EP0145597B1 - Antenne périodique plane - Google Patents

Antenne périodique plane Download PDF

Info

Publication number
EP0145597B1
EP0145597B1 EP84402523A EP84402523A EP0145597B1 EP 0145597 B1 EP0145597 B1 EP 0145597B1 EP 84402523 A EP84402523 A EP 84402523A EP 84402523 A EP84402523 A EP 84402523A EP 0145597 B1 EP0145597 B1 EP 0145597B1
Authority
EP
European Patent Office
Prior art keywords
teeth
antenna according
plane
antenna
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84402523A
Other languages
German (de)
English (en)
Other versions
EP0145597A2 (fr
EP0145597A3 (en
Inventor
Alain Bizouard
Gérard Dubost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0145597A2 publication Critical patent/EP0145597A2/fr
Publication of EP0145597A3 publication Critical patent/EP0145597A3/fr
Application granted granted Critical
Publication of EP0145597B1 publication Critical patent/EP0145597B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas

Definitions

  • the present invention relates to flat periodic antennas of the log-periodic type.
  • periodic antennas are very broadband antennas, independent of the frequency of the feed signal. They consist of radiating elements whose dimensions are deduced from each other by a homothety of ratio T from a given expansion pole. Two consecutive radiating elements have the same properties, one at a frequency f which is its resonant frequency, and the other at the frequency f / T or f ⁇ . The factor is generally close to unity, so that this type of antenna has rather little different characteristics over a large frequency band.
  • the flat periodic antennas are formed of flat radiating elements as opposed to the wire radiating elements and in general to the volumetric elements.
  • a flat antenna is therefore understood to mean an antenna whose radiating elements have a small thickness, this dimension being insignificant with respect to the lengths and widths of the elements.
  • a flat periodic antenna consists of two plates in the same plane each formed by two sets of generally trapezoidal teeth.
  • the antenna therefore consists of two half-antennas which are supplied in symmetry from their top.
  • the radiation pattern is symmetrical with respect to the plane of the antenna with maxima following the normal to this plane.
  • the antenna therefore has a normal directivity in terms of its structure.
  • the invention proposes a flat broadband periodic antenna making it possible to operate without disturbance when it is embedded on a flat or curved metal structure and moreover to have a main lobe inclined relative to the normal metallic structure.
  • the invention therefore provides a planar periodic antenna mainly characterized in that it comprises radiating elements formed by two series of planar teeth whose dimensions are deduced from each other from a homothety of ratio T and pale of expansion 0, the teeth of one of the series being inserted between the teeth of the other series and the end of a given tooth being separated from the edge of the plate situated between two teeth of the other series by a predetermined interval ; a feed line placed in a plane close to the plane of the plate makes it possible to feed the teeth from the predetermined interval; a ground plane located at a distance H n from each tooth, varying as a function of the wavelength ⁇ n of resonance of each tooth, the antenna thus being able to be embedded in a flat or curved metallic structure without changing the aerodynamics this structure.
  • the plane of the radiating structure P is defined as being the plane of the sheet and the axis OD, an axis which passes through the expanson pole 0 and which is the longitudinal axis of the antenna.
  • FIG. 2 therefore represents a section along a plane containing the axis AB perpendicular to the axis OD and
  • FIG. 3 represents a section along a plane perpendicular to the plane P and containing the axis OD.
  • Figures 1, 2 and 3 shown being sections along three different planes of the planar periodic antenna according to the invention are described in the following without dissociation.
  • the teeth have a trapezoidal shape according to a preferred embodiment. It is obvious that the invention also applies to antennas whose teeth have a shape commonly used in conventional log-periodic antennas of the rectangular or axis in a circular arc of center the expansion pole.
  • the dimensions of the teeth D 1 , D 2 , D 3 are deduced from each other by a similarity of ratio ⁇ and of pole 0.
  • the dimensions Q 1 and Q 2 are deduced from each other by a similarity of ratio ⁇ and pole 0, the dimensions of Q 1 with respect to D, being obtained by multiplying by ⁇ .
  • the dimensions of the tooth closest to the pole define a first resonance frequency f M giving the order of magnitude of the upper limit of the pass band of the antenna as well as the dimensions of the tooth the most distant from the pale define a resonance frequency f m giving the order of magnitude of the lower limit of the pass band of the antenna.
  • the teeth D 1 , D 2 and D 3 are inscribed in an envelope defined by the lines E 1 and E 2 intersecting at the pole 0 and forming an angle a.
  • the teeth Q 1 and Q 2 are inscribed in an envelope defined by the lines F, and F 2 also intersecting at the pole 0 and making the same angle a.
  • This plate 1 is produced on the single metallized face of a printed circuit 2 of small thickness compared to the working wavelengths and which is shown in section in FIG. 2.
  • the wavelength ⁇ of the wave emitted varies between the extreme wavelengths ⁇ m and ⁇ M defined by the bandwidth.
  • a feed line 3 shown in dotted lines in FIG. 1 makes it possible to feed the antenna by exciting the radiating elements from points 4 and 5 which will be defined later.
  • This supply line 3 is produced by a metallized ribbon printed on a printed circuit 6, also of small thickness.
  • the metallized face of this circuit 6 is on the side of the non-metallized face of circuit 2, circuit 6 thus plays a protective role similar to that of a radome vis-à-vis the outside.
  • This circuit 6 is situated in a plane close to the plane of the circuit 2 and containing for example the expansion blade 0 or also in a plane parallel to the plane of the circuit 2 and close to the latter.
  • the two circuits 2 and 6 are separated by a dielectric 8 which can be (at the limit) the air medium or a honeycomb.
  • Line 3 describes trapezoidal teeth deduced by a similarity of pole 0 and of ratio ⁇ , the sides of which are parallel to the sides of the radiating teeth and pass through the midpoints 4 of the extreme segments l n of each tooth and through the midpoints 5 of the opposite segments L n .
  • the cut in width ⁇ n between these two points 4 and 5 makes it possible to excite the radiating elements.
  • the circuit 2 is integral with the metal structure 9 (its ground plane) on which the antenna is placed and the circuit 1 is maintained in electrical contact with this structure 9 at the level of the straight sections OE, and OF 2 passing through the points 5 and 15 respectively. This contact is ensured, for example by means of screws 10 and 11 shown in FIG. 1.
  • the section shown in Figure 3 highlights the height H n between the ground plane of each radiating element.
  • the choice of the dimensions of the radiating elements is carried out in such a way that, when the microstrip supply line 3 transmits a wave whose frequency is lower than the natural resonance frequency of a given tooth, the latter presents, at the level of its breaking, a low impedance which hardly disturbs the transmission of the line.
  • the electrical length K n must be less than ⁇ n / 2 so that the antenna is not mismatched.
  • the partial reflections due to the insertions of the radiating elements along the line do not accumulate.
  • Line 3 is closed on its characteristic impedance by means of a resistor 13 adapted at its end furthest from pole 0.
  • This resistor can be an element with localized constants or a dipole with distributed constants.
  • the supply line 3 is printed on the opposite face of the circuit 2, this circuit comprising on the other face the radiating elements.
  • it is a metallized dielectric substrate on its two faces.
  • the embodiment which has been described relates to a planar antenna, that is to say, to an antenna whose radiating elements have a very small thickness with respect to their length and their width. Furthermore, this antenna has a planar structure as a whole, that is to say that it can be embedded on a planar metallic structure. It is obvious that the invention also relates to antennas with a generally curved structure intended to be built into curved metallic structures (of the aircraft type). For this, it suffices to conform the circuits on which the elements of the antenna are placed to the shape of the metal structure while respecting the operating conditions given in the description.
  • the antenna according to the invention has first of all the advantages of a conventional log-periodic antenna, since it has a very wide bandwidth.
  • it is easily built into a metallic structure and therefore does not modify its aerodynamics since it is planar and its ground plane adapted to the embodiment can be embedded in the metallic structure.
  • It also has the advantage of being able to radiate in a direction inclined with respect to the normal to the plane of its structure, which is useful when for example the antenna is placed on an airplane.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • La présente invention se rapporte aux antennes périodiques planes du type log-périodique.
  • De manière générale, les antennes périodiques sont des antennes très large bande, indépendantes de la fréquence du signal d'alimentation. Elles sont constituées par des éléments rayonnants dont les dimensions se déduisent les unes des autres par une homothétie de rapport T a partir d'un pôle d'expansion donné. Deux éléments rayonnants consécutifs présentent les mêmes propriétés l'un à une fréquence f qui est sa fréquence de résonance, et l'autre à la fréquence f/T ou fτ. Le facteur est généralement voisin de l'unité si bien que ce type d'antenne présente des caractéristiques assez peu différentes sur une grande bande de fréquence.
  • Les antennes périodiques planes sont formées d'éléments rayonnants plats par opposition aux éléments rayonnants filaires et de manière générale aux éléments volumétriques. On entend donc par antenne plane, une antenne dont les éléments rayonnants ont une faible épaisseur, cette dimension étant non significative par rapport aux longueurs et aux largeurs des éléments.
  • Classiquement, une antenne périodique plane est constituée de deux plaques dans un même plan formées chacune de deux séries de dents généralement trapézoïdales. L'antenne est par conséquent constituée de deux demi-antennes qui sont alimentées en symétrie à partir de leur sommet. Le diagramme de rayonnement est symétrique par rapport au plan de l'antenne avec des maxima suivant la normale à ce plan. L'antenne présente donc une directivité normale au plan de sa structure.
  • Dans certaines applications, notamment lorsqu'on désire placer l'antenne périodique sur une structure métallique plate ou galbée sans perturber l'aérodynamisme de cette structure, il est nécessaire d'utiliser des antennes périodiques planes. Or, le fonctionnement de l'antenne est perturbé car elle est plaquée sur la structure métallique qui se comporte alors comme un réflecteur non adapté au fonctionnement de l'antenne.
  • Par ailleurs, il est quelquefois également nécessaire d'obtenir un diagramme de rayonnement dont le faisceau principal est incliné par rapport à la structure de l'antenne. Or une antenne périodique plane classique ne permet pas d'avoir une inclinaison du lobe principal par rapport au plan de sa structure.
  • C'est pour pallier à ces deux inconvénients que l'invention propose une antenne périodique plane large bande permettant de fonctionner sans perturbation lorsqu'elle est encastrée sur une structure métallique plate ou galbée et de plus d'avoir un lobe principal incliné par rapport à la normale de la structure métallique.
  • L'invention propose donc une antenne périodique plane principalement caractérisée en ce qu'elle comprend des éléments rayonnants formés de deux séries de dents planes dont les dimensions se déduisent les unes des autres à partir d'une homothétie de rapport T et de pâle d'expansion 0, les dents de l'une des séries étant intercalées entre les dents de l'autre série et l'extrémité d'une dent donnée étant séparée du bord de la plaque situé entre deux dents de l'autre série par un intervalle prédéterminé; une ligne d'alimentation placée dans un plan proche du plan de la plaque permet d'alimenter les dents à partir de l'intervalle prédéterminé; un plan de masse situé à une distance Hn de chaque dent, variant en fonction de la longueur d'onde Àn de résonance de chaque dent, l'antenne pouvant ainsi être encastrée dans une structure métallique plate ou galbée sans changer l'aérodynamisme de cette structure.
  • L'invention sera mieux comprise à l'aide de la description ci- après, donnée à titre d'exemple non limitatif et illustrée par les dessins annexes sur lesquels:
    • - la figure 1 représente une coupe de l'antenne selon l'invention suivant le plan de sa structure rayonnante;
    • - la figure 2 représente une coupe suivant un axe AB selon la figure 1;
    • - la figure 3 représente une coupe suivant un axe OD selon la figure 1;
    • - la figure 4 représente une variante de réalisation de l'antenne vue en coupe suivant l'axe AB.
  • Pour faciliter la compréhension, on définit le plan de la structure rayonnante P comme étant le plan de la feuille et l'axe OD, un axe qui passe par le pôle d'expanson 0 et qui est l'axe longitudinal de l'antenne.
  • La figure 2 représente donc une coupe suivant un plan contenant l'axe AB perpendiculaire à l'axe OD et la figure 3 représente une coupe suivant un plan perpendiculaire au plan P et contenant l'axe OD.
  • Par ailleurs, les figures 1, 2 et 3 représentées étant des coupes suivant trois plans différents de l'antenne périodique plane selon l'invention sont décrites dans ce qui suit sans dissociation.
  • L'antenne représentée sur ces figures est une antenne périodique de pôle d'expansion 0. Une plaque conductrice 1 est constituée par une série de dents Dl à Dm, et une série de dents Q1 à Op, p - m ou p = m - 1, s'intercalant entre les dents de la première serie.
  • Le nombre de dents varie selon les caractéristiques de rayonnement désirées pour l'antenne. On s'est limité à ne représenter que trois dents dans la première série et deux dans la deuxième série (m - 3 et p = 2).
  • Les dents ont une forme trapézoïdale selon une forme préférée de réalisation. Il est bien évident que l'invention s'applique également aux antennes dont les dents ont une forme couramment utilisées dans les antennes log-périodique classiques du type rectangulaire ou à axe en arc de cercle de centre le pôle d'expansion.
  • Les dimensions des dents D1, D2, D3 se déduisent les unes des autres par une similitude de rapport τ et de pôle 0. De la même façon les dimensions Q1 et Q2 se déduisent l'une de l'autre par une similitude de rapport τ et de pôle 0, les dimensions de Q1 par rapport à D, étant obtenues en multipliant par τ.
  • De manière connue en soi, les dimensions de la dent la plus proche du pôle définissent une première fréquence de resonance fM donnant l'ordre de grandeur de la limite supérieure de la bande passante de l'antenne de même que les dimensions de la dent la plus éloignée du pâle définissent une fréquence de resonance fm donnant l'ordre de grandeur de la limite inférieure de la bande passante de l'antenne.
  • Les dents D1, D2 et D3 s'inscrivent dans une enveloppe définie par les droites E1 et E2 sécantes au pôle 0 et faisant un angle a.
  • Les dents Q1 et Q2 s'inscrivent dans une enveloppe définie par les droites F, et F2 sécantes également au pôle 0 et faisant le même angle a.
  • Cette plaque 1 est réalisée sur l'unique face métallisée d'un circuit imprimé 2 de faible épaisseur par rapport aux longueurs d'ondes de travail et qui est représenté en coupe sur la figure 2. La longueur d'onde λ de l'onde émise varie entre les longueurs d'ondes extrême µm et µM définies par la bande passante.
  • Une ligne d'alimentation 3 représentée en pointillés sur la figure 1 permet d'alimenter l'antenne en excitant les éléments rayonnants à partir de points 4 et 5 qui seront définis ultérieurement. Cette ligne d'alimentation 3 est réalisée par un ruban métallisé imprimé sur un circuit imprimé 6, également de faible épaisseur. La face métallisée de ce circuit 6 se trouve du côté de la face non métallisée du circuit 2, le circuit 6 joue ainsi un rôle de protection analogue à celui d'un radome vis-à-vis de l'extérieur. Ce circuit 6 est situé dans un plan proche du plan du circuit 2 et contenant par exemple le pâle d'expansion 0 ou encore dans un plan parallèle au plan du circuit 2 et à proximité de celui-ci. Les deux circuits 2 et 6 sont séparés par un diélectrique 8 qui peut être (a la limite) le milieu air ou un nid d'abeilles.
  • La ligne 3 décrit des dents trapézoïdales se déduisant par une similitude de pôle 0 et de rapport τ, dont les côtés sont parallèles aux côtés des dents rayonnantes et passent par les milieux 4 des segments ln extrêmes de chaque dent et par les milieux 5 des segments opposés Ln. La coupure de largeur εn entre ces deux points 4 et 5 permet d'exciter les éléments rayonnants.
  • Le circuit 2 est solidaire de la structure métallique 9 (son plan de masse) sur laquelle est plaquée l'antenne et le circuit 1 est maintenu en contact électrique avec cette structure 9 au niveau des tronçons de droites OE, et OF2 passant par les points respectivement 5 et 15. Ce contact est assuré, par exemple au moyen de vis 10 et 11 représentées sur la figure 1.
  • La coupe représentée sur la figure 3 permet de mettre en évidence la hauteur Hn séparant le plan de masse de chaque élément rayonnant.
  • Bien entendu, les paramètres référencés avec un indice n varient en fonction de n ou n est l'indice repérant la dent, le nombre total de dents étant désigné par N (N = 5 dans le cas de la figure 1). Pour la première dent, on aura donc une longueur h1, un intervalle ε1 et une hauteur Hl.
  • Les éléments rayonnants se comportent comme des demi- doublets court-circuités à la résonance quart d'onde. Pour cela, on doit avoir la relation Hn + hn = λn/4. Chaque élément rayonnant est donc court-circuité à l'une de ses extrémités 15 à la structure métallique 9 sur laquelle l'antenne est plaquée. L'autre extrémité 4 est isolée de la structure métallique et la coupure qui en résulte est excitée par la ligne d'alimentation. L'impédance de rayonnement de la plaque court-circuitée à la résonance quart d'onde s'insere en série dans la ligne microbande 3 à l'endroit de la coupure.
  • Le choix des dimensions des éléments rayonnants est effectué de telle sorte que, lorsque la ligne d'alimentation microbande 3 transmet une onde dont la fréquence est inférieure à la fréquence de resonance propre d'une dent donnée, celle-ci présente, au niveau de sa coupure, une impédance faible qui perturbe peu la transmission de la ligne.
  • L'angle d'inclinaison du diagramme de rayonnement sur le plan de la structure est directement lié à la longueur kn géométrique ou électrique de la ligne d'alimentation microbande 3 comprise entre les coupures de deux sources rayonnantes adjacentes. On considère la longueur électrique lorsque la ligne se trouve en présence d'un materiau diélectrique. Il est donc aisé par construction de modifier l'angle d'inclinaison en modifiant cette longueur. La relation existant entre l'angle d'inclinaison entre le faisceau principal et le plan de la structure de l'antenne et la longueur de la ligne kn alimentant deux doublets court-circuités à la résonance quart d'onde résulte de calculs théoriques connus que l'on peut trouver dans les revues IEEE transaction dans les articles de G.DUBOST intitulés:
    • - "Propagation along two radiating coupled waveguides applications to a multimode radiating array", on Antennas and Propagation de mai 1981.
    • - "Bandwith of a low sidelobe level multimode radiating coupled waveguide array", on Antennas and Propagation 1983.
  • Cependant une condition doit être respectée pour qu'il n'y ait pas d'aberration dans le fonctionnement. En effet, la longueur électrique Kn doit être inférieure à λn/2 afin que l'antenne ne soit pas désadaptée. Ainsi, les réflexions partielles dues aux insertions des éléments rayonnants le long de la ligne ne se cumulent pas.
  • Le cas le plus faborable se présente lorsque cette longueur kn est égale à λn/4 car elle permet une compensation pratiquement idéale de toutes les réflections. Cependant, pour des raisons pratiques, une longueur intermédiarie s'impose par exemple 0,3 Àn, ce qui correspond compte tenu des autres parametres géométriques et électriques, à une impédance d'entrée bien adaptée. Pour obtenir la longueur la mieux adaptée, il est donc nécessaire que les éléments rayonnants soient intercalés.
  • Il est évident que pour modfier la longeuur électrique de la ligne 3, on peut d'une part agir en modifiant le diélectrique 8, (sa constante diélectrique ou l'épaisseur) et d'autre part, donner une forme différente à la ligne de sorte que par exemple si on veut diminuer sa longueur géométrique elle ne suive pas rigoureusement l'axe médian de chaque plaque comme cela est représenté sur la figure 1, en passant toutefois au milieu des diverses coupures.
  • On peut également agir sur la longueur des plaques rayonnantes en plaçant un matériau diélectrique 12 dans l'espace compris entre la structure métallique 9 et la plaque métallique 1 (comportant les dents). En diminuant ainsi la longueur hn de chaque élément rayonnant, cela permet de diminuer la longueur de la ligne 3 entre deux coupures.
  • La ligne 3 est fermée sur son impédance caractéristique au moyen d'une résistance 13 adaptée à son extrémité la plus éloignée du pôle 0. Cette résistance peut être un élément à constantes localisées ou un dipôle à constantes réparties.
  • Quelques résultats théoriques sont donnés ci-dessous pour un choix des differents paramètres et de la bande passante, déterminés. En choisissant:
    • fm = 0,9 GHz
    • f M = 9 GHz
    • τ = 0,95
    • Figure imgb0001
      = 0,166
    • Figure imgb0002
      =0,1
    • t = 0,35
  • Ra impédance caractéristique de la ligne 3 égale à 150 Q et N = 50, obtient les résultats suivants:
    • L'angle d'inclinaison théorique du faisceau, c'est-à-dire l'angle entre la direction du maximum de rayonnemant et la direction perpendiculaire au plan de la structure est de 50°.
    • L'ouverture à 3dB du faisceau principal sensiblement de révolution est égale à 45°.
    • Le rapport d'ondes stationnaires de l'impédance d'entrée de l'antenne rapportée à la résistance caractéristique de la ligne est inférieur à 2 dans toute la bande 0,9 GH - 9 GHz.
  • Sur la figure 4, on a représenté une variante de réalisation. L'antenne est vue en coupe comme sur la figure 2.
  • Dans cette variante, la ligne d'alimentation 3 est imprimée sur la face opposée du circuit 2, ce circuit comportant sur l'autre face les éléments rayonnants. C'est dans ce cas un substrat diélectrique métallisé sur ses deux faces. Cette variante est avantageuse sur le plan de l'encombrement.
  • La réalisation qui a été décrite est relative à une antenne plane, c'est-à-dire, à une antenne dont les éléments rayonnants ont une très faible épaisseur vis-à-vis de leur longueur et de leur largeur. Par ailleurs, cette antenne a une structure plane dans son ensemble, c'est-à-dire qu'elle peut être encastrée sur une structure métallique plane. Il est bien évident que l'invention concerne également les antennes à structure générale galbée destinées à être encastrées sur des structures métalliques galbées (du type avions). Il suffit pour cela de conformer les circuits sur lesquels sont placés les éléments de l'antenne à la forme de la structure métallique tout en respectant les conditions de fonctionne ment données dans la description.
  • En conclusion, l'antenne selon l'invention a tout d'abord les avantages d'une antenne log-périodique classique, car elle a une très large bande passante. De plus, elle est facilement encastrable dans une structure métallique et ne modifie donc pas son aerodynamisme puisqu'elle est plane et que son plan de masse adapté à la réalisation peut être encastré dans la structure métallique.
  • Elle a en plus l'avantage de pouvoir rayonner suivant une direction incliné par rapport à la normale au plan de sa structure, ce qui est utile lorsque par exemple l'antenne est placée sur un avion.

Claims (14)

1. Antenne périodique plane, pouvant être encastrée dans une structure métallique plate ou galbée, sans changer l'aérodynamisme de cette structure, comprenant une plaque conductrice (1) comportant des éléments rayonnants formés de deux séries de dents planes (D1 - Dm), (Qi - Qp) caractérisée en ce que les dimensions se déduisent les unes des autres à partir d'une homothétie de rapport τ et de pôle d'expansion 0, les dents de l'une des séries étant intercalées entre les dents de l'autre série et l'extrémité (4) d'une dent donnée étant séparée du bord (5) de la plaque située entre deux dents de l'autre série par un intervalle prédéterminé (En) et qu'une ligne d'alimentation (3) placée dans un plan proche du plan de la plaque (1) alimente les dents à partir de l'intervalle prédéterminé (εn) et caractérisée par un plan de masse (9) situé à une distance Hn de chaque dent, variant en fonction de la longueur d'onde λn de resonance de chaque dent.
2. Antenne périodique selon la revendication 1, caractérisé en ce que les axes longitudinaux des dents (DI - Dm), (Q1 - Qp) sont parallèles.
3. Antenne selon l'une quelconque des revendications 1 ou 2, caractérisée en ce que les dents ont une forme trapézoïdale.
4. Antenne selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la somme des longueurs Hn et hn doit être sensiblement égale à
Figure imgb0003
, chaque dent et son plan de masse constituant ainsi un demi-doublet court-circuté à la resonance quart d'onde, hµ étant la longueur d'une dent.
5. Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les deux séries de dents sont réalisées sur la face métallisée (1) d'un premier circuit imprimé (2) de faible épaisseur par rapport aux longueurs d'ondes des fréquences d'émission.
6. Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le plan de masse métallique (9) situé à la hauteur Hn de chaque dent; est solidaire du premier circuit imprimé (2) et est relié électriquement à la face métallisée (1) de ce circuit (2).
7. Antenne selon la revendication 6, caractérisée en ce que le plan de masse (9) est relié électriquement à la face métallisée (1) au moyen de vis (10, 11) placées sur l'ensemble de la plaque (1).
8. Antenne selon l'une quelconque des revendications 1 à 7, caractérisée en ce que l'espace compris entre le plan de masse (9) et la plaque (1) est rempli d'un matériau diélectrique (12).
9. Antenne selon l'une quelconque des revendications 1 à 8 caractérisée en ce que la ligne d'alimentation (3) est une ligne microbande réalisée sur la face métallisée d'un deuxième circuit imprimé (6) de faible épaisseur par rapport aux longueurs d'ondes des fréquences d'émission.
10. Antenne selon la revendication 9, caractérsée en ce que la face métallisée du deuxième circuit imprimé (6) est située dans un plan contenant le pôle d'expansion (0) et proche du plan dans lequel se trouve le premier circuit (2) de sorte que la ligne d'alimentation (3) se trouve au milieu de l'ntervalle In et Ln définssant les cou pures quart d'onde des dents.
11. Antenne selon la revendication 10, caractérisée en ce qu'un matériau diélectrique (8) est placé entre les premiers (2) et deuxième circuit (6) imprimés.
12. Antenne selon la revendication 5, caractérisée en ce que la ligne d'alimentation (3) est une ligne microbande réalisée sur l'autre face métallisée du premier circuit imprimé (2).
13. Antenne selon l'une quelconque des revendications 1 à 12, caractérisée en ce que la ligne d'alimentation (3) est fermée sur son impédance caractéristique (Ra) au moyen d'une résistance (13) adaptée et en ce que la longueur kn de la ligne (3) comprise en deux points de coupure est inférieure à λn/2 ce qui contribue à obtenir un rayonnement de l'antenne dans une direction inclinée par rapport à la normale au plan (P) de la structure.
14. Antenne selon l'une quelconque des revendications 1 à 13, caractérisé en ce que les plans dans lesquels se trouvent les éléments rayonnants (D, - Dm), (Q1 - Qp) et la ligne d'alimentation (3) sont galbés de manière à ce que l'antenne soit encastrable sur une structure metallique elle-même galbée afin de ne pas modifier l'aérodynamisme de cette structure.
EP84402523A 1983-12-13 1984-12-06 Antenne périodique plane Expired EP0145597B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8319924A FR2556510B1 (fr) 1983-12-13 1983-12-13 Antenne periodique plane
FR8319924 1983-12-13

Publications (3)

Publication Number Publication Date
EP0145597A2 EP0145597A2 (fr) 1985-06-19
EP0145597A3 EP0145597A3 (en) 1985-07-10
EP0145597B1 true EP0145597B1 (fr) 1989-01-25

Family

ID=9295117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84402523A Expired EP0145597B1 (fr) 1983-12-13 1984-12-06 Antenne périodique plane

Country Status (4)

Country Link
US (1) US4652889A (fr)
EP (1) EP0145597B1 (fr)
DE (1) DE3476496D1 (fr)
FR (1) FR2556510B1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211839B1 (en) * 1988-08-22 2001-04-03 Trw Inc. Polarized planar log periodic antenna
JP2862265B2 (ja) * 1989-03-30 1999-03-03 デイエツクスアンテナ株式会社 平面アンテナ
US5075691A (en) * 1989-07-24 1991-12-24 Motorola, Inc. Multi-resonant laminar antenna
US6127977A (en) * 1996-11-08 2000-10-03 Cohen; Nathan Microstrip patch antenna with fractal structure
US20050231426A1 (en) * 2004-02-02 2005-10-20 Nathan Cohen Transparent wideband antenna system
US7019695B2 (en) 1997-11-07 2006-03-28 Nathan Cohen Fractal antenna ground counterpoise, ground planes, and loading elements and microstrip patch antennas with fractal structure
US6452553B1 (en) * 1995-08-09 2002-09-17 Fractal Antenna Systems, Inc. Fractal antennas and fractal resonators
US20060119525A1 (en) * 2004-08-24 2006-06-08 Nathan Cohen Wideband antenna system for garments
US5734350A (en) * 1996-04-08 1998-03-31 Xertex Technologies, Inc. Microstrip wide band antenna
US6445352B1 (en) * 1997-11-22 2002-09-03 Fractal Antenna Systems, Inc. Cylindrical conformable antenna on a planar substrate
US6621463B1 (en) 2002-07-11 2003-09-16 Lockheed Martin Corporation Integrated feed broadband dual polarized antenna
US7609220B2 (en) * 2005-05-09 2009-10-27 The Regents Of The University Of California Channelized log-periodic antenna with matched coupling
FI20055420A0 (fi) 2005-07-25 2005-07-25 Lk Products Oy Säädettävä monikaista antenni
US8618990B2 (en) 2011-04-13 2013-12-31 Pulse Finland Oy Wideband antenna and methods
FI20075269A0 (fi) 2007-04-19 2007-04-19 Pulse Finland Oy Menetelmä ja järjestely antennin sovittamiseksi
FI120427B (fi) 2007-08-30 2009-10-15 Pulse Finland Oy Säädettävä monikaista-antenni
ATE513327T1 (de) * 2007-12-18 2011-07-15 Rohde & Schwarz Antennenkoppler
FI20096251A0 (sv) 2009-11-27 2009-11-27 Pulse Finland Oy MIMO-antenn
FI20105158A (fi) 2010-02-18 2011-08-19 Pulse Finland Oy Kuorisäteilijällä varustettu antenni
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
US8648752B2 (en) 2011-02-11 2014-02-11 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1123769A (fr) * 1955-03-17 1956-09-27 Csf Aérien incorporable pour engins mobiles
US3110030A (en) * 1961-05-25 1963-11-05 Martin Marietta Corp Cone mounted logarithmic dipole array antenna
US3259905A (en) * 1964-04-15 1966-07-05 Lockheed Aircraft Corp Flush-mounted balanced log-periodic antenna
US3509573A (en) * 1967-06-16 1970-04-28 Univ Toronto Antennas with loop coupled feed system
US3633207A (en) * 1969-01-21 1972-01-04 Univ Illinois Foundation Urban Modulated impedance feeding system for log-periodic antennas
US3757343A (en) * 1970-10-12 1973-09-04 Ampex Slot antenna array
FR2442520A1 (fr) * 1978-11-27 1980-06-20 Havot Henri Antenne en plaques a double boucles circulaires
GB2064877B (en) * 1979-11-22 1983-07-27 Secr Defence Microstrip antenna
FR2490025A1 (fr) * 1980-09-08 1982-03-12 Thomson Csf Antenne du type cornet monomode ou multimode comprenant au moins deux voies radar et fonctionnant dans le domaine des hyperfrequences

Also Published As

Publication number Publication date
EP0145597A2 (fr) 1985-06-19
DE3476496D1 (en) 1989-03-02
EP0145597A3 (en) 1985-07-10
US4652889A (en) 1987-03-24
FR2556510A1 (fr) 1985-06-14
FR2556510B1 (fr) 1986-08-01

Similar Documents

Publication Publication Date Title
EP0145597B1 (fr) Antenne périodique plane
EP0924797B1 (fr) Antenne multifréquence réalisée selon la technique des microrubans, et dispositif incluant cette antenne
EP1407512B1 (fr) Antenne
EP0923156B1 (fr) Antenne à court-circuit réalisée selon la technique des microrubans et dispositif incluant cette antenne
EP0575211B1 (fr) Motif élémentaire d'antenne à large bande passante et antenne-réseau le comportant
EP0923157B1 (fr) Antenne réalisée selon la technique des microrubans et dispositif incluant cette antenne
EP1145379B1 (fr) Antenne pourvue d'un assemblage de materiaux filtrant
EP0667984B1 (fr) Antenne fil-plaque monopolaire
WO2005036697A1 (fr) Antenne interne de faible volume
FR2614472A1 (fr) Reseau d'antennes a cornets hexagonaux
EP0013222A1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
EP1042845B1 (fr) Antenne
WO2002101874A1 (fr) Antenne compacte multibande
EP0082751B1 (fr) Radiateur d'ondes électromagnétiques et son utilisation dans une antenne à balayage électronique
CA2460820C (fr) Antenne a large bande ou multi-bandes
EP3175509B1 (fr) Antenne log-periodique a large bande de frequences
EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
EP0484241B1 (fr) Antenne imprimée pour réseau à double polarisation
EP0040567B1 (fr) Elément résistif en technique microbande
EP0654845B1 (fr) Elément rayonnant adaptable du type dipÔle réalisé en technologie imprimée, procédé d'ajustement de l'adaptation et réseau correspondants
WO1994021003A1 (fr) Antenne a bas profil pour equipement radio embarque a frequences multiples
EP0156684A1 (fr) Elément rayonnant des ondes électromagnétiques, et son application à une antenne à balayage électronique
FR2677493A1 (fr) Reseau d'elements rayonnants a topologie autocomplementaire, et antenne utilisant un tel reseau.
FR2599899A1 (fr) Antenne plane a reseau avec conducteurs d'alimentation imprimes a faible perte et paires incorporees de fentes superposees rayonnantes a large bande
EP0831550A1 (fr) Antenne-réseau polyvalente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE GB IT

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19851024

17Q First examination report despatched

Effective date: 19870403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3476496

Country of ref document: DE

Date of ref document: 19890302

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THOMSON-CSF

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901126

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911206

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920901