides rectangulaires 3 et le mode TE 11 dans le guide circulaire 2. Comme représenté plus particulièrement sur la figure 1b, le diamètre D du guide circulaire est sensiblement égal à la diagonale du guide rectangulaire 3 pour ne pas modifier la longueur d'onde électrique Xg entre le guide rectangulaire et le guide circulaire. De plus, la longueur L du guide circulaire est égale électriquement à la moitié de la longueur d'onde guidée λg. La fenêtre « pill-box se comporte donc comme un transformateur d'impédance demi-onde. Il en résulte que l'adaptation est parfaite à la fréquence centrale mais se dégrade progressivement de chaque côté. Comme représenté sur la figure 2, ce type de fenêtres présente de nombreux modes parasites ou « ghost-modes ", ce qui réduit sa bande de fonctionnement, à une bande utile de 10 % environ par rapport à sa fréquence centrale. En effet sur la courbe de la figure 2, on observe des modes parasites pour les fréquences 5,4 GHz, 5,8 GHz, 6,5 GHz ce qui donne une bande passante utile de 575 MHz, entre, par exemple Fi = 5,850, GHz et F2 = 6,425 GHz.
  • D'autre part, l'ensemble des dimensions de la fenêtre « pill-box » est choisi de manière à n'entraîner aucun problème au niveau du fonctionnement hyperfréquence. L'homme de métier peut éventuellement modifier les dimensions de ces fenêtres pour déplacer la bande de fréquences tout en restant adapté mais sans modifier sensiblement cette bande de fréquence.
  • En conséquence, la fenêtre « pill-box » présente de nombreux inconvénients au niveau de la largeur de la bande de fréquences utile, particulièrement pour les tubes hyperfréquences de forte puissance en ondes entretenues utilisés pour les télécommunications, pour lesquels la bande naturelle d'amplification est largement supérieure à la bande utile, ce qui entraîne un risque de destruction en cas de pilotage accidentel hors de la bande normale d'utilisation.
  • Pour remédier à ces inconvénients, la Demanderesse a proposé dans la demande de brevet européen 31 275 une fenêtre rectangulaire qui peut être utilisée dans une large bande de fréquences sans ghost-mode et dans laquelle le rapport d'onde stationnaire est faible. Cependant, elle a rencontré de nombreux problèmes lors de la réalisation pratique de telles fenêtres.
  • La présente invention, qui résulte de recherches réalisées depuis de nombreuses années, a donc pour but de remédier à ces inconvénients.
  • La présente invention a en conséquence pour objet une fenêtre circulaire pour guide d'onde hyperfréquence constituée par une lame circulaire en matériau diélectrique montée dans un tronçon de guide circulaire relié de part et d'autre à un guide d'onde fonctionnant dans une bande de fréquence centrée autour d'une fréquence centrale, caractérisée en ce que le diamètre 0 de la lame circulaire est identique au diamètre de tronçon de guide circulaire et est choisi pour rejeter les modes parasite ou « ghost-modes » en dehors de la bande de fréquence, en ce que la longueur du tronçon de guide circulaire est choisie pour que la réactance de l'ensemble lame et guide circulaire s'annule pour la fréquence centrale et pour que l'impédance de l'ensemble soit une réactance pure qui passe progressivement par des valeurs selfiques, nulle et capacitives dans le sens des fréquences croissantes et en ce qu'elle comporte un transformateur d'impédance demi-onde, la longueur d'onde Xg considérée étant la longueur d'onde électrique correspondant à la fréquence centrale, transformateur dont la hauteur est choisie pour que la réactance du transformateur varie en sens inverse de la réactance dudit ensemble réalisant ainsi l'adaptation dans la bande de fréquence de fonctionnement.
  • Avec les fenêtres de la présente invention, on obtient une largeur de bande d'utilisation qui correspond à plus de 40 % par rapport à la fréquence centrale, ceci avec un rapport d'onde stationnaire inférieur à 1,15 et sans «ghost-modes ».
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description faite ci-après d'un mode de réalisation donné à titre d'exemple non limitatif, avec référence aux dessins ci-annexés dans lesquels :
    • les figures 1 a et 1b, déjà décrites, sont respectivement une vue en coupe longitudinale et une vue par A A' de la figure 1 a, d'une fenêtre de type « pill-box » conforme à l'art antérieur ;
    • la figure 2, déjà décrite, est un graphique donnant le gain en fonction de la fréquence pour un tube à ondes progressives de télécommunications utilisant une fenêtre « pill-box conforme à l'art antérieur ;
    • les figures 3a, 3b, 3c sont respectivement une vue en coupe longitudinale selon le petit côté d'un guide d'onde rectangulaire, d'un mode de réalisation d'une fenêtre circulaire conforme à la présente invention utilisée dans un guide rectangulaire, une vue en coupe par B B' de la figure 3a et une vue en coupe longitudinale selon le grand côté du guide d'onde ;
    • la figure 4 est une vue en perspective de la fenêtre circulaire des figures 3a à 3c ;
    • les figures 5 à 7 sont des abaques de Smith illustrant le fonctionnement d'une fenêtre circulaire selon l'invention ;
    • la figure 8 est un graphique donnant le rapport d'onde stationnaire en fonction de la fréquence dans une fenêtre circulaire conforme à la présente invention ;
  • la figure 9 est une vue en coupe schématique selon le petit côté du guide illustrant un mode de réalisation d'une fenêtre circulaire conforme à la présente invention.
  • Sur les différentes figures, les mêmes références désignent les mêmes éléments.
  • Les figures 3a à 3c ainsi que la figure 4 représentent différentes vues d'un mode de réalisation d'une fenêtre circulaire conforme à la présente invention utilisée dans un guide d'onde 5 de section rectangulaire.
  • La fenêtre circulaire conforme à l'invention comporte une lame mince 6 en un matériau diélectrique, de préférence en une céramique telle que l'alumine ou similaire, montée dans un tronçon de guide d'onde 7 brasé de part et d'autre sur le guide d'onde rectangulaire 5. L'épaisseur de la lame diélectrique a été choisie de manière à obtenir la rigidité et l'étanchéité souhaitées. D'autre part, le diamètre 0 de la lame diélectrique qui est aussi le diamètre du guide circulaire est choisi pour rejeter les modes parasites ou « ghost-modes largement au-delà de la bande de fréquence Fi, F2 à transmettre par le guide d'onde rectangulaire dans lequel est insérée la fenêtre. Comme représenté clairement sur les figures 3a et 3c, le diamètre ∅ du guide circulaire est compris entre la dimension a du petit côté du guide rectangulaire et la dimension b du grand côté du guide rectangulaire. De ce fait, on crée au niveau du guide circulaire des parties selfiques 8 et des parties 9 qui correspondent à un manque de capacité. Les parties 8 et 9 associées à la lame diélectrique 6 donnent une réactance pure. En conséquence, la longueur L du tronçon de guide circulaire 7 est choisie pour que la réactance de l'ensemble constitué par la lame diélectrique 6 et par les parties 8 et 9 du guide circulaire s'annule pour la fréquence centrale Fo. La fenêtre comporte aussi un transformateur d'impédance demi-onde 10 constitué de deux éléments de même longueur placés de chaque côté du guide circulaire dans le guide rectangulaire et recouvrant, par exemple, l'un des grands côtés du guide d'onde rectangulaire 5. Il peut être aussi réparti sur les deux grands côtés. Il peut être réalisé, comme représenté sur la figure 3a, par une diminution dissymétrique de la hauteur du guide. Selon un autre mode de réalisation le transformateur peut être réalisé à l'aide d'une plaque métallique rapportée sur l'un des grands côtés du guide.
  • Comme cela sera expliqué de manière plus détaillée ci-après, la hauteur h du transformateur est choisie pour réaliser l'adaptation dans la bande de fréquence de fonctionnement F1 F2.
  • On expliquera maintenant, avec référence aux figures 5 à 7, le fonctionnement d'une fenêtre circulaire telle que celle représentée sur les figures 3a, 3b, 3c et sur la figure 4.
  • Sur la figure 5, on a représenté sur l'abaque de Smith les variations dans la bande de fréquence F1, F2, de l'impédance présentée par l'ensemble constitué de la lame diélectrique 6 des parties selfiques 8 et des parties 9 du tronçon de guide circulaire 7.
  • L'épaisseur e de la lame diélectrique, le diamètre ∅ et la longueur L du tronçon de guide circulaire ont été choisis pour que l'impédance de l'ensemble ci-dessus soit une réactance pure qui passe progressivement par des valeurs selfiques, nulle et capacitives dans le sens des fréquences croissantes de F1 à F2 et s'annule pour Fo.
  • Les variations de l'impédance de l'ensemble constitué par la lame 6, les parties selfiques 8 et les parties 9 du guide circulaire sont donc représentées sur l'abaque de Smith, par un segment de droite porté par l'axe des impédances q de l'abaque de Smith ; ce segment de droite se trouve dans le demi-plan des impédances selfiques pour F1, il passe par le centre de l'abaque Fo puis se trouve dans le demi-plan des impédances capacitives pour F2. On observe donc une certaine variation de la réactance dans la bande de fonctionnement du guide, variation qui doit être compensée pour obtenir un fonctionnement hyperfréquence correct.
  • Sur la figure 6, on a représenté sur l'abaque de Smith les variations d'impédance présentées en différents points par un transformateur d'impédance demi-onde monté dans un guide d'onde rectangulaire et relié à une terminaison adaptée, ces variations étant données pour les fréquences Fi, Fo, et F2.
  • On appelle:
    • π1, un plan du guide situé du côté du générateur avant le transformateur ;
    • π2, le plan d'entrée du transformateur ;
    • π3, le plan médian du transformateur ;
    • π4, le plan de sortie du transformateur ;
    • π5, un plan du guide situé du côté de la terminaison adaptée, contre le transformateur.
  • Ces différents plans ont été représentés sur la figure 3a.
  • Avant le transformateur d'impédance, au niveau du plan π1, il y a adaptation quelle que soit la fréquence, l'impédance est représentée par le point A au centre de l'abaque de Smith.
  • L'arrivée au plan π2 signifie, quelle que soit la fréquence, une diminution d'impédance purement résistive et l'impédance se trouve représentée par le point B à gauche du point A sur l'axe p des résistances de l'abaque de Smith.
  • Le déplacement du plan π2 au plan π4 sur la longueur λg/2 entraîne une rotation sur un cercle de rayon A B centré au point A dans le sens trigonométrique. L'angle de rotation dépend de la fréquence de fonctionnement : ainsi il est de 2π pour Fo de 2π. Fi/Fo pour F1, et 2π F2/Fo pour F2.
  • Au niveau du plan π4, l'impédance est représentée par le point C situé sur le cercle au-dessus du point B pour Fi. L'impédance est représentée par le point B pour Fo et par le point E situé sur le cercle au-dessous du point B pour F2.
  • Au niveau du plan π5, le transformateur est franchi et il y a une augmentation d'impédance purement résistiva qui compense la diminution qui s'était produite au plan π2.
  • L'impédance au plan π5 se trouve donc représentée aux fréquences Fi, Fo et F2 par les points D A et F qui sont sensiblement alignés sur l'axe q des impédances. Les points D et F sont situés de part et d'autre de A.
  • L'impédance dans le plan médian π3 distant de λg/4 du plan π5 se déduit de l'impédance au niveau du plan π5 par une rotation de 180 ° du segment de droite D A F..
  • Ainsi, comme représenté sur la figure 7, dans le plan π3, l'impédance du transformateur demi-onde est donc une impédance qui prend successivement des valeurs purement capacitives, nulle et purement selfiques, dans le sens des fréquences croissantes de F1 vers F2, à savoir de D vers F.
  • En comparant les figures 5 et 7, on constate que les variations dans la bande de fréquence F1, F2 de l'impédance du transformateur et de l'impédance constituée par la lame diélectrique 6, les parties selfiques 8 et les parties 9 du guide circulaire sont purement réactives et se font en sens inverse en fonction de la fréquence.
  • En conséquence, conformément à la présente invention et comme déjà mentionné ci-dessus, les' dimensions de la lame diélectrique et du guide circulaire ainsi que la hauteur h du transformateur sont déterminées pour que l'impédance du transformateur et celle de l'ensemble constitué par la lame diélectrique et les éléments du guide circulaire se compensent dans la bande de fréquence Fi, F2 de manière à être adapté avec un rapport d'onde stationnaire sensiblement égal à 1 et sans avoir de modes parasites ou « ghost-modes » dans la bande de fréquence F1, F2, comme on peut le voir sur la figure 8 qui représente un diagramme donnant le rapport d'onde stationnaire en fonction de la fréquence dans une fenêtre circulaire conforme à la présente invention.
  • Par ailleurs on signalera que le tronçon de guide circulaire 7 se trouve à la fréquence de coupure. Toutefois, comme la longueur du tronçon du guide circulaire est très faible par rapport à la longueur d'onde électrique xg, il n'y a pas de problème de transmission d'onde.
  • Une fenêtre circulaire conforme à la présente invention a été expérimentée sur un guide d'onde de section rectangulaire de dimensions internes 15,80 x 34,85 mm.
  • Les dimensions de la fenêtre sont les suivantes : lame en matériau diélectrique (alumine) épaisseur 0,8 mm, diamètre 28 mm ; guide cylindrique : longueur 6 mm ; transformateur : longueur 26 mm, hauteur 1,3 mm;
  • Dans ce cas, le rapport d'onde stationnaire est de 1,15 dans une bande de fréquence de 5,15 à 8,15 GHz sans mode parasite. La largeur de la bande d'utilisation par rapport à la fréquence centrale a ainsi été portée à 45 %.
  • Le premier « ghost-mode » se situe à 8,18 GHz. On décrira maintenant avec référence à la figure 9 un mode de réalisation pratique d'une fenêtre circulaire conforme à la présente invention.
  • On réalise tout d'abord le brasage de la lame diélectrique 6 en céramique sur une chemise circulaire 11 en un matériau métallique tel que du cuivre ou métallisé. Pour cela, de manière connue la tranche de la lame diélectrique est tout d'abord métallisée avec une poudre à base de molybdène. La chemise 11 forme aussi la paroi du guide circulaire 7. La chemise 11 est insérée dans un cadre cylindrique 12 de section en coupe en forme de U. Deux pièces de raccordement métalliques 13 sont prévues de chaque côté du cadre 12 pour réaliser le raccordement entre le guide circulaire et le guide d'onde rectangulaire 5 conformément à la présente invention. Les parois latérales internes des pièces de raccordement 13 forment au niveau des grands côtés du guide d'onde rectangulaire les parties selfiques 8.
  • Ces éléments de raccordement 13 sont brasés respectivement sur le cadre 12 et sur les extrémités des deux tronçons de guide rectangulaire 5.
  • D'autre part, dans le mode de réalisation représenté le transformateur demi-onde 10 est constitué par deux lames métalliques qui ont été brasées sur l'un des grands côtés du guide d'onde rectangulaire 5.
  • L'ensemble représenté par la figure 9 avec les dimensions citées précédemment permet une très large bande d'utilisation avec une forte puissance en ondes entretenues comme le montre la caractéristique de la figure 8.
  • Dans la présente invention, la fenêtre circulaire est utilisée dans un guide d'onde de section rectangulaire. Toutefois les fenêtres circulaires conformes à la présente invention peuvent aussi être utilisées dans des guides d'onde de sections quelconques tels que des guides elliptiques, par exemple.
  • Les guides d'onde de la présente invention sont utilisés plus particulièrement dans les équipements de télécommunications par satellites, par exemple, dans les bandes pour « Intelsat ».

Claims (7)

1. Une fenêtre circulaire pour guide d'onde hyperfréquence constituée par une lame circulaire (6) en un matériau diélectrique montée dans un tronçon de guide circulaire (7) relié de part et d'autre à un guide d'onde (5) fonctionnant dans une bande de fréquence (FI, F2) centrée autour d'une fréquence centrale (Fo) caractérisée en ce que le diamètre 0 de la lame circulaire (6) est identique au diamètre de tronçon de guide circulaire et est choisi pour rejeter les modes parasites ou « ghost-modes » en dehors de la bande de fréquence (F1, F2), en ce que la longueur (L) du tronçon de guide circulaire (7) est choisie pour que la réactance de l'ensemble lame (6) et guide circulaire (7) s'annule pour la fréquence centrale (Fo) et pour que l'impédance de l'ensemble soit une réactance pure qui passe progressivement par des valeurs selfiques, nulle et capacitives dans le sens des fréquences croissantes de F1 à F2 et en ce qu'elle comporte un transformateur (10) d'impédance demi-onde, la longueur d'onde xg considérée étant la longueur d'onde électrique correspondant à la fréquence totale (F0), transformateur dont la hauteur (h) est choisie pour que la réactance du transformateur varie en sens inverse de la réactance dudit ensemble réalisant ainsi l'adaptation dans la bande de fréquence de fonctionnement (F1, F2).
2. Une fenêtre circulaire selon la revendication 1 caractérisée en ce que le guide d'onde destiné à recevoir la fenêtre est un guide d'onde de section rectangulaire ou elliptique.
3. Une fenêtre circulaire selon la revendication 2, caractérisée en ce que, dans le cas d'un guide d'onde de section rectangulaire ou inscriptible dans un rectangle, le diamètre (∅) de la lame (6) de matériau diélectrique est compris entre la dimension a du petit côté du rectangle et la dimension b du grand côté du rectangle.
4. Une fenêtre selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le tronçon de guide d'onde circulaire fonctionne à la fréquence de coupure.
5. Une fenêtre selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le transformateur demi-onde (10) est constitué par deux demi-transformateurs identiques positionnés de part et d'autre du tronçon de guide circulaire (7) dans le guide d'onde (5) et présentant entre leurs deux extrémités les plus éloignées une longueur λg/2.
6. Une fenêtre selon la revendication 5 caractérisé en ce que les deux demi-transformateurs (10) sont réalisées en diminuant symétriquement ou non par rapport au plan médian du guide d'onde (5), la hauteur du guide.
7. Une fenêtre selon la revendication 5 caractérisée en ce que les deux demi-transformateurs (10) sont réalisées en rapportant une plaque métallique sur au moins l'un des grands côtés du guide.
EP84402742A 1984-01-17 1984-12-27 Fenêtre circulaire pour guide d'onde hyperfréquence Expired EP0153541B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8400664 1984-01-17
FR8400664A FR2558306B1 (fr) 1984-01-17 1984-01-17 Fenetre circulaire pour guide d'onde hyperfrequence

Publications (2)

Publication Number Publication Date
EP0153541A1 EP0153541A1 (fr) 1985-09-04
EP0153541B1 true EP0153541B1 (fr) 1989-09-20

Family

ID=9300195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84402742A Expired EP0153541B1 (fr) 1984-01-17 1984-12-27 Fenêtre circulaire pour guide d'onde hyperfréquence

Country Status (6)

Country Link
US (1) US4684908A (fr)
EP (1) EP0153541B1 (fr)
JP (1) JPH0810801B2 (fr)
CA (1) CA1236179A (fr)
DE (1) DE3479847D1 (fr)
FR (1) FR2558306B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575604B1 (fr) * 1984-12-28 1987-01-30 Thomson Csf Guide d'ondes rectangulaire a moulures, muni d'une fenetre etanche
FR2639936B1 (fr) * 1988-12-06 1991-01-25 Thomson Csf Piece en ceramique a plusieurs proprietes ameliorees et procede de fabrication d'une telle piece
FR2653272A1 (fr) * 1989-10-17 1991-04-19 Thomson Tubes Electroniques Fenetre hyperfrequence de puissance a large bande, a tenues mecanique et electrique ameliorees.
US5495218A (en) * 1994-04-20 1996-02-27 Thermo Instrument Controls Inc. Microwave waveguide seal assembly
FR2821487B1 (fr) * 2001-02-23 2004-09-17 Thales Electron Devices Sa Fenetre hyperfrequence en ceramique
US7746189B2 (en) * 2008-09-18 2010-06-29 Apollo Microwaves, Ltd. Waveguide circulator
US8324990B2 (en) * 2008-11-26 2012-12-04 Apollo Microwaves, Ltd. Multi-component waveguide assembly
US9520633B2 (en) 2014-03-24 2016-12-13 Apollo Microwaves Ltd. Waveguide circulator configuration and method of using same
CN104979145B (zh) * 2015-05-14 2017-01-25 电子科技大学 一种毫米波变异盒型窗的设计方法
FR3043497B1 (fr) * 2015-11-06 2019-05-10 Thales Fenetre hyperfrequence

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB601269A (en) * 1945-08-14 1948-05-03 Leslie Baden Mullett Improvements in or relating to electromagnetic waveguides
US2823356A (en) * 1952-12-11 1958-02-11 Bell Telephone Labor Inc Frequency selective high frequency power dividing networks
US3183459A (en) * 1963-10-04 1965-05-11 Sperry Rand Corp High power broadband waveguide window structure having septum to reduce reflection and ghost mode
US3221206A (en) * 1964-02-21 1965-11-30 Varian Associates Output window and coupler for high frequency electron discharge device
US3436694A (en) * 1966-07-28 1969-04-01 Microwave Ass Controlling ghost-mode resonant frequencies in sealed waveguide windows
US3594667A (en) * 1968-11-15 1971-07-20 Varian Associates Microwave window having dielectric variations for tuning of resonances
US3593224A (en) * 1969-02-04 1971-07-13 Teledyne Inc Microwave tube transformer-window assembly having a window thickness equivalent to one-quarter wavelength and metallic step members to transform impedance
US3860891A (en) * 1970-12-30 1975-01-14 Varian Associates Microwave waveguide window having the same cutoff frequency as adjoining waveguide section for an increased bandwidth
FR2127095A5 (fr) * 1971-02-23 1972-10-13 Thomson Csf
US3753171A (en) * 1971-04-05 1973-08-14 Varian Associates Composite microwave window and waveguide transform
JPS5451358A (en) * 1977-09-29 1979-04-23 Nec Corp Airtight window for waveguide
JPS5595301A (en) * 1978-12-28 1980-07-19 Matsushita Electric Ind Co Ltd Temperature and humidiry control element
FR2472279A1 (fr) * 1979-12-18 1981-06-26 Thomson Csf Fenetre hyperfrequence et guide d'onde comportant une telle fenetre

Also Published As

Publication number Publication date
JPH0810801B2 (ja) 1996-01-31
DE3479847D1 (en) 1989-10-26
FR2558306B1 (fr) 1988-01-22
CA1236179A (fr) 1988-05-03
US4684908A (en) 1987-08-04
FR2558306A1 (fr) 1985-07-19
JPS60162301A (ja) 1985-08-24
EP0153541A1 (fr) 1985-09-04

Similar Documents

Publication Publication Date Title
EP0145597B1 (fr) Antenne périodique plane
EP0035922B1 (fr) Dispositif d'accord à capacité variable et filtre hyperfréquences accordable comportant au moins un tel dispositif
CA1291560C (fr) Antenne de type helice et son procede de realisation
EP0013222B1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
EP0153541B1 (fr) Fenêtre circulaire pour guide d'onde hyperfréquence
CA1295732C (fr) Antenne multifrequence, utilisable notamment dans le domaine des telecommunications spatiales
EP0426972A1 (fr) Antenne plane
EP3602689B1 (fr) Antenne electromagnetique
FR2546340A1 (fr) Filtre hyperfrequence coupe-bande accordable, de type coaxial, a resonateurs dielectriques
EP0089083B1 (fr) Additionneur-diviseur de puissance à large bande pour circuit hyperfréquence et transformateur d'impédance réalisé à partir de cet additionneur-diviseur
EP0031275B1 (fr) Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre
EP3136499A1 (fr) Système diviseur/combineur pour onde hyperféquence
FR2704358A1 (fr) Duplexeur de polarissation à guide d'ondes.
FR2889358A1 (fr) Filtre a elimination de bande a micro-ondes pour multiplexeur de sortie
EP0467818A1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
EP0015610A1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
EP1191630A1 (fr) Lentille divergente à dôme pour ondes hyperfréquences et antenne comportant une telle lentille
FR2813995A1 (fr) Coupleur directionnel, dispositif d'antenne et systeme de radar
EP0424221B1 (fr) Fenêtre hyperfréquence de puissance à large bande, à tenues mécanique et électrique améliorées
EP0274950B1 (fr) Dispositif de couplage à large bande entre la ligne à retard d'un tube à onde progressive et le circuit externe de transmission de l'énergie du tube, et tube à onde progressive comportant un tel dispositif
FR2664749A1 (fr) Antenne microonde.
FR2509535A1 (fr) Filtre hyperfrequence comportant des troncons de lignes couples et des moyens de reglage
EP0041877B1 (fr) Coupleur hyperfréquence à guide d'onde
EP0654845B1 (fr) Elément rayonnant adaptable du type dipÔle réalisé en technologie imprimée, procédé d'ajustement de l'adaptation et réseau correspondants
EP0022401A1 (fr) Polariseur à large bande et faible taux d'ellipticité et matériel travaillant en hyperfréquence comportant un tel polariseur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19850913

17Q First examination report despatched

Effective date: 19870105

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3479847

Country of ref document: DE

Date of ref document: 19891026

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940331

Year of fee payment: 10

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951117

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951120

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031224

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20041226

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20