EP0022401A1 - Polariseur à large bande et faible taux d'ellipticité et matériel travaillant en hyperfréquence comportant un tel polariseur - Google Patents

Polariseur à large bande et faible taux d'ellipticité et matériel travaillant en hyperfréquence comportant un tel polariseur Download PDF

Info

Publication number
EP0022401A1
EP0022401A1 EP80400970A EP80400970A EP0022401A1 EP 0022401 A1 EP0022401 A1 EP 0022401A1 EP 80400970 A EP80400970 A EP 80400970A EP 80400970 A EP80400970 A EP 80400970A EP 0022401 A1 EP0022401 A1 EP 0022401A1
Authority
EP
European Patent Office
Prior art keywords
polarizer
quadrants
waveguide
dihedrons
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80400970A
Other languages
German (de)
English (en)
Other versions
EP0022401B1 (fr
Inventor
Hai Nhu Bui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0022401A1 publication Critical patent/EP0022401A1/fr
Application granted granted Critical
Publication of EP0022401B1 publication Critical patent/EP0022401B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/171Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a corrugated or ridged waveguide section

Definitions

  • the present invention relates to a broadband polarizer with a low ellipticity rate, produced in a circular waveguide.
  • Such polarizers which make it possible to transform rectilinear polarization into circular polarization and vice versa. They produce for this, thanks to electromagnetic paths traveled at different phase velocities, a phase difference between the two components of the field. If the two components have the same amplitude and the phase difference produced is n the rectilinear polarization is transformed into circular polarization which is said to be "right” or “left” depending on whether, looking in the direction of propagation, the direction field vector rotation follows or does not follow clockwise.
  • These known polarizers include a circular waveguide with which are associated one or more dielectric plates, of length L, arranged at 45 ° relative to the incident linear field vector.
  • the phase of the field component which is parallel to the dielectric plate varies by 2 ⁇ ( ⁇ d : wavelength of the wave considered in the dielectric) in the guide section of length L which includes the dielectric plate; in this same section the phase of the field component which is orthogonal to the dielectric plate varies by 2 ⁇ (X: wavelength in the guide).
  • wavelength of the wave considered in the dielectric
  • the object of the present invention is to reduce and even, to a large extent, to avoid the aforementioned drawbacks.
  • a polarizer produced in a circular waveguide of longitudinal axis XX is characterized in that this waveguide has internal grooves and in that these grooves are located in planes perpendicular to the axis XX and have a first and a second depth value respectively inside a first and a second pair of right angle dihedrons, opposed by the edge, the edge of these dihedra being constituted by the axis XX and the dihedrons of one pair being opposed by the edge and adjacent to the dihedrons of the other pair.
  • FIG. 1a shows, in a schematic view in longitudinal section, a polarizer having a longitudinal axis of symmetry XX.
  • This polarizer comprises a circular waveguide with grooves, 1, (groove: corrugation in Anglo-Saxon literature) and a progressive connection 2.
  • the progressive connection 2 comprises a cylindrical waveguide, 20, connected to the grooved waves, 1, by a truncated cone waveguide, 21.
  • the grooved waveguide has 34 identical grooves. This guide has only been partially shown and 11 of the 34 grooves, such as groove 10, appear in FIG. 1a.
  • FIG. 1b is a schematic cross-sectional view at the height of the groove 10, of the grooved waveguide, 1.
  • Each of the 34 identical grooves of the waveguide 1 is hollowed out over 360 ° inside the guide and is perpendicular to the axis XX.
  • the depth of the grooves is not constant; if we consider two pairs of dihedrons at right angles, opposite by the edge and whose edge is formed by the axis XX, the depth of a groove is less in one of the pairs of dihedrons (quadrants 11 and 13 - figure 1b) that in the au tre pair of dihedrons (quadrants 12 and 14 - figure 1b).
  • the depths of each groove are 23.1 and 35.6 mm; the internal diameter of the grooved guide, grooves not included, is 86.4 mm.
  • Figure 2 is a partial sectional view of the grooved waveguide according to Figures 1a and 1b. The cut was made by a plane passing through the axis XX ( Figure 1a) and cutting the quadrant 13 ( Figure 1b).
  • This figure shows the grooves, such as groove 10, the outer wall 15 of the groove guide and the walls, such as wall 16, between the grooves; in the embodiment described, the thickness of the wall between the grooves is 0.5 mm and the width of the grooves is 10 mm.
  • Figure 3 is a view of a section of the grooved guide, 1, cut along two planes perpendicular to the axis XX and one of which passes inside the groove 10. This figure allows to see the inside of the groove 10, with its shallow parts i1, 13 and its deep parts 12, 14.
  • the polarizer is arranged in such a way that the incident field, E (FIGS. 1b and 3) is parallel to one of the two planes which mark the transition between the two different depths of grooves.
  • C 1 and C 2 being the two orthogonal components of field E ( Figures 1b and 3)
  • the phase speed of component C 1 in the grooved guide 1 depends on the admittance of quadrants 11 and 13, while the phase speed of component C 2 depends on l admittance of quadrants 12, 14.
  • the difference in depths leads to a difference in these admittances and therefore a difference between the phase velocities of the components C 1 and C 2 of the field when passing through the grooved guide of the polarizer.
  • the depths have been chosen so that the influence of the grooves on the phase speed of the components C 1 and C 2 is reversed in the 4 GHz bands (3.7 - 4.2 GHz) and 6 GHz (5.925 - 6.425 GHz); that is to say that, in the 4 GHz band, the normalized susceptance of the grooves is very low (between 0.730 and 2.20) for quadrants 11, 1 3 and very large (between 9.50 and 96.3) for quadrants 12, 14; on the other hand, in the 6 GHz band, the normalized susceptance is very high (between 17.5 and 126) for quadrants 11, 13 and very low (between - 2.41 and 0.167) for quadrants 12, 14.
  • phase shift between the components C 1 and C 2 is identical in the 4 GHz band to that in the 6 GHz band.
  • FIG. 4 is a graph which shows the values of the ellipticity rate T (or, which amounts to the same thing, of the phase shift ⁇ between the components C 1 and C 2 of the field) obtained, as a function of the working frequency indicated in abscissa, with the polarizer described above.
  • this polarizer makes it possible to pass from rectilinear polarization into circular polarization with an ellipticity rate which does not exceed 0.67 dB in the 4 GHz band and which does not exceed 0.75 dB in the band 6 GHz.
  • FIGS 5a and 5b are schematic views, respectively in longitudinal section and in cross section, of another polarizer according to the invention.
  • This polarizer differs from the polarizer according to the figures 1a and 1b in that a waveguide, 3, in which is disposed a dielectric plate, 4, is placed in series with the grooved guide 1 to which it is fixed.
  • the waveguide 3 is a circular guide with a smooth internal wall.
  • the dielectric plate 4 With respect to the incident field, E (FIG. 5b), the dielectric plate 4 is placed at 45 ° and the grooved guide 1 is placed as in FIG. 1b.
  • the polarizer according to FIGS. 5a and 5b can therefore be considered as the association of a portion of a conventional polarizer (circular waveguide 3 with, inside, a dielectric plate placed at 45 ° relative to the field) with a portion of a polarizer consisting of a circular waveguide with grooves of variable depth.
  • the phase shifts introduced by the dielectric plate and by the grooves are added and are provided to give a total phase shift as close as possible to 90 ° in the frequency band or bands of use of the polarizer.
  • a polarizer has been studied according to FIGS. 5a and 5b for the bands of 4 and 6 GHz.
  • the dielectric plate brings a certain average phase shift in the 4 GHz band and another average phase shift in the 6 GHz band and these two phase shifts are different from 90 °;
  • the grooved guide, 1, is determined so that the number, the depths and the width of the grooves bring the average total phase shift of the polarizer to the nearest 90 ° in each of the two frequency bands.
  • FIGS. 6a and 6b are schematic views, respectively in longitudinal section and in cross section, of another example of a polarizer according to the invention.
  • This polarizer differs mainly from the polarizer according to FIGS. 5a and 5b by the absence of the smooth guide 3 and by the introduction of a plate in dielectric, 4, inside a grooved guide. Again the total phase shift introduced by the polarizer is produced on the one hand by the dielectric plate 4 and on the other hand by the grooves of the waveguide 1. With the absence of a smooth waveguide, everything what has been said above on the polarizer according to FIGS. 5a and 5b applies to the polarizer according to FIGS. 6a and 6b.
  • the polarizers which have been described as well as those which can be imagined without departing from the scope of the invention find more particularly their application in the field of radar, in the antennas of earth stations and the antennas mounted in satellites. More generally, the polarizers according to the invention can be used in equipment whenever a polarizer bringing a low ellipticity rate and having a high power handling is required.

Landscapes

  • Polarising Elements (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

Polariseur à large bande de fréquences d'utilisation et faible taux d'ellipticité utilisable dans les matériels fonctionnant en hyperfréquences. Le polariseur comporte principalement un guide d'ondes circulaire (1), dans la paroi interne duquel sont creusées des rainures circulaires (10) identiques et situées dans un plan perpendiculaire à l'axe longitudinal (XX) du guide. Les rainures présentent quatre quadrants (11, 12, 13, 14) : deux quadrants à faible profondeur de rainure (11, 13), alternés avec deux quadrants à forte profondeur de rainures (12, 14). Avec le guide (1) disposé de mainière que le champ incident (E) soit parallèle à la limite entre deux quadrants adjacents, les vitesses de phase des deux composantes orthogonales (C1 et C2) du champ dépendent respectivement de l'admittance des quadrants à faible profondeur de rainures (11-13) et de l'admittance des quadrants à forte profondeur de rainure (12-14). Il en résulte une différence de phase à la sortie du polariseur qui est déterminée pour être sensiblement de 90°.

Description

  • La présente invention se rapporte à un polariseur à large bande et faible taux d'ellipticité, réalisé dans un guide d'ondes circulaire.
  • De tels polariseurs sont connus qui permettent de transformer la polarisation rectiligne en polarisation circulaire et vice versa. Ils produisent pour cela, grâce à des chemins électro-magnétiques parcourus à des vitesses de phase différentes, une différence de phase entre les deux composantes du champ. Si les deux composantes ont la même amplitude et que la différence de phase produite est de n la polarisation rectiligne est transformée en polarisation circulaire qui est dite "droite" ou "gauche" selon que, en regardant dans le sens de la propagation, le sens de rotation du vecteur champ suit ou ne suit pas le sens des aiguilles d'une montre.
  • Ces polariseurs connus comportent un guide d'ondes circulaire auquel sont associés une ou plusieurs plaques en diélectrique, de longueur L, disposées à 45° par rapport au vecteur champ linéaire incident. La phase de la composante du champ qui est parallèle à la plaque en diélectrique varie de 2 π
    Figure imgb0001
    d : longueur d'onde de l'onde considérée dans le diélectrique) dans le tronçon de guide de longueur L qui comporte la plaque en diélectrique ; dans ce même tronçon la phase de la composante du champ qui est orthogonale à la plaque en diélectrique varie de 2π
    Figure imgb0002
    (X : longueur d'onde dans le guide). La différence
    Figure imgb0003
    donne le retard de phase de la composante parallèle à la plaque en diélectrique par rapport à la composante orthogonale à la plaque en diélectrique.
  • Certaines variantes connues de ces polariseurs remplacent les plaques en diélectrique par des alignements longitudinaux de bâtonnets ou associent plaques et alignements de bâtonnets, les plaques et les bâtonnets étant alors à 90° les uns des autres sur les parois du guide.
  • De tels polariseurs connus sont décrits dans le brevet US 4 100 514.
  • Ces polariseurs connus présentent deux inconvénients principaux : ils sont peu aptes à travailler à puissance élevée, ils entraînent des pertes non négligeables.
  • Le but de la présente invention est de réduire et même, dans une large mesure, d'éviter les inconvénients précités.
  • Ceci est obtenu, en particulier, par l'utilisation d'un guide d'ondes présentant des rainures internes (corrugations dans la littérature anglo-saxonne).
  • Selon l'invention, un polariseur réalisé dans un guide d'ondes circulaire d'axe longitudinal XX est caractérisé en ce que ce guide d'ondes comporte des rainures internes et en ce que ces rainures sont situées dans des plans perpendiculaires à l'axe XX et ont une première et une seconde valeur de profondeur respectivement à l'intérieur d'une première et d'une seconde paire de dièdres à angle droit, opposés par l'arête, l'arête de ces dièdres étant constituée par l'axe XX et les dièdres d'une paire étant opposés par l'arête et adjacents aux dièdres de l'autre paire.
  • La présente invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description ci-après et des figures s'y rapportant qui représentent :
    • - les figures 1a et 1b deux vues d'un premier polariseur selon l'invention ;
    • - les figures 2 et 3 des vues partielles, détaillées du polariseur selon les figures 1a et 1b ;
    • - la figure 4 un graphique relatif au polariseur selon les figures 1a et 1b ;
    • - les figures 5a et 5b des vues d'un deuxième polariseur selon l'invention ;
    • - les figures 6a et 6b des vues d'un troisième polariseur selon l'invention.
  • Sur les différentes figures, les éléments correspondants sont désignés par les mêmes repères.
  • La figure 1a montre, dans une vue schématique en coupe longitudinale, un polariseur présentant un axe longitudinal de symétrie XX. Ce polariseur comporte un guide d'ondes circulaire à rainures, 1 , (rainure : corrugation dans la littérature anglo-saxonne) et un raccord progressif 2. Le raccord progressif 2 comporte un guide d'ondes cylindrique, 20, relié au guide d'ondes à rainures, 1, par un guide d'ondes en forme de tronc de cône, 21.
  • Le guide d'ondes à rainures comporte 34 rainures identiques. Ce guide n'a été que partiellement représenté et 11 des 34 rainures, telle que la rainure 10, apparaissent sur la figure 1a.
  • La figure 1b est une vue schématique en coupe transversale à la hauteur de la rainure 10, du guide d'ondes à rainures, 1.
  • Chacune des 34 rainures identiques du guide d'ondes 1 est creusée sur 360° à l'intérieur du guide et est perpendiculaire à l'axe XX. La profondeur des rainures n'est pas constante ; si l'on considère deux paires de dièdres à angle droit, opposés par l'arête et dont l'arête est constituée par l'axe XX, la profondeur d'une rainure est moins grande dans l'une des paires de dièdres (quadrants 11 et 13 - figure 1b) que dans l'autre paire de dièdres (quadrants 12 et 14 - figure 1b). Dans la réalisation qui a servi d'exemple les profondeurs de chaque rainure sont de 23,1 et 35,6 mm ; quant au diamètre interne du guide à rainures, rainures non comprises , il est de 86,4 mm.
  • La figure 2 est une vue partielle en coupe du guide d'ondes à rainures selon les figures 1a et 1b. La coupe a été réalisée par un plan passant par l'axe XX (figure 1a) et coupant le quadrant 13 (figure 1b). Cette figure montre les rainures, telle la rainure 10, la paroi extérieure 15 du guide à rainure et les parois, telle la paroi 16, entre les rainures ; dans l'exemple de réalisation décrit l'épaisseur de la paroi entre les rainures est de 0,5mm et la largeur des rainures est de 10 mm.
  • La figure 3 est une vue d'un tronçon du guide à rainures, 1, coupé selon deux plans perpendiculaires à l'axe XX et dont l'un passe à l'intérieur de la rainure 10. Cette figure permet de voir l'intérieur de la rainure 10, avec ses parties peu profondes i1, 13 et ses parties profondes 12, 14.
  • Le polariseur qui vient d'être décrit à l'aide des figures 1a, 1b, 2 et 3 fonctionne comme indiqué ci-après.
  • Le polariseur est disposé de telle manière que le champ incident, E (figures 1b et 3) soit parallèle à l'un des deux plans qui marquent la transition entre les deux profondeurs différentes de rainures.C1 et C2 étant les deux composantes orthogonales du champ E (figures 1b et 3), la vitesse de phase de la composante C1 dans le guide à rainures 1 dépend de l'admittance des quadrants 11 et 13, tandis que la vitesse de phase de la composante C2 dépend de l'admittance des quadrants 12, 14. Or la différence des profondeurs entraîne une différence de ces admittances et donc une différence entre les vitesses de phase des composantes C1 et C2 du champ lors du passage à travers le guide à rainures du polariseur.
  • Dans la réalisation qui est décrite à l'aide des figures 1a à 3, les profondeurs ont été choisies de telle sorte que l'influence des rainures sur la vitesse de phase des composantes C1 et C2 soit inversée dans les bandes des 4 GHz (3,7 - 4,2 GHz) et des 6 GHz (5,925 - 6,425 GHz) ; c'est-à-dire que, dans la bande des 4 GHz, la susceptance normalisée des rainures est très faible (comprise entre 0,730 et 2,20) pour les quadrants 11, 13 et très grande (comprise entri 9,50 et 96,3) pour les quadrants 12, 14 ; par contre dans la bande des 6 GHz, la susceptance normalisée est très grande (comprise entre 17,5 et 126) pour les quadrants 11, 13 et très faible (comprise entre - 2,41 et 0,167) pour les quadrants 12, 14.
  • Il est à noter de plus que le déphasage entre les composantes C1 et C2 , entrainé par le polariseur selon les figures la à 3, est identique dans la bande des 4 GHz à celui dans la bande des 6 GHz.
  • La figure 4 est un graphique qui montre les valeurs du taux d'ellipticité T (ou, ce qui revient au même, du déphasage Δϕ entre les composantes C1 et C2 du champ) obtenu, en fonction de la fréquence de travail indiquée en abscisse, avec le polariseur décrit ci-avant. Comme il ressort de ce graphique, ce polariseur permet de passer de polarisation rectiligne en polarisation circulaire avec un taux d'ellipticité qui ne dépasse pas 0,67 dB dans la bande des 4 GHz et qui ne dépasse pas 0,75 dB dans la bande des 6 GHz.
  • Les figures 5a et 5b sont des vues schématiques, respectivement en coupe longitudinale et en coupe transversale, d'un autre polariseur selon l'invention. Ce polariseur se distingue du polariseur selon les figures 1a et 1b par le fait qu'un guide d'ondes, 3, dans lequel est disposée une plaque en diélectrique, 4, est placé en série avec le guide à rainures 1 auquel il est fixé. Le guide d'ondes 3 est un guide circulaire à paroi interne lisse.
  • Par rapport au champ incident, E, (figure 5b) la plaque en diélectrique 4 est placée à 45° et le guide à rainures 1 est placé comme dans la figure 1b. Le polariseur selon les figures 5a et 5b peut donc être considéré comme l'association d'une portion d'un polariseur classique (guide d'ondes circulaire 3 avec, à l'intérieur, une plaque en diélectrique placée à 45° par rapport au champ) avec une portion d'un polariseur constitué d'un guide d'ondes circulaire à rainures de profondeur variable. Les déphasages introduits par la plaque en diélectrique et par les rainures s'ajoutent et sont prévus pour donner un déphasage total aussi proche que possible de 90° dans la ou les bandes de fréquences d'utilisation du polariseur.
  • Il a été étudié un polariseur selon les figures 5a et 5b pour les bandes des 4 et 6 GHz. Dans ce polariseur la plaque en diélectrique amène un certain déphasage moyen dans la bande de 4 GHz et un autre déphasage moyen dans la bande des 6 GHz et ces deux déphasages sont différents de 90° ; le guide à rainures, 1, est déterminé pour que le nombre, les profondeurs et la largeur des rainures amènent le déphasage total moyen du polariseur au plus proche de 90° dans chacune des deux bandes de fréquences.
  • Les figures 6a et 6b sont des vues schématiques, respectivement en coupe longitudinale et en coupe transversale, d'un autre exemple de polariseur selon l'invention. Ce polariseur se distingue principalement du polariseur selon les figures 5a et 5b par l'absence du guide lisse 3 et par l'introduction d'une plaque en diélectrique, 4, à l'intérieur d'un guide à rainures. Là aussi le déphasage total qu'introduit le polariseur est produit d'une part par la plaque en diélectrique 4 et d'autre part par les rainures du guide d'ondes 1. A l'absence de guide d'ondes lisse près, tout ce qui a été dit ci-avant sur le polariseur selon les figures 5a et 5b s'applique au polariseur selon les figures 6a et 6b.
  • Il est à noter que les polariseurs qui ont été décrits ainsi que ceux qui peuvent être imaginés sans sortir du cadre de l'invention trouvent plus particulièrement leur application dans le domaine du radar, dans les antennes de stations terriennes et les antennes montées dans lessatellites. Plus généralement les polariseurs selon l'invention peuvent être utilisés dans un matériel chaque fois qu'un polariseur amenant un faible taux d'ellipticité et possédant une grande tenue en puissance est nécesssaire.

Claims (4)

1. Polariseur à large bande et faible taux d'el- lipticité, comportant un guide d'ondes circulaire d'axe longitudinal XX, caractérisé en ce que ce guide d'ondes comporte des rainures internes et en ce que ces rainures sont situées dans des plans perpendiculaires à l'axe XX et ont une première et une seconde valeur de profondeur respectivement à l'intérieur d'une première et d'une seconde paire de dièdres à angle droit, opposés par l'arête, l'arête de ces dièdres étant constituée par l'axe XX et les dièdres d'une paire étant opposés par l'arête et adjacents aux dièdres de l'autre paire.
2. Polariseur selon la revendication 1, caractérisé en ce qu'il comporte également une plaque en diélectrique disposée à l'intérieur du guide, dans un plan bissecteur des dièdres des deux paires de dièdres.
3. Polariseur selon la revendication 1, caractérisé en ce qu'il comporte également : un autre guide d'ondes circulaire, ayant l'axe XX comme axe longitudinal, cet autre guide d'ondes étant accolé au guide d'ondes mentionné le premier ; et une plaque en diélectrique disposée à l'intérieur de cet autre guide d'ondes, dans un plan bissecteur des dièdres des deux paires de dièdres.
4. Matériel travaillant en hyperfréquences, caractérisé en ce qu'il comporte un polariseur selon l'une des revendications précédentes.
EP80400970A 1979-07-10 1980-06-27 Polariseur à large bande et faible taux d'ellipticité et matériel travaillant en hyperfréquence comportant un tel polariseur Expired EP0022401B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7917847A FR2461370A1 (fr) 1979-07-10 1979-07-10 Polariseur a large bande et faible taux d'ellipticite et materiel travaillant en hyperfrequences comportant un tel polariseur
FR7917847 1979-07-10

Publications (2)

Publication Number Publication Date
EP0022401A1 true EP0022401A1 (fr) 1981-01-14
EP0022401B1 EP0022401B1 (fr) 1984-09-19

Family

ID=9227710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400970A Expired EP0022401B1 (fr) 1979-07-10 1980-06-27 Polariseur à large bande et faible taux d'ellipticité et matériel travaillant en hyperfréquence comportant un tel polariseur

Country Status (4)

Country Link
US (1) US4305051A (fr)
EP (1) EP0022401B1 (fr)
JP (1) JPS5616301A (fr)
FR (1) FR2461370A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773597A1 (fr) * 1995-11-13 1997-05-14 Matsushita Electric Industrial Co., Ltd. Transducteur pour onde à polarisation circulaire-onde à polarisation linéaire
WO2001043219A1 (fr) 1999-12-10 2001-06-14 Mitsubishi Denki Kabushiki Kaisha Generateur d'ondes a polarisation circulaire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549310A (en) * 1984-03-29 1985-10-22 Rca Corporation Cross-polarization corrector for circular waveguide
US4672334A (en) * 1984-09-27 1987-06-09 Andrew Corporation Dual-band circular polarizer
US4725795A (en) * 1985-08-19 1988-02-16 Hughes Aircraft Co. Corrugated ridge waveguide phase shifting structure
US4906951A (en) * 1989-02-15 1990-03-06 United States Department Of Energy Birefringent corrugated waveguide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668567A (en) * 1970-07-02 1972-06-06 Hughes Aircraft Co Dual mode rotary microwave coupler
US3857112A (en) * 1973-11-02 1974-12-24 Gte Sylvania Inc Broadband quarter-wave plate assembly
US4100514A (en) * 1977-04-28 1978-07-11 Gte Sylvania Incorporated Broadband microwave polarizer device
EP0014099A1 (fr) * 1979-01-26 1980-08-06 ERA Technology Limited Polariseur circulaire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986713A (en) * 1958-04-29 1961-05-30 Kent Howard Corrugated flexible wave guide
GB1365484A (en) * 1971-11-10 1974-09-04 Plessey Co Ltd Waveguide structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668567A (en) * 1970-07-02 1972-06-06 Hughes Aircraft Co Dual mode rotary microwave coupler
US3857112A (en) * 1973-11-02 1974-12-24 Gte Sylvania Inc Broadband quarter-wave plate assembly
US4100514A (en) * 1977-04-28 1978-07-11 Gte Sylvania Incorporated Broadband microwave polarizer device
EP0014099A1 (fr) * 1979-01-26 1980-08-06 ERA Technology Limited Polariseur circulaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, Vol. MTT-22, Mars 1974, No. 3 New York (US) P. DALY: "Polar geometry waveguides by finite-element methods, pages 202-209. * Paragraphe III-B: "Doubleridged circular waveguides" * *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773597A1 (fr) * 1995-11-13 1997-05-14 Matsushita Electric Industrial Co., Ltd. Transducteur pour onde à polarisation circulaire-onde à polarisation linéaire
US5852390A (en) * 1995-11-13 1998-12-22 Matsushita Electric Industrial Co., Ltd. Circularly polarized wave-linearly polarized wave transducer
WO2001043219A1 (fr) 1999-12-10 2001-06-14 Mitsubishi Denki Kabushiki Kaisha Generateur d'ondes a polarisation circulaire
EP1158594A1 (fr) * 1999-12-10 2001-11-28 Mitsubishi Denki Kabushiki Kaisha Generateur d'ondes a polarisation circulaire
EP1158594A4 (fr) * 1999-12-10 2003-07-09 Mitsubishi Electric Corp Generateur d'ondes a polarisation circulaire

Also Published As

Publication number Publication date
FR2461370B1 (fr) 1983-08-19
FR2461370A1 (fr) 1981-01-30
US4305051A (en) 1981-12-08
JPS5616301A (en) 1981-02-17
EP0022401B1 (fr) 1984-09-19

Similar Documents

Publication Publication Date Title
EP0013222B1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
EP0035922B1 (fr) Dispositif d'accord à capacité variable et filtre hyperfréquences accordable comportant au moins un tel dispositif
EP0426972B1 (fr) Antenne plane
CA1290449C (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
EP0014115B1 (fr) Oscillateur accordable hyperfréquence à ondes magnétostatiques
EP2195877B1 (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
EP0022401B1 (fr) Polariseur à large bande et faible taux d'ellipticité et matériel travaillant en hyperfréquence comportant un tel polariseur
FR2704358A1 (fr) Duplexeur de polarissation à guide d'ondes.
EP0108003B1 (fr) Résonateurs bi-rubans et filtres réalisés à partir de ces résonateurs (11111)
FR2604305A1 (fr) Filtre composite a large bande de type plan e
EP0110479B1 (fr) Antenne directive double pour hyperfréquences à structure mince
FR2558306A1 (fr) Fenetre circulaire pour guide d'onde hyperfrequence
FR2641133A1 (fr)
EP0031275B1 (fr) Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre
EP0015804A2 (fr) Dispositif polariseur et antenne microonde comportant un tel dispositif
EP0073165B1 (fr) Commutateur d'ondes électromagnétiques
EP0128798B1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
EP0274950B1 (fr) Dispositif de couplage à large bande entre la ligne à retard d'un tube à onde progressive et le circuit externe de transmission de l'énergie du tube, et tube à onde progressive comportant un tel dispositif
EP0041877B1 (fr) Coupleur hyperfréquence à guide d'onde
FR2629641A1 (fr) Circuit dephaseur hyperfrequence
EP0083885B1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
FR2552935A1 (fr) Perfectionnement aux commutateurs d'ondes electromagnetiques millimetriques
EP0762529B1 (fr) Polariseur à iris pour source primaire d'antenne
FR2487587A1 (fr) Filtre passe-bande hyperfrequence realise en guide d'ondes
EP0921587B1 (fr) Filtre hyperfréquence à flanc superieur raide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH LI NL

17P Request for examination filed

Effective date: 19810516

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH LI NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH LI NL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910516

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910524

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920630

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL