EP0150240A1 - Faserverstärkte metallische Werkstoffe und Verfahren zu ihrer Herstellung - Google Patents
Faserverstärkte metallische Werkstoffe und Verfahren zu ihrer Herstellung Download PDFInfo
- Publication number
- EP0150240A1 EP0150240A1 EP84100878A EP84100878A EP0150240A1 EP 0150240 A1 EP0150240 A1 EP 0150240A1 EP 84100878 A EP84100878 A EP 84100878A EP 84100878 A EP84100878 A EP 84100878A EP 0150240 A1 EP0150240 A1 EP 0150240A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal alloy
- fibers
- casting mold
- fiber reinforced
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910001092 metal group alloy Inorganic materials 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000002787 reinforcement Effects 0.000 claims abstract description 28
- 238000009750 centrifugal casting Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 238000005266 casting Methods 0.000 claims description 38
- 239000000155 melt Substances 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052810 boron oxide Inorganic materials 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 239000012783 reinforcing fiber Substances 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 7
- 230000002093 peripheral effect Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
- B22D13/04—Centrifugal casting; Casting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/14—Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/08—Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Definitions
- the present invention relates to a fiber reinforced metal alloy having a high heat resistance, which is especially suited for use as a material for structural components of machines and also to the method for the manufacture thereof.
- fiber reinforced metal alloys comprising a metal matrix and reinforcement fibers.
- These fiber reinforced metal alloys are composite material wherein the metal matrix comprises, for example, aluminum or titanium and the fiber reinforcement comprises, for example, carbon fibers, silica carbide fibers, boron fibers or alumina fibers.
- Both the heat resistance and the heat insulating property of any one of these fiber reinforced metal alloys are not so high and, accordingly, they are not suited for use as a material for component parts operable in the high temperature environment, such as, for example, conveyor rolls installed inside a heating furnace for the transportation of materials to be heat-treated and those for the transportation of hot rolled strips.
- a liquid phase method is known wherein a melt of metal is poured so as to flow into the interstices among the reinforcement fibers.
- This liquid phase method is being watched because the process of making a composite structure does not take a long time as compared with that according to a diffusion bonding method which is another method for the manufacture of the fiber reinforced metal alloy.
- the liquid phase method can be classified into melt-penetration process, vacuum casting process and melt-casting process, all of these methods are not satisfactory, and therefore have not been practised on an industrial scale, because none of them give a sufficient productivity.
- the present invention is based on the finding that the fibrous material generally used as curtains for the vestibule of a furnace, a protective covering for a thermocouple and a lining material for interior component parts of a furnace can withstand heat of 1400°C or higher and has a high tensile strength, and has for its essential object to provide a fiber reinforced metal alloy which, because of the employment of the aforesaid refractory and high strength fibers as the fibrous reinforcement used in the metal alloy, can be used as a material for structural components installed inside a furnace.
- a centrifugal casting mold 1 of any known construction is of a generally cylindrical configuration open at both ends thereof and has a centrally perforated end plate 2a or 2b used to close each open end of the casting mold 1.
- an interwoven tube 4 of reinforcement fibers i.e., a fibrous reinforcement formed by interweaving reinforcement fibers so as to present a generally tubular configuration, is positioned coaxially within the casting mold 1 with its opposite ends held in abutment with support rings 3a and 3b one for each end of the interwoven tube 4.
- a plurality of ring-shaped spacers 5 are mounted exteriorly on the interwoven tube 4 and arranged in equally spaced relation to each other in a direction lengthwise of the casting mold 1. It is to be noted that, instead of the use of the plurality of ring-shaped spacers 5, a single coil of wire may be used as a spacer for the intended purpose.
- the reinforcement fibers used to form the interwoven tube 4 are comprised of three-element type fibers containing alumina (A1203), boron oxide (B 2 0 3 ) and silica (Si0 2 ) in respective quantities of 62 wt%, 14 wt% and 24 wt%.
- the casting of the roll 8 is carried out by pouring a melt of 25Cr-20Ni metal alloy (C: 0.41 wt%, Si: 1.18 wt%, Ni: 20.28 wt%, Mn: 1.02 wt%, P: 0.015 wt%, S: 0.011 wt%, Cr: 24.41 wt%, and Mo: 0.05 wt%) into the casting mold 1 through the central opening 6a in the end plate 2a and then through the central opening 6b in the support ring 3a with the interwoven tube 4 supported therein in the manner described above, and then rotating the casting mold 1 in one direction to allow the melt to be radially outwardly forced to adhere to the inner peripheral surface of the casting mold 1 under the influence of a centrifugal force.
- 25Cr-20Ni metal alloy C: 0.41 wt%, Si: 1.18 wt%, Ni: 20.28 wt%, Mn: 1.02 wt%, P: 0.015 wt%,
- the melt is forced to flow towards the inner peripheral surface of the casting mold 1 through not only the meshes 4a (Fig. 4) defined in the interwoven tube 4, but also the interstices among the reinforcement fibers forming the interwoven tube 4 and then into a clearance formed by the spacers 5 between the casting mold 1 and the interwoven tube 4.
- the amount of the melt poured into the casting mold 1 is so selected that the interwoven tube 4 can be substantially completely embedded in an annular wall of the resultant roll 8 in a manner as shown in Fig. 3.
- the resultant roll 8 is removed out of the casting mold 1.
- the resultant roll 8 has a layer A of the reinforcement fibers initially defined by the interwoven tube 4 and embedded therein at a location spaced radially inwardly from the outer peripheral surface thereof.
- the roll 8 so cast is subsequently subjected to any known grinding process to remove a surface portion 7 of the roll 8 to make the reinforcement fiber layer A exposed to the outside.
- the removal by grinding of the surface portion 7 may not be always necessary.
- the number of the fibrous reinforcements may not be always limited to one such as shown, but may be two or more.
- the fibrous reinforcements are laminated, i.e., where two or more interwoven tubes are employed one inside the other in laminated relation, it may happen that the melt of metal alloy will not reach the inner peripheral surface of the casting mold 1 during the centrifugal casting operation.
- a spacer layer of metal having a low melting point such as, for example, Al or Zn within ⁇ 15% of the lattice constant of Fe may be centrifugally formed in adherence to the inner peripheral surface of the casting mold 1 prior to the melt of the previously described metal alloy being poured into the mold 1.
- the aforesaid spacer layer are, when the melt is poured into the casting mold 1 after the spacer layer has been solidified, melted by the heat evolved by the melt and is subsequently dispersed to mix with the melt to ultimately present a diffused solid solution.
- the interwoven tube may be formed with at least one through-hole at a portion adjacent the central opening 6a so that the melt poured into the casting mold 1 through the central opening 6a can also flow through the through-hole into the clearance between the casting mold and the interwoven tube 4 during the casting operation.
- the interwoven tube may have a heat resistant coating applied thereto to avoid any possible melt of the reinforcement fibers.
- the layer of the reinforcement fibers embedded in the roll is exposed to the outside by grinding the outer surface portion of the roll, which grinding has been necessitated because of the marks left on the outer surface of the roll by the spacer rings 5, the concept of the present invention can equally be applicable to the manufacture of the roll having the reinforcement fiber layer embedded therein at a location substantially intermediately of the wall thickness thereof. This will now be described with particular reference to Figs. 5 and 6.
- each of the support rings 3a and 3b employed in the embodiment shown in Figs. 5 and 6 is of an outer diameter substantially equal to the inner diameter of the casting mold 1 and has a plurality of spacer projections 10 protruding radially outwardly therefrom and circumferentially equally spaced from each other.
- Each of the support rings 3a and 3b is formed with outer and inner circular grooves lla and 11b on one surface thereof in coaxial relation to the axial of rotation of the casting mold 1.
- the interwoven tube 5 is, after having been inserted into an annular clearance defined between the outer and inner perforated SUS pipes 9a and 9b, supported within the casting mold 1 by the SUS pipes 9a and 9b having their opposite ends received in the respective outer and inner circular grooves lla and llb in the associated support rings 3a and 3b as best shown in Fig. 5. It will readily be seen that, because of the particular configuration of each of the support rings 3a and 3b as shown in Fig.
- the melt of the metal alloy poured into the casting mold 1 through the central opening 6a can flow not only into the inside of the inner SUS pipe 9b through the central opening 6b, but also into the clearance between the outer SUS pipe 9a and the inner peripheral surface of the casting mold 1 through arcuate passages each extending between the adjacent two radially outward projections 10.
- the melt of the 25Cr-20Ni metal alloy poured into the casting mold 1 through the central opening 6a flows first into the clearance between the outer SUS pipe 9a and the casting mold 1 through the arcuate passages and then into the inside of the inner SUS pipe 9b through the central opening 6b in the support ring 3a.
- the melt entering the inside of the inner SUS pipe 9b is, during the continued rotation of the casting mold 1, forced under the influence of the centrifugal force to flow into the clearance between the outer and inner pipes 9a and 9b through the perforations in the inner pie 9b and, substantially at the same time, the outer and inner pipes 9a and 9b are fused in contact with the elevated temperature of the poured melt.
- the roll manufactured according to the second preferred embodiment has the reinforcement fiber layer A embedded intermediately of the wall thickness thereof substantially as shown in Fig. 4. It has been found that when the roll cast at 1,600°C by the application of a centrifugal force of 58G in accordance with the second preferred embodiment of the present invention and having a wall thickness of 30mm was tested, it exhibited a temperature distribution as shown by the broken line in Fig. 7. For the purpose of comparison, the temperature distribution exhibited by the conventional roll, 30mm. in wall thickness, of the same material as the roll according to the present invention, but having no reinforcement fiber layer is also shown by the solid line in the graph of Fig. 7. In the graph of Fig. 7, the values "0" and "30" of the wall thickness represent the inner and outer peripheral surfaces of the roll. These temperature distributions were obtained by exposing the inner and outer peripheral surfaces of the roll according to the invention and the conventional roll to the atmospheres of 350°C and 1,300°C, respectively.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Rolls And Other Rotary Bodies (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8484100878T DE3478035D1 (en) | 1984-01-27 | 1984-01-27 | Fiber reinforced metal alloy and method for the manufacture thereof |
EP19840100878 EP0150240B1 (de) | 1984-01-27 | 1984-01-27 | Faserverstärkte metallische Werkstoffe und Verfahren zu ihrer Herstellung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19840100878 EP0150240B1 (de) | 1984-01-27 | 1984-01-27 | Faserverstärkte metallische Werkstoffe und Verfahren zu ihrer Herstellung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0150240A1 true EP0150240A1 (de) | 1985-08-07 |
EP0150240B1 EP0150240B1 (de) | 1989-05-03 |
Family
ID=8191727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840100878 Expired EP0150240B1 (de) | 1984-01-27 | 1984-01-27 | Faserverstärkte metallische Werkstoffe und Verfahren zu ihrer Herstellung |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0150240B1 (de) |
DE (1) | DE3478035D1 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0211280A2 (de) * | 1985-07-26 | 1987-02-25 | Ae Plc | Herstellung von Maschinenbauteilen |
US4726413A (en) * | 1985-03-18 | 1988-02-23 | Siemens Aktiengesellschaft | Apparatus for filling evacuated cavities in material or, respectively, in bodies |
EP0350124A2 (de) * | 1988-07-05 | 1990-01-10 | Shell Internationale Researchmaatschappij B.V. | Metall-Matrix-Verbundschleudergiessen |
US4932099A (en) * | 1988-10-17 | 1990-06-12 | Chrysler Corporation | Method of producing reinforced composite materials |
US5172746A (en) * | 1988-10-17 | 1992-12-22 | Corwin John M | Method of producing reinforced composite materials |
US5199481A (en) * | 1988-10-17 | 1993-04-06 | Chrysler Corp | Method of producing reinforced composite materials |
WO1995009735A1 (en) * | 1993-10-07 | 1995-04-13 | Hayes Wheels International, Inc. | Cast wheel reinforced with a metal matrix composite |
CN111872356A (zh) * | 2020-08-06 | 2020-11-03 | 上海大学 | 一种碳纤维增强的磁制冷功能合金复合材料制备装置与制备方法 |
CN112846151A (zh) * | 2021-01-20 | 2021-05-28 | 苏州鸿翼卫蓝新材科技有限公司 | 一种复合炉辊制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101954466B (zh) * | 2010-11-02 | 2015-09-02 | 北京中煤矿山工程有限公司 | 双金属复合冶金楔齿滚刀刀壳离心铸造工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1187139A (fr) * | 1956-11-21 | 1959-09-07 | Owens Corning Fiberglass Corp | Objets métalliques renforcés par du verre |
FR2133852A1 (de) * | 1971-04-19 | 1972-12-01 | Maschf Augsburg Nuernberg Ag | |
WO1983002782A1 (en) * | 1982-02-08 | 1983-08-18 | Booth, Stuart, Eric | Improvements in or relating to fibre-reinforced metals |
EP0094970A1 (de) * | 1981-11-30 | 1983-11-30 | Toyota Jidosha Kabushiki Kaisha | Kompositmaterial und verfahren zu dessen herstellung |
-
1984
- 1984-01-27 DE DE8484100878T patent/DE3478035D1/de not_active Expired
- 1984-01-27 EP EP19840100878 patent/EP0150240B1/de not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1187139A (fr) * | 1956-11-21 | 1959-09-07 | Owens Corning Fiberglass Corp | Objets métalliques renforcés par du verre |
FR2133852A1 (de) * | 1971-04-19 | 1972-12-01 | Maschf Augsburg Nuernberg Ag | |
EP0094970A1 (de) * | 1981-11-30 | 1983-11-30 | Toyota Jidosha Kabushiki Kaisha | Kompositmaterial und verfahren zu dessen herstellung |
WO1983002782A1 (en) * | 1982-02-08 | 1983-08-18 | Booth, Stuart, Eric | Improvements in or relating to fibre-reinforced metals |
Non-Patent Citations (1)
Title |
---|
"Modern composite materials", 1968, edited by Lawrence J. Broutman et al., pages 412-418, Addison-Wesley Publishing Company, Reading, Massachusetts, USA; * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4726413A (en) * | 1985-03-18 | 1988-02-23 | Siemens Aktiengesellschaft | Apparatus for filling evacuated cavities in material or, respectively, in bodies |
EP0211280A2 (de) * | 1985-07-26 | 1987-02-25 | Ae Plc | Herstellung von Maschinenbauteilen |
EP0211280A3 (de) * | 1985-07-26 | 1988-10-12 | Ae Plc | Herstellung von Maschinenbauteilen |
US4804033A (en) * | 1985-07-26 | 1989-02-14 | Ae Plc | Production of engineering components |
EP0350124A2 (de) * | 1988-07-05 | 1990-01-10 | Shell Internationale Researchmaatschappij B.V. | Metall-Matrix-Verbundschleudergiessen |
EP0350124A3 (en) * | 1988-07-05 | 1990-09-12 | Shell Internationale Research Maatschappij B.V. | Centrifugal casting of metal matrix composites |
US4932099A (en) * | 1988-10-17 | 1990-06-12 | Chrysler Corporation | Method of producing reinforced composite materials |
US5172746A (en) * | 1988-10-17 | 1992-12-22 | Corwin John M | Method of producing reinforced composite materials |
US5199481A (en) * | 1988-10-17 | 1993-04-06 | Chrysler Corp | Method of producing reinforced composite materials |
WO1995009735A1 (en) * | 1993-10-07 | 1995-04-13 | Hayes Wheels International, Inc. | Cast wheel reinforced with a metal matrix composite |
CN111872356A (zh) * | 2020-08-06 | 2020-11-03 | 上海大学 | 一种碳纤维增强的磁制冷功能合金复合材料制备装置与制备方法 |
CN112846151A (zh) * | 2021-01-20 | 2021-05-28 | 苏州鸿翼卫蓝新材科技有限公司 | 一种复合炉辊制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP0150240B1 (de) | 1989-05-03 |
DE3478035D1 (en) | 1989-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4631793A (en) | Fiber reinforced metal alloy and method for the manufacture thereof | |
EP0150240A1 (de) | Faserverstärkte metallische Werkstoffe und Verfahren zu ihrer Herstellung | |
US3014266A (en) | Method for making and repairing rolls | |
US4363832A (en) | Method for providing ceramic lining to a hollow body by thermit reaction | |
US4958422A (en) | Wear-resistant compound roll | |
US3849080A (en) | Rotationally symmetrical hollow compound body | |
EP1466021B1 (de) | Kühlplatte für metallurgischen ofen und verfahren zur herstellung solch einer platte | |
US3511306A (en) | Method and apparatus for centrifugally casting perforated rings | |
CA1241555A (en) | Fiber reinforced metal alloy and method for the manufacture thereof | |
US2275503A (en) | Process for making composite metal articles and apparatus therefor | |
JPS6014095B2 (ja) | 耐クラツク性、耐摩耗性に優れる合金チルドロ−ル材 | |
US2632234A (en) | Furnace roller and method of making it | |
KR890005126B1 (ko) | 섬유보강 합금으로된 원통체의 제조방법 | |
AU657296B2 (en) | A roll including a cemented carbide ring cast into a cast iron body | |
DE3623131C1 (en) | Method for the production of annular workpieces made of metal | |
WO1996023625A1 (en) | Composite furnace roll rings and method | |
US5772567A (en) | Composite furnace rolls | |
US3254381A (en) | Method of manufacturing composite metallic rolls | |
US20020056539A1 (en) | Continuous casting rolls and method of using | |
JPS61229459A (ja) | 複合鋳造ロ−ルの製造方法 | |
JPS60130460A (ja) | 断熱複合管の製造法 | |
EP0191008A1 (de) | Hülsen- oder rohrförmiger Gegenstand und Verfahren zu seiner Herstellung | |
JPH0340102B2 (de) | ||
JPS5923834A (ja) | 繊維強化合金 | |
JPH06615A (ja) | 炉内ロール用二重遠心鋳造管の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19860207 |
|
17Q | First examination report despatched |
Effective date: 19870225 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3478035 Country of ref document: DE Date of ref document: 19890608 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19891219 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19891228 Year of fee payment: 7 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19900131 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19900320 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19910127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19910131 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19910930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19911001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |