EP0146918B1 - Tunnelbohrsystem zum Auffahren von Tunneln mittels Rohrvorpressung - Google Patents

Tunnelbohrsystem zum Auffahren von Tunneln mittels Rohrvorpressung Download PDF

Info

Publication number
EP0146918B1
EP0146918B1 EP84115807A EP84115807A EP0146918B1 EP 0146918 B1 EP0146918 B1 EP 0146918B1 EP 84115807 A EP84115807 A EP 84115807A EP 84115807 A EP84115807 A EP 84115807A EP 0146918 B1 EP0146918 B1 EP 0146918B1
Authority
EP
European Patent Office
Prior art keywords
tool
bell
hollow shaft
tunnel
tunnel boring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84115807A
Other languages
English (en)
French (fr)
Other versions
EP0146918A1 (de
Inventor
Martin Dipl.-Ing. Herrenknecht
Thomas Dipl.-Ing. Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herrenknecht GmbH
Original Assignee
Herrenknecht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herrenknecht GmbH filed Critical Herrenknecht GmbH
Priority to AT84115807T priority Critical patent/ATE33057T1/de
Publication of EP0146918A1 publication Critical patent/EP0146918A1/de
Application granted granted Critical
Publication of EP0146918B1 publication Critical patent/EP0146918B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/12Devices for removing or hauling away excavated material or spoil; Working or loading platforms
    • E21D9/13Devices for removing or hauling away excavated material or spoil; Working or loading platforms using hydraulic or pneumatic conveying means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/16Plural down-hole drives, e.g. for combined percussion and rotary drilling; Drives for multi-bit drilling units
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • E21B7/208Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes using down-hole drives

Definitions

  • the invention relates to a tunnel boring system for opening tunnels by means of pipe compression, in particular for tunnel pipes with an inside diameter that cannot be walked on, with an essentially cylindrical tunnel boring machine that can be pressed into the soil in the direction of its longitudinal central axis and that has one of the pipe sizes of a tunnel pipe to be installed at a drill head end has corresponding mining device and which can be brought into a support connection at a drill tail end with an end face of a tunnel pipe section of the tunnel pipe to be pre-pressed, soil loosened by the mining device with the addition of water through the interior of the drill and, when the tunnel pipe section is attached to its tail end, also through the latter Interior is conveyed through.
  • the excavation device at the head of the drilling machine has essentially plate-shaped or star-shaped rotary tools, cf. e.g. B. DE-A-1 458 675, which rotate concentrically to the tunnel axis on a central shaft rotatably mounted in a machine housing.
  • the rotary tools can be designed as scraping, cutting or scraping tools.
  • Such tools which are attached in the circumferential area of a star-like or disk-like support member that essentially covers the tunnel cross-section, scrape or scrape off the material to be removed, usually with constant supply of water, and the material falls through caliber openings (or through) provided in the tool-carrying disk specially dimensioned spoke sections with a star-shaped design) and is then together with the rinsing water z.
  • the caliber openings mentioned are intended to prevent stones and debris of a grain size from entering the pipes and pumps discharging the overburden, which could damage the discharge devices.
  • the material that cannot be removed through the caliber openings collects in the rotation area of the stripping tool and, if it accumulates accordingly, can completely put the removal tool out of operation. But even if, despite the accumulation of non-transportable material in the area of the excavation device, it is still possible to remove the working face, the material jam described generally leads to a considerable reduction in the rate of advance, even with a high pipe pre-pressure.
  • such a known tunnel boring system can only be used to mine soil with a very small proportion of small-grained stones, i. H. that the ground condition of the tunnel driving section must be largely homogeneous. If, for example, unexpectedly large pieces of rock or remains of foundations of buildings lie in the tunnel boring section, the tools used and usable in this known type of tunnel boring machine are not able to penetrate the obstacles. If this is the case, the driving is stopped by such obstacles, i. That is, the entire drilling machine must be excavated, since it can usually not be withdrawn due to the tunnel tubes already pressed.
  • tunnel boring machines working with screw conveyors are also used, cf. e.g. B. FR-A-1 538 551.
  • a screw conveyor rotates in a drill housing or a trough, rubs the material to be mined out with mostly armored blades on the front worm gear and transports it to the rear end by means of the screw.
  • This extraction by means of screw conveyors is only suitable for dry or moist material and is limited to relatively short tunnel bores, since the drilling length can essentially only correspond to the screw length.
  • a tunnel boring machine is known (FR-A-2 349 000), in which no rotating parts are provided in the mining area, but rather a large number of swiveling nozzles distributed over the circumferential edge of the tunnel cross section, to which water is supplied so that the nozzle jets can detach the soil. The detached material is removed together with the rinse water.
  • a drilling system can only be used for soils of a very specific composition made of easily rinsable material, at least not for soils with an irregularly large rock.
  • tunnel boring systems used so far in the introductory outline have more or less well-developed dismantling tools at the head of the drilling machine and can dig up the tunnel cross-section on site by scraping, cutting or digging out the soil.
  • the driving is usually finished because such obstacles can not be processed.
  • the obstacle that cannot be processed by the machine would be crushed on site and the tunneling would then continue. This is obviously not possible with tunnel drilling systems of the type mentioned at the beginning for tunnel pipes of inside diameter which cannot be walked on.
  • the invention is therefore based on the object of providing a tunnel boring system, the tunnel boring machine of which is able to mine all types of soils and earth zone compositions and which also has a device for mining all of the large parts of the earth in the mining area ready for direct removal shred.
  • the removal tool bell according to the invention carries a cutting and grinding tool crown with a diameter approximately corresponding to the tunnel cross section to be drilled in each case. With this crown, the material to be mined is scraped, scraped out or cut depending on the nature of the soil.
  • the cutting and grinding tool crown is immediately followed by conveying and comminuting tools, which at least over the largest part in the direction of the narrowing bell inner area extend the bell wall.
  • the tool sections near the mine which can be designed like a shovel, serve mainly to break down the material on the face and to transport it into the interior of the tool bell, while the tool sections further inside the bell serve primarily as crushing, grinding and comminuting tools.
  • a grinding tool according to the invention protrudes from the tool bell bottom section into the inside of the tool bell, which, seen in longitudinal section, has such an external profile that, together with the tool bell inner wall that gradually tapered towards the tool bell bottom section, a tapered toward the Bottom section forms gradually reducing annulus. If the soil mined by the tools z. B. with rocks, enters this annular space, and if the rocks are larger than the clear width of the annular space between the bell inner wall and the grinding tool, there is an immediate crushing of the rock at least to the grain size limited by the annular space.
  • the tool bell and the grinding tool are rotatably mounted relative to one another, so that rock and debris components of the most varied types can be processed by appropriate operation of the comminution tools.
  • the grinding tool is also relatively longitudinally displaceable with respect to the tool bell, depending on the selected axial position, a change in the opening angle of the annular space between the tool bell and the grinding tool can be adjusted according to the most favorable conditions on site or changed during opening.
  • the material mined and shredded in the manner according to the invention can be discharged quickly from the tunnel boring machine, conveying nozzles open into the annular space and are flushed with a pressurized water supply, which flush the material into discharge ducts so that it is guided through the interior of the machine, to the tail end and can be transported there.
  • the tunnel boring machine according to the invention can be used universally, which is further substantiated by the following description.
  • the drilling machine of the tunnel boring system is subdivided into a control section at the head end and a trailing section at the tail end, and the control section can be deflected universally by a few angular degrees relative to the trailing section with respect to the longitudinal central axis. Because of this subdivision, the control section can drive up tunnel curves in accordance with the respective deflection about the longitudinal central axis.
  • the tool bell of the dismantling device can be rotated on its tool bell bottom section with a coaxial to the control section longitudinal central axis within the control section mounted outer hollow shaft, and a rotary drive for the tool bell is provided on the outer hollow shaft.
  • the grinding tool protruding into the interior of the tool bell has a grinding tool head on its section facing the bell opening edge region, which is attached to the end face of an inner hollow shaft that is relatively rotatable and axially displaceable concentrically in the outer hollow shaft.
  • the grinding tool head can carry a concentric grinding tool on the outer circumference with respect to the longitudinal center axis of its inner hollow shaft carrying it or, according to a modified embodiment, can be provided with tools offset eccentrically to the longitudinal center axis, which in addition to the grinding effect also enable a breaking or pre-breaking effect within the tool bell.
  • the inner hollow shaft is concentrically guided in the outer hollow shaft so as to be relatively rotatable and axially displaceable via corresponding bearing arrangements, this results in an extremely compact assembly of these two parts, which are particularly highly stressed under rough mining conditions.
  • the corresponding drives are located axially behind the rotary drives for the outer shaft on a protruding end of the outer hollow shaft Section of the inner hollow shaft.
  • the delivery nozzles are arranged on the inner wall of the tool bell, and the discharge channels, which allow the dismantled and shredded material to emerge from the annular space of the tool bell, are provided as discharge openings which break through the wall of the inner hollow shaft and are transported away through the interior of the inner hollow shaft to its tail end Enable section.
  • This section of the inner hollow shaft is connected, preferably via a rotary seal housing, to a flexible pipeline for the further transport and removal of the material through the interior of the tunnel pipe sections which may adjoin the machine.
  • the outer hollow shaft, its rotary drives, the inner hollow shaft and their rotary and displacement drives are mounted in or on a supporting housing surrounding the outer hollow shaft.
  • This support housing is attached only to the head-end control section and protrudes into the tail-end trailing section, the drives mentioned being so tightly packed on the support housing that there is a sufficiently large distance between the inner wall surface of the trailing section and the entire circumference of all functional elements arranged on the support housing, which at Corresponding pivoting of the head-end control section, via a plurality of control cylinders provided in accordance with the pivoting direction, the entire support housing with the components can pivot out within the trailing section, the largest pivoting movement obviously having to be possible at the tail-end section.
  • the removal of the dismantled and comminuted material through the interior of the inner hollow shaft uses an otherwise unused but, for reasons of stability, cavity as a transport path, the hollow shaft also offering the advantage of absolute tightness, so that the Drive units experience no functional impairment due to the dismantled material.
  • the space available through the inventive selection of the removal path through the interior of the inner hollow shaft in the interior of the trailing section can thus be used, for example, by accommodating powerful drive units, as happened in the invention.
  • the control section overlaps at least part of the outer shell of the tool bell, as a result of which an outer annular space, which is liquid-tight and pressure-resistant through sealing means, is formed between the control section and the outer wall of the tool bell.
  • an outer annular space which is liquid-tight and pressure-resistant through sealing means, is formed between the control section and the outer wall of the tool bell.
  • a plurality of nozzles of relatively small diameter are provided in the bell wall adjacent to the bell opening edge region and distributed over the circumference and offset in the direction of the longitudinal center axis. These nozzles are connected to the water-fed outer annulus via rinsing channels and, with the appropriate water pressure, ensure that all surfaces on the tool inside the bell are rinsed off quickly and consistently. Some rows of nozzles directly adjacent to the bell opening edge area can additionally rinse out the overburdening process Support material to be cleared. At the end of the annulus chamber facing the tool bell bottom section, a plurality of rows of nozzles of relatively large cross-section are provided, which are also connected to the outer annulus via corresponding channels through the bell wall.
  • the outer annular space can be divided, for example, by an annular segment into two annular space chambers, the channels of the flushing nozzles in one chamber and the channels of the ones in the other chamber open to promote nozzles.
  • the tool bell is attached to the outer hollow shaft and the grinding tool head is attached to the inner hollow shaft via corresponding screw connections, so that these parts can be assembled and exchanged from the head end of the tunnel boring machine.
  • these tool elements can be fitted with a suitable tool set, depending on the expected operating conditions. If soils containing clay and clay are expected with few stones, it is advantageous to install tools with a high shovel effect, while tools with a predominantly stony soil are preferred, in which crushing and grinding properties are paramount.
  • the grinding tool head and the tool bell inner wall can have a similar wall profile or can carry different tools.
  • the inner wall of the tool bell and / or the outer circumferential profile of the grinding tool head can be provided with axially parallel ledge teeth.
  • right-hand or left-hand screw-like ledge teeth can also be used.
  • tools can also be used which are provided with wart teeth on the respective peripheral surface.
  • Hard metal inserts for example hard metal pellets or hard metal round shank chisels, can also be inserted or pressed into the peripheral surface. If necessary, welded-on wear teeth or wear strips, studs and the like can also be used.
  • the inner wall curvature of the tool bell and / or the curvature or inclination of the grinding tool head on its outer circumferential profile can be varied by suitable tool selection, depending on the anticipated conditions of use.
  • the bell shape of the inner wall, in conjunction with the dome-like grinding tool head in its basic form, especially when the grinding tool is moved, enables a wide range of variations for the design of the inner annular space which is used for crushing or grinding.
  • the tunnel boring diameters which are drilled with the tunnel boring machine according to the invention are mainly in a diameter range of 35 cm to 80 cm, and the tunnel boring machine according to the invention removes the accumulating comparatively quickly, the tunnel is driven at an increased rate of advance, especially when the speed is easy to process Soil, extremely smoothly instead, especially since any obstacles are not pushed long in front of the machine, but are ground through. Under some operating conditions it can be helpful to give the tunnel boring machine additional centering in addition to its guidance over the control section and the trailing pipe.
  • the grinding tool head can be pushed in the axial direction over the plane in which the cutting and grinding tool ring rotates into the face, so that the dome-shaped rounding of the grinding tool has a supporting centering effect.
  • the tunnel boring system enables tunnel boring at an increased rate of advance over tunnel lengths which could not be opened with previous drilling machines. So that at the pipe pre-pressing at the tail end Pipes connecting the tunnel boring machine, usually made of concrete, can also be pushed over long lengths, intermediate pressure stations can be provided after a number of tunnel pipe sections, which, in cooperation with the main press station, press the respective tunnel pipe sections.
  • the tunnel boring machine 80 shown in FIG. 1 carries at its drilling machine head end 81 a mining tool bell 6 of the mining device 82, which penetrates into the soil to be extracted and bores a tunnel with the diameter of the pipe size to be laid. Since the excavation device 82 encompasses the entire tunnel cross section to be drilled, the soil bounded by tunnels through the outer peripheral edge of the excavation device is cut or cut by a cutting and grinding tool crown 2, which is located at a bell opening edge area 85 (FIG. 2) broken and then inserted into a tool bell inner region 86.
  • a cutting and grinding tool crown 2 which is located at a bell opening edge area 85 (FIG. 2) broken and then inserted into a tool bell inner region 86.
  • the excavated soil is then transported essentially up to a tool bell bottom section 88 through the inner region 86 and with the addition of water through discharge openings 17, which are located in the vicinity of the tool bell bottom section 88 in a wall of an inner hollow shaft 25, into the interior 92 of this inner hollow shaft is introduced, transported through the interior to the drill tail end 84 and discharged from there via a flexible pipeline 56, optionally through tunnel pipe sections 83 attached to the tunnel boring machine.
  • the tool bell 6 is mounted concentrically to the longitudinal axis L of the drilling machine on a flange section 21 of an outer hollow shaft 27.
  • a rotary drive 37 is provided which drives the outer hollow shaft and thus the tool bell to the right or left.
  • the inner hollow shaft 25 is mounted and guided concentrically in the outer hollow shaft 27 and has a grinding tool 89 at its end facing the tool bell 6.
  • radial bearings 23 and 41 serve to radially support the inner hollow shaft 25.
  • FIG. 2 it can be seen that the radial bearing 23 is seated on a circumferential surface of the inner hollow shaft 25 sliding guide bushing 22, which allows a relative displacement of the inner hollow shaft 25 in the axial direction to the outer hollow shaft 27 and thus to the tool bell 6.
  • a corresponding plain bearing bush is also located on the further radial bearing 41, which is only shown in FIG. 1 and is located behind the outer hollow shaft 27 in the direction of the tail end of the machine. 1 also shows a rotary drive 54 and a displacement drive 62.
  • the inner hollow shaft 25 can be moved from the position shown in full lines in FIG. 1, in which the grinding tool 89 is in its position retracted into the tool bell 6, and a position indicated by dashed lines in FIGS. 1 and 2 are displaced, in which at least the front end of the grinding tool 89 projects beyond the plane occupied by the cutting and grinding tool crown 2.
  • the rotary drive 54 permits a left or right rotation of the inner hollow shaft 25, regardless of the rotation and direction of rotation of the outer hollow shaft 27.
  • the tunnel boring machine 80 consists of two main parts, a head-end control section 93 and a tail-end trailing section 94.
  • FIG. 2 shows how the two sections engage with one another with overlapping circumferential edges 29, 32 and an interposed sealing ring 30.
  • This arrangement consisting of the peripheral edges and the sealing ring serves primarily as a sealing protection, so that no soil and the like can penetrate into the inner region of the trailing section 94.
  • the actual coupling between the control section 93 and the trailing section 94 takes place solely via control cylinders 33, of which only two of a plurality of control cylinders provided over the inner circumference are shown in FIG. 1.
  • control 93 at the head end can be pivoted by a few angular degrees with respect to the longitudinal central axis L, as a result of which tunnel curves can be developed.
  • a support housing 95 which encompasses a bearing 36 of the outer hollow shaft 27, a part of the rotary drive 37 for the outer hollow shaft and the radial bearing 41, which serve to support the inner hollow shaft 25, in the manner of a housing shell.
  • the contour of this support housing 95 is shown in FIG. 1 with a dense parallel dashed line.
  • the support housing 95 itself, which thus supports the outer hollow shaft 27, its rotary drive 37, the inner hollow shaft 25 and the rotary and displacement drives 54 and 62, is attached to the head-end control section 93, specifically via a support flange 64 (FIG. 2).
  • the support housing protrudes into the interior of the trailing section 94, so that when the control section is pivoted by means of the control cylinder 33, the support housing 95 is pivoted along with all the components supported on it.
  • the functional elements arranged on the support housing 95 are grouped in an optimally compact manner.
  • the rotary drive 37 comprises tandem hydraulic motors 100 which, viewed in the axial direction, are arranged in a star shape around the outer hollow shaft 27 or the corresponding section of the support housing 95 and, via drive pinions 40, set a drive sprocket 39 placed on the outer hollow shaft in rotation.
  • a corresponding arrangement of hydraulic motors 101 is provided for the rotary drive 54 of the inner hollow shaft 25.
  • the sliding bearing bushes 22 which guide the inner hollow shaft during the displacement are subject to high loads and, particularly when the hollow shaft is retracted, are highly susceptible to wear due to possible material effects on the hollow shaft surface.
  • sealing elements 19 are arranged which enclose the inner hollow shaft and keep the surface thereof as free as possible of impurities.
  • high-pressure grease channels can be provided in the bearing area, which allow an additional and controllable addition of lubricant as required.
  • the bell opening edge region 85 (FIG. 2), as mentioned, carries the cutting and grinding tool crown 2.
  • This has an overcut relative to the outer diameter of the head-end control section 93, i. that is, the overall diameter of the tool bell on the cutting and grinding tool crown 2 is somewhat larger than that of the control section 93, so that the tunnel diameter cut or drilled from the ground allows the pressing of the tunnel boring machine and the pipes to be laid without problems.
  • a plurality of blade-like strip elements (see FIG. 4) adjoin the circumference of the inner wall of the tool bell.
  • strip elements can run helically to the right or left, or consist of strips parallel to the axis.
  • the optimal tooling of the tool bell inner wall 87 depends on the respective application. In all circumstances, however, the blades have a double function, namely on their section facing the bell opening edge region 85 they serve primarily as removal and conveying tools, while the ledge sections facing the tool bell bottom section 88 also carry out any necessary size reduction in addition to the removal of the material accomplish.
  • the cutting and milling tool crown 2 it is possible, for example, to cut or drill through unexpectedly occurring boulders or foundations or parts of large chunks of rock, depending on the location, without removing a major obstacle and also without the need for one To avoid obstacles.
  • the blades in the blade area 1 (FIG.
  • the cutting and grinding tool crown 2 which optionally adjoin the cutting and grinding tool crown 2 directly after a short attachment of the cutting and grinding tool crown to a hard stone object, support the removal or already crushing of the obstacle in the course of further advance.
  • the cutting and grinding tool crown, as well as the shovel tools are of armored design.
  • the grinding tool head 11 of the grinding tool 89 shown in FIGS. 5 and 6 is, as a comparison with FIG. 4 shows, with a corresponding one Outer jacket profile, which is formed from strips 12, occupied.
  • the strips or strip teeth are arranged helically to the longitudinal center axis and, like the strips of the tool bell in the front area of the grinding tool 89 according to FIG. 2, serve primarily to promote the overburden and in the area facing the tool bell bottom section 88 for grinding or crushing for removal otherwise too large soil components.
  • annular space 91 is formed between these two tool parts arranged coaxially to one another, which decreases in size in the direction of the tool bell bottom section 88.
  • the size and shape of this annular space 91 can be changed. It is essential that the annular space 91 has a size that is set to the subsequent discharge channels, so that no blocking of the discharge paths by excessively large rocks is possible. It is also important that the mutual assignment of the tool profiles on the inner wall of the bell and on the outer casing of the grinding tool 89 is selected so that the rock to be ground is also gripped on all sides and broken or ground accordingly.
  • FIG. 7 and 8 show several design options for the tool set, the shown setting option of the grinding tool head also being provided for the tool bell 6, which is not shown separately.
  • a grinding tool head has pyramid warts 74, a further prism warts 75 and a third pressed-in hard metal pellets 76.
  • FIG. 8 shows again a tool head with pressed-in hard metal strip pieces 77, with welded-on wear teeth or strips 78 and with inserted hard metal -Rundular chisels 79 can be equipped.
  • FIG. 8 shows again a tool head with pressed-in hard metal strip pieces 77, with welded-on wear teeth or strips 78 and with inserted hard metal -Rundular chisels 79 can be equipped.
  • FIG. 8 shows again a tool head with pressed-in hard metal strip pieces 77, with welded-on wear teeth or strips 78 and with inserted hard metal -Rundular chisels 79 can be equipped.
  • FIG. 8 shows again a tool head with
  • 71 shows a development of a tooth or wart stock in an axially parallel design
  • 72 shows a corresponding development of a tooth or wart stock with right or left screw pitch
  • 73 shows the development of a tooth or wart stock in a staggered arrangement.
  • the grinding tool head 11 is shown as a rotationally symmetrical part. Either the entire part or its tool set could also be arranged eccentrically to the longitudinal center line L, so that, in addition to the grinding function of the toothing or the wart set, a breaking or pre-breaking effect between the tool bell and grinding tool can also be achieved.
  • the tool bell 6 can be unscrewed from the end of the drilling machine 81 by screws 14 from its bearing flange on the outer hollow shaft 27.
  • a corresponding screw connection 13 is used to replace the grinding tool head 11.
  • a flushing water supply a plurality of rows, in the example shown four rows lying in parallel, conveyor channels 99 are provided in the wall of the tool bell in the vicinity of the bottom section 88, which are distributed in the circumferential direction over the tool bell 6.
  • These conveying channels 99 end on their side facing the annular space 91 in conveying nozzles 16 and on their corresponding other end in an annular chamber 70 in which rinsing water is stored at a relatively low pressure.
  • This flushing water flows through the conveying channels 99 and the conveying nozzles 16, which have a corresponding opening width in order to obtain a large water throughput and flush the conveyed material located in the annular space 91 into the interior 92 of the inner hollow shaft 25, from where it flows through the flexible pipeline provided on the tail end 56 is transported away.
  • four discharge openings 17 are provided, distributed uniformly over the circumference of the inner hollow shaft, which run obliquely towards the interior 92 in the direction of the tail end of the tunnel boring machine, in order to permit the most favorable flow possible.
  • the annulus chamber 70 is a section of an outer annulus 9, which is accommodated within the control section 93, namely between the tool bell outer wall 96 and a control section casing 10 concentrically enclosing this outer wall. Between the control section casing 10 and the outer wall of the removable tool bell 6 Sealing means 4, 5, 18 are provided, which close off the annular space 9 in a liquid-tight and pressure-tight manner.
  • the annular space 9 is divided by an annular segment 69 into the aforementioned annular space 70 for the rinsing water and a second annular space 98. Corresponding sealing elements of the ring segment 69 ensure a pressure-tight closure of the annular chamber 98 within the annular space 9.
  • This annular chamber 98 is also connected to a water supply, but the water in this chamber is at a significantly higher pressure than in the adjacent chamber 70.
  • the annular chamber 98 is located via nozzle channels 8, which pass through the tool bell wall, in connection with pressure nozzles 97 on the tool bell inner wall 87, which Discharge water under high pressure from said annular chamber 98 primarily in the mining area, especially in the blade area 1. Due to the pressure conditions described and the choice of narrow cross-sections for the nozzles 97, sharp water jets emerge from them, which serve to keep the tooling and the entire interior of the tool bell free of adhering soil, so that the tool function is not impaired and furthermore as far as possible rinse the working face in order to support the removal of the material to be removed.
  • nozzles also exert a certain cooling effect when grinding and crushing the material on the tools and on the cutting and grinding tool crown 2 and support the grinding of rock.
  • 2 shows a number of rows of pressure nozzles 97, and a row of nozzles facing the head end is fed via a pressurized water channel 3. If the conditions of use make it necessary that only very specific selected pressure nozzles can function, if necessary before the assembly of the suitable tool bell 6, the pressure water nozzle channels which are not required are blocked off by means of nozzle sealing plugs 68.
  • the grinding tool 89 can be displaced on the inner hollow shaft with respect to its direction of rotation, its speed of rotation and its axial position relative to the tool bell 6 and its speed of rotation and direction of rotation, practically all conceivable operating conditions can be mastered with the tunnel boring machine 80 in the manner described. Overall, the tunnel boring machine opens up the possibility of adequately responding to any obstacles that arise during tunneling via the remote-controlled operation of the drives and thereby controlling the tunnel boring machine in such a way that the stress limits of the tools are not exceeded.

Description

  • Die Erfindung bezieht sich auf ein Tunnelbohrsystem zum Auffahren von Tunneln mittels Rohrverpressung, insbesondere für Tunnelrohre nicht-begehbaren Innendurchmessers mit einer im wesentlichen zylinderförmigen, in Richtung ihrer Längsmittelachse in das Erdreich preßbaren Tunnelbohrmaschine, die an einem Bohrmaschinen-Kopfende eine der zu verlegenden Rohrgröße eines Tunnelrohrs entsprechende Abbaueinrichtung aufweist und die an einem Bohrmaschinen-Schwanzende mit einer Stirnseite eines Tunnelrohrabschnitts des vorzupressenden Tunnelrohrs in Abstützverbindung bringbar ist, wobei von der Abbaueinrichtung gelöstes Erdreich unter Zusatz von Wasser durch das Innere der Bohrmaschine und, bei an ihr Schwanzende angesetztem Tunnelrohrabschnitt, ebenfalls durch dessen Innenraum hindurch abgefördert wird.
  • Bei einem derartigen bekannten Tunnelbohrsystem besitzt die Abbaueinrichtung am Bohrmaschinen-Kopfende im wesentlichen teller- oder sternförmige Rotationswerkzeuge vgl. z. B. DE-A-1 458 675, die auf einer in einem Maschinengehäuse drehbar gelagerten zentralen Welle konzentrisch zur Tunnelachse umlaufen. Je nach den Einsatzbedingungen können die Rotationswerkzeuge als schabende, schneidende oder kratzende Werkzeuge ausgestaltet sein. Solche Werkzeuge, welche im Umfangsbereich eines den Tunnelquerschnitt im wesentlichen überdeckenden stern- oder scheibenartigen Tragglieds angebracht sind, schaben oder kratzen das abzutragende Material meist unter ständiger Wasserzufuhr von der Ortsbrust ab, und das Material fällt durch in der werkzeugtragenden Scheibe vorgesehene Kaliberöffnungen (bzw. durch speziell dimensionierte Speichenabschnitte bei sternförmiger Ausführung) und wird dann zusammen mit dem spülenden Wasser z. B. über Kreiselpumpen und Schlauchleitungen aus der Tunnelbohrung ausgetragen. Die genannten Kaliberöffnungen sollen verhindern, daß in die den Abraum abführenden Rohrleitungen und Pumpen Steine und Geröll von einer Korngröße hineingelangen, durch welche die Abfördereinrichtungen beschädigt werden könnten. Das nicht durch die Kaliberöffnungen hindurch abführbare Material sammelt sich im Rotationsbereich des Abraumwerkzeuges und kann bei entsprechend großer Ansammlung das Abbauwerkzeug vollständig außer Funktion setzen. Aber selbst wenn trotz einer Ansammlung von nicht abtransportierbarem Material im Bereich der Abbaueinrichtung noch ein Abtragen der Ortsbrust möglich sein sollte, führt der geschilderte Materialstau in der Regel zu einer erheblichen Verringerung der Vortriebsgeschwindigkeit, selbst bei hohem Rohrvorpreßdruck.
  • Außerdem kann mit einem derartigen bekannten Tunnelbohrsystem lediglich ein Abbau von Erdreich mit sehr geringem Anteil kleinkörniger Steine erfolgen, d. h. daß die Bodenbeschaffenheit der Tunnelvortriebsstrecke weitgehend homogen sein muß. Wenn beispielsweise unerwartet große Gesteinsbrocken oder Fundamentreste von Gebäuden in der Tunnelbohrstrecke liegen, sind die bei dieser bekannten Bauart von Tunnelbohrmaschinen verwendeten und verwendbaren Werkzeuge nicht in der Lage, die Hindernisse zu durchdringen. Ist dies der Fall, wird der Vortrieb durch solche Hindernisse beendet, d. h., daß die gesamte Bohrmaschine ausgegraben werden muß, da sie infolge der bereits nachgepreßten Tunnelrohre in der Regel nicht mehr zurückgezogen werden kann.
  • Derartige bekannte Bohrmaschinen können, wie gesagt, nicht zum Auffahren von Böden mit größeren Gesteinsbrocken verwendet werden, aber auch nicht bei Böden, die besonders lehm-und tonhaltig sind, da eine solche Bodenbeschaffenheit den Werkzeugsatz am Abbauwerkzeug sowie am Abfördersystem nach einer kurzen Einsatzdauer verklebt, so daß auch in dieser Hinsicht keine zufriedenstellenden Resultate erwartet werden können.
  • Für das Bohren von Tunneln durch weiche Böden und Kies mit geringem Anteil an grobkörnigem Gestein werden auch mit Förderschnecken arbeitende Tunnelbohrmaschinen eingesetzt vgl. z. B. FR-A-1 538 551. Dabei rotiert eine Förderschnecke in einem Bohrmaschinengehäuse oder einem -trog, reibt mit meist gepanzerten Schneiden am vordersten Schneckengang das abzubauende Material heraus und transportiert es mittels der Schnecke zum hinteren Ende. Dieser Abbau mittels Förderschnecken eignet sich nur für trockenes oder feuchtes Material und ist auf relativ kurze Tunnelbohrungen beschränkt, da die Bohrlänge im wesentlichen nur der Schneckenlänge entsprechen kann.
  • Ferner ist ein Tunnelbohrgerät bekannt (FR-A-2 349 000), bei dem im Abbaubereich keinerlei rotierende Teile vorgesehen sind, sondern über den Umfangsrand des Tunnelquerschnitts verteilt eine Vielzahl schwenkbarer Düsen, denen Wasser zugeführt wird, damit die Düsenstrahlen das Erdreich herauslösen können. Das abgelöste Material wird gemeinsam mit dem Spülwasser abgefördert. Ersichtlicherweise ist ein derartiges Bohrsystem nur für Böden einer ganz bestimmten Zusammensetzung aus leicht abspülbarem Material einsetzbar, jedenfalls nicht bei Böden mit unregelmäßig großem Gestein.
  • Die bislang im einleitend umrissenen Anwendungsrahmen zum Einsatz gekommenen Tunnelbohrsysteme besitzen mehr oder weniger kräftig ausgebildete Abbauwerkzeuge am Bohrmaschinen-Kopfende und können durch Abschaben, Abschneiden oder Herausbrechen des Erdreichs vor Ort den Tunnelquerschnitt aufbohren. Sobald jedoch beim Vortrieb Hindernisse auftauchen, welche entweder so groß sind, daß sie nicht in die Abfördereinrichtung gelangen können oder aus einem Material bestehen, daß sie den Abtransport unterbinden, ist in der Regel der Vortrieb beendet, da derartige Hindernisse nicht verarbeitet werden können. Beim Auffahren von Tunneln mit begehbaren Innendurchmessern würde in einem solchen Fall das von der Maschine nicht verarbeitbare Hindernis vor Ort zerkleinert und danach der Vortrieb fortgesetzt. Bei Tunnelbohrsystemen der eingangs genannten Art für Tunnelrohre nicht-begehbaren Innendurchmessers ist dies ersichtlicherweise nicht möglich.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Tunnelbohrsystem zu schaffen, dessen Tunnelbohrmaschine alle vorkommenden Arten von Böden und Erdbereichszusammensetzungen abzubauen in der Lage ist und welche außerdem eine Einrichtung aufweist, um alle für die direkte Abförderung zu großen Bestandteile des Erdreichs bereits im Abbaubereich abförderbereit zu zerkleinern.
  • Die erfindungsgemäße Lösung dieser Aufgabe ergibt sich aus den in den Patentansprüchen und insbesondere in Patentanspruch 1 gekennzeichneten Merkmalen und geschilderten Maßnahmen. Die Abbau-Werkzeugglocke nach der Erfindung, deren Glockenöffnungs-Randbereich am Bohrmaschinen-Kopfende liegt, trägt eine Schneid- und Mahlwerkzeugkrone mit einem dem jeweils zu bohrenden Tunnelquerschnitt in etwa entsprechenden Durchmesser. Mit dieser Krone wird das abzubauende Material je nach Bodenbeschaffenheit abgeschabt, herausgekratzt oder geschnitten. Außerdem sind für den Materialabbau und -transport in Richtung der Rotationsmitte der Werkzeugglocke in den Innenbereich hinein am Innenbereich der Werkzeugglocke sich an die Schneid- und Mahlwerkzeugkrone unmittelbar anschließende Förder- und Zerkleinerungswerkzeuge vorgesehen, welche sich in Richtung des sich verengenden Glockeninnenbereichs zumindest über den größten Teil der Glockenwandung erstrecken. Dabei dienen die abbaunahen Werkzeugabschnitte, die schaufelartig ausgebildet sein können, überwiegend dem Abbau des Materials an der Ortsbrust und dem Transport in den Innenbereich der Werkzeugglocke, während die weiter im Glocken-Innenbereich liegenden Werkzeugabschnitte überwiegend als Brech-, Mahl- und Zerkleinerungswerkzeuge dienen. Aus dem Werkzeugglocken-Bodenabschnitt ragt in den Werkzeugglocken-Innenbereich ein Mahlwerkzeug nach der Erfindung hinein, welches im Längsschnitt gesehen ein solches Außenprofil besitzt, daß es zusammen mit der sich allmählich zum Werkzeugglocken-Bodenabschnitt verjüngenden bzw. verengenden Werkzeugglocken-Innenwand einen sich in Richtung des Bodenabschnitts allmählich verkleinernden Ringraum bildet. Wenn das von den Werkzeugen abgebaute Erdreich z. B. mit Gesteinsbrocken, in diesen Ringraum eintritt, und wenn die Gesteinsbrocken größer sind als die lichte Weite des Ringraums zwischen der Glocken-Innenwand und dem Mahlwerkzeug, erfolgt eine umgehende Zerkleinerung des Gesteins mindestens auf die durch den Ringraum begrenzte Korngröße.
  • Nach der Erfindung sind die Werkzeugglocke und das Mahlwerkzeug relativ zueinander drehbar gelagert, so daß Gesteins- und Geröllbestandteile unterschiedlichster Art durch jeweils geeignete Bedienung der Zerkleinerungswerkzeuge verarbeitet werden können. Da nach der Erfindung das Mahlwerkzeug auch noch bezüglich der Werkzeugglocke relativ längsverschiebbar gelagert ist, läßt sich je nach gewählter Axialstellung eine Änderung des Öffnungswinkels des Ringraums zwischen der Werkzeugglocke und dem Mahlwerkzeug je nach den vor Ort günstigsten Bedingungen einstellen bzw. während des Auffahrens verändern. Damit das auf die erfindungsgemäße Weise abgebaute und zerkleinerte Material aus der Tunnelbohrmaschine zügig ausgetragen werden kann, münden in den Ringraum an eine Druckwasserspeisung angeschlossene Förderdüsen ein, welche das Material in Austragkanäle hineinspülen, damit es durch das Innere der Maschine hindurchgeleitet, zu deren Schwanzende gelangen und dort weitertransportiert werden kann.
  • Da bei dem erfindungsgemäßen Tunnelbohrsystem unmittelbar am Abbaubereich eine unverzügliche Zerkleinerung und ein Zermahlen ansonsten nicht transportgerechter Materialbestandteile erfolgt, können alle, auch unerwarteten Hindernisse mit der erfindungsgemäßen Tunnelbohrmaschine durchfahren werden, denn selbst Gesteinsblöcke vom Querschnitt des Tunnels können von den Zerkleinerungswerkzeugen zermahlen werden. Dadurch ist die erfindungsgemäße Tunnelbohrmaschine universell einsetzbar, was durch die folgende Beschreibung noch eingehend belegt wird.
  • Gemäß einer vorteilhaften Ausführungsform ist die Bohrmaschine des erfindungsgemäßen Tunnelbohrsystems in einen kopfendseitigen Steuerabschnitt und einen schwanzendseitigen Nachlaufabschnitt unterteilt, und der Steuerabschnitt ist relativ zum Nachlaufabschnitt, bezogen auf die Längsmittelachse universell um einige Winkelgrade auslenkbar. Aufgrund dieser Unterteilung kann der Steuerabschnitt entsprechend der jeweiligen Auslenkung um die Längsmittelachse Tunnelkurven auffahren. Bei diesem vorteilhaften Ausführungsbeispiel ist die Werkzeugglocke der Abbaueinrichtung an ihrem Werkzeugglocken-Bodenabschnitt mit einer koaxial zur Steuerabschnitt-Längsmittelachse innerhalb des Steuerabschnitts drehbar gelagerten Außenhohlwelle verbunden, und an der Außenhohlwelle ist ein Drehantrieb für die Werkzeugglocke vorgesehen. Das in den Werkzeugglocken-Innenbereich hineinragende Mahlwerkzeug besitzt an seinem dem Glockenöffnungs-Randbereich zugewandten Abschnitt einen Mahlwerkzeugkopf, der an der Stirnseite einer konzentrisch in der Außenhohlwelle relativ dreh- und axialverschieblichen Innenhohlwelle angebracht ist. Der Mahlwerkzeugkopf kann bezüglich der Längsmittelachse seiner ihn tragenden Innenhohlwelle am Außenumfang ein konzentrisches Mahlwerkzeug tragen oder gemäß einer abgewandelten Ausführungsform mit exzentrisch zur Längsmittelachse versetzten Werkzeugen versehen sein, welche außer der Mahlwirkung noch eine Brech- oder Vorbrechwirkung innerhalb der Werkzeugglocke ermöglichen. Da die Innenhohlwelle konzentrisch in der Außenhohlwelle relativ dreh- und axialverschieblich über entsprechende Lageranordnungen geführt ist, ergibt sich eine äußerst kompakte Baugruppe dieser beiden, insbesondere unter rauhen Abbaubedingungen hoch beanspruchten Teile. Damit die Dreh- und Verschiebeantriebe für die Innenhohlwelle trotz der engen Innenraumverhältnisse der Tunnelbohrmaschine für nicht-begehbare Tunnelrohrdurchmesser für eine optimale Stabilität und Leistungsfähigkeit ausgelegt werden können, liegen die entsprechenden Antriebe in Axialrichtung hinter den Drehantrieben für die Außenwelle an einem über das Ende der Außenhohlwelle hinausragenden Abschnitt der Innenhohlwelle. Vorteilhafterweise sind die Förderdüsen an der Werkzeugglocken-Innenwand angeordnet, und die Austragkanäle, welche das abgebaute und zerkleinerte Material aus dem Ringraum der Werkzeugglocke austreten lassen, sind als die Wandung der Innenhohlwelle durchbrechende Austragöffnungen vorgesehen, die einen Abtransport durch den Innenraum der Innenhohlwelle zu ihrem schwanzendseitigen Abschnitt ermöglichen. An diesen Abschnitt der Innenhohlwelle ist, vorzugsweise über ein Drehdichtungsgehäuse, eine biegsame Rohrleitung zum Weitertransport und Abfördern des Materials durch den Innenraum der sich gegebenenfalls an die Maschine anschließenden Tunnelrohrabschnitte hindurch angeschlossen.
  • Damit trotz der durchmesserbedingten engen Bauweise der erfindungsgemäßen Tunnelbohrmaschine eine der Tunnelbohrpraxis gemäße Kurven-Auffahrmöglichkeit geschaffen wird, sind die Außenhohlwelle, ihre Drehantriebe, die Innenhohlwelle sowie deren Dreh- und Verschiebeantriebe in bzw. an einem die Außenhohlwelle umgebenden Traggehäuse gelagert. Dieses Traggehäuse ist allein am kopfendseitigen Steuerabschnitt befestigt und ragt in den schwanzendseitigen Nachlaufabschnitt hinein, wobei die genannten Antriebe derart dicht auf das Traggehäuse gepackt sind, daß zwischen der Innenwandfläche des Nachlaufabschnitts und dem Gesamtumfang aller am Traggehäuse angeordneter Funktionselemente ein ausreichend großer Abstand besteht, der bei entsprechendem Verschwenken des kopfendseitigen Steuerabschnitts, über mehrere entsprechend der Schwenkrichtung vorgesehene Steuerzylinder, das gesamte Traggehäuse mit den Bauelementen innerhalb des Nachlaufabschnitts ausschwenken kann, wobei ersichtlicherweise die größte Schwenkbewegung am schwanzendseitigen Abschnitt möglich sein muß. Diese Bedingungen werden durch die erfindungsgemäße Tunnelbohrmaschine durch eine äußerst kompakte Konstruktionsweise erfüllt. Dies soll ein Beispiel erläutert: Durch den Abtransport des abgebauten und zerkleinerten Materials durch den Innenraum der Innenhohlwelle wird nach der Erfindung ein ansonsten ungenutzter, aber aus Stabilitätsgründen notwendiger Hohlraum als Transportweg genutzt, wobei die Hohlwelle auch noch den Vorteil absoluter Dichtheit bietet, so daß die Antriebsaggregate durch das abgebaute Material keine Funktionsbeeinträchtigung erfahren. Der durch die erfindungsgemäße Wahl des Abtransportweges durch den Innenraum der Innenhohlwelle im Innenraum des Nachlaufabschnitts zur Verfügung stehende Platz kann somit beispielsweise durch die Unterbringung leistungsfähiger Antriebsaggregate genutzt werden, wie bei der Erfindung geschehen.
  • Der Steuerabschnitt übergreift bei der erfindungsgemäßen Tunnelbohrmaschine zumindest einen Teil der Werkzeugglocken-Außenwand, wodurch zwischen dem Steuerabschnitt und der Werkzeugglocken-Außenwand ein äußerer, durch Abdichtmittel flüssigkeitsdichter und druckfester Ringraum gebildet wird. In den Ringraum wird beim Einsatz der erfindungsgemäßen Tunnelbohrmaschine Wasser eingepumpt, welches für verschiedene Druckspülungs- und Fördervorgänge eingesetzt wird. Während des Abbaus von lehmhaltigem Erdreich kann es vorkommen, daß an der Innenwand der Werkzeugglocke das Material festklebt, wodurch die Förderwirkung der werkzeugbesetzten Oberflächen verschlechtert werden würde. Bei der erfindungsgemäßen Werkzeugglocke sind in der dem Glockenöffnungs-Randbereich benachbarten Glockenwand über den Umfang verteilt und in Richtung der Längsmittelachse versetzt, eine Vielzahl Düsen relativ kleinen Durchmessers vorgesehen. Diese Düsen stehen über Spülkanäle mit dem wassergespeisten äußeren Ringraum in Verbindung und bewirken bei entsprechendem Wasserdruck ein ständiges bzw. rasches Abspülen sämtlicher werkzeugbesetzter Oberflächen innerhalb der Glocke. Einige dem Glocken-Öffnungsrandbereich unmittelbar benachbarte Düsenreihen können zusätzlich den Abraumvorgang durch Herausspülen abzuräumenden Materials unterstützen. An dem dem Werkzeugglocken-Bodenabschnitt zugewandten Ende der Ringraumkammer sind mehrere Düsenreihen relativ großen Querschnitts vorgesehen, welche über entsprechende, durch die Glockenwandung hindurchgeführte Kanäle ebenfalls mit dem äußeren Ringraum in Verbindung stehen. Aus diesen Düsen tritt eine vergleichsweise große Wassermenge aus, welche das in den inneren Ringraum transportierte und zerkleinerte Material in die die Innenhohlwelle durchbrechenden Öffnungen hineinfördert. Damit an den genannten Spüldüsen ein wesentlich höherer Druck zur Verfügung steht als an den zur Abförderung dienenden Düsen, kann der äußere Ringraum beispielsweise durch ein Ringsegment in zwei Ringraumkammern unterteilt sein, wobei in eine Kammer die Kanäle der Spüldüsen und in die andere Kammer die Kanäle der zur Förderung dienenden Düsen einmünden.
  • Ferner ist es bei der erfindungsgemäßen Tunnelbohrmaschine im Hinblick auf universelle Einsatzmöglichkeiten von Vorteil, wenn die Werkzeugglocke an der Außenhohlwelle und der Mahlwerkzeugkopf an der Innenhohlwelle über entsprechende Verschraubungen angebracht sind, so daß diese Teile vom Kopfende der Tunnelbohrmaschine her montierbar und austauschbar sind. Dadurch können diese Werkzeugelemente je nach den zu erwartenden Einsatzbedingungen mit einem geeigneten Werkzeugbesatz montiert werden. Wenn lehm-und tonhaltige Böden mit wenig Steinen erwartet wird, ist es vorteilhaft, Werkzeuge mit hoher Schaufelwirkung zu montieren, während bei überwiegend steinigem Erdreich Werkzeuge bevorzugt werden, bei denen Zerkleinerungs-und Mahleigenschaften im Vordergrund stehen.
  • Der Mahlwerkzeugkopf und die Werkzeugglocken-Innenwand können ein gleichartiges Wandprofil besitzen oder aber unterschiedliche Werkzeuge tragen. Beispielsweise kann die Werkzeugglocken-Innenwand und/oder das Außenumfangsprofil des Mahlwerkzeugkopfs mit einer achsparallelen Leistenverzahnung versehen sein. Um eine hohe Schaufelwirkung zu erzielen, können auch rechts-oder linksgängige schraubenartige Leistenverzahnungen zum Einsatz kommen. Zur Erhöhung der Brech- und Zerkleinerungseigenschaften lassen sich ferner Werkzeuge verwenden, die auf der jeweiligen Umfangsfläche mit Warzenverzahnungen versehen sind. Auch können in die Umfangsfläche Hartmetalleinsätze, beispielsweise Hartmetall-Pellets oder Hartmetall-Rundschaftmeissel eingesetzt oder eingepreßt sein. Gegebenenfalls können auch aufgeschweißte Verschleißzähne oder Verschleißleisten, -noppen und dgl. Verwendung finden. Ferner kann die Innenwandkrümmung der Werkzeugglocke und/oder die Krümmung oder Neigung des Mahlwerkzeugkopfes an seinem Außenumfangsprofil je nach den zu erwartenden Einsatzbedingungen durch geeignete Werkzeugauswahl variiert werden. Gerade die Glockenform der Innenwand ermöglicht in Verbindung mit dem in seiner Grundform kuppelartigen Mahlwerkzeugkopf, vor allem auch bei Verschiebung des Mahlwerkzeugs, einen weiten Variationsbereich für die Gestaltung des inneren zum Zerkleinern oder Mahlen dienenden Ringraums.
  • Da die Tunnelbohrdurchmesser, die mit der erfindungsgemäßen Tunnelbohrmaschine aufgefahren werden, hauptsächlich in einem Durchmesserbereich von 35 cm bis 80 cm liegen, und die erfindungsgemäße Tunnelbohrmaschine den anfallenden Abraum vergleichsweise rasch abfördert, findet das Auffahren eines Tunnels bei erhöhter Vortriebsgeschwindigkeit, vor allem bei problemlos zu verarbeitendem Erdreich, äußerst leichtgängig statt, zumal irgendwelche Hindernisse nicht lange vor der Maschine hergeschoben, sondern durchmahlen werden. Unter manchen Einsatzbedingungen kann es hilfreich sein, der Tunnelbohrmaschine zusätzlich zu ihrer Führung über den Steuerabschnitt und das Nachlaufrohr eine zusätzliche Zentrierung zu verleihen. Zu diesem Zweck kann der Mahlwerkzeugkopf in Axialrichtung über die Ebene, in welcher der Schneid- und Mahlwerkzeugkranz umläuft, in die Ortsbrust hinein vorgeschoben werden, so daß die kuppelförmige Rundung des Mahlwerkzeugs eine unterstützende Zentrierwirkung ausübt. In einer derartigen Stellung sind auch die den Innenraum der Innenhohlwelle mit dem inneren Ringraum der Werkzeugglocke verbindenden Austragöffnungen in den kopfendseitigen Abschnitt der Werkzeugglocke verlagert, während die zur Abförderung dienenden Düsen in der Nähe des Werkzeugglocken-Bodenbereichs bleiben. Eine derartige Versetzung der Austragöffnungen bezüglich der Abförderdüsen übt jedoch keine die Abfördermenge einschränkende nachteilige Wirkung aus, da beim die Ortsbrust gepreßter Werkzeugglocke und vorgeschobenem Mahlwerkzeug im inneren Ringraum der Werkzeugglocke über die Abförderdüsen ein Druck aufgebaut wird, der nur durch die Austragöffnungen in den Innenraum der Innenhohlwelle hinein entweichen kann und dadurch mit dem zugeführten Wasser den Abraum optimal fortspült.
  • Es wäre auch möglich, die Austragöffnungen in der Wandung der Innenhohlwelle als achsparallele Langlochdurchbrüche auszubilden, derart, daß in jeder Verschiebeposition der Innenhohlwelle zumindest ein Teil der Austragöffnungen direkt von den Abförderdüsen bespült wird.
  • Das erfindungsgemäße Tunnelbohrsystem ermöglicht ein Tunnelbohren bei erhöhter Vortriebsgeschwindigkeit über Tunnellängen, welche mit bisherigen Bohrmaschinen nicht aufgefahren werden konnten. Damit bei der Rohrvorpressung die sich an das Schwanzende der Tunnelbohrmaschine anschließenden Rohre, meist aus Beton, auch über große Längen nachgeschoben werden können, lassen sich nach einer Anzahl von Tunnelrohrabschnitten Zwischenpreßstationen vorsehen, welche im Zusammenspiel mit der Hauptpreßstation die jeweiligen Tunnelrohrabschnitte vorpressen.
  • Weitere Vorteile der Erfindung sind aus den in den Ansprüchen angegebenen Maßnahmen ersichtlich und werden im einzelnen in der nachfolgenden Beschreibung spezieller Ausführungsformen der Erfindung anhand von Zeichnungen näher erläutert. Es zeigen:
    • Fig. 1 eine schematische Längsschnittdarstellung einer Tunnelbohrmaschine nach den Merkmalen der Erfindung,
    • Fig. 2 eine vergrößerte Detailansicht des vorderen Abschnitts der in Fig. 1 gezeigten Tunnelbohrmaschine,
    • Fig. 3 eine Schnittdarstellung einer Abbau-Werkzeugglocke der in Fig. 2 gezeigten Tunnelbohrmaschine,
    • Fig. 4 eine Ansicht der in Fig. 3 dargestellten Abbau-Werkzeugglocke in Richtung des Teils X in Fig. 3,
    • Fig. 5 eine Schnittansicht eines Mahlwerkzeugkopfs der in Fig. 2 gezeigten Tunnelbohrmaschine,
    • Fig. 6 eine Ansicht des in Fig. 5 abgebildeten Mahlwerkzeugkopfs in Richtung des Pfeils Y,
    • Fig. 7 perspektivische Ansichten verschiedener Außenumfangsprofile für den in Fig. 5 gezeigten Mahlwerkzeugkopf,
    • Fig. 8 Querschnittdarstellungen von unterschiedlichen Umfangsprofilen von Mahlwerkzeugköpfen mit in die Umfangsfläche eingearbeiteten Hartmetalleinsätzen und aufgeschweißten Verschleißprofilen,
    • Fig. 9 drei Abwicklungsbilder für Besatzanordnungen zur Gestaltung des Umfangs-Außenprofils des Mahlwerkzeugkopfes und/oder der Innenwand der Werkzeugglocke.
  • Die in Fig. 1 gezeigte Tunnelbohrmaschine 80 trägt an ihrem Bohrmaschinen-Kopfende 81 eine Abbau-Werkzeugglocke 6 der Abbaueinrichtung 82, die in das abzufördernde Erdreich eindringt und in dieses einen Tunnel mit dem Durchmesser der zu verlegenden Rohrgröße bohrt. Da die Abbaueinrichtung 82 den gesamten jeweils zu bohrenden Tunnelquerschnitt umfaßt, wird das beim Auffahren von Tunneln durch den äußeren Umfangsrand der Abbaueinrichtung umgrenzte Erdreich von einer Schneid- und Mahlwerkzeugkrone 2, die sich an einem Glockenöffnungs-Randbereich 85 befindet (Fig. 2) herausgeschnitten bzw. gebrochen und dann in einen Werkzeugglocken-Innenbereich 86 eingebracht. Das abgebaute Erdreich wird dann im wesentlichen bis zu einem Werkzeugglocken-Bodenabschnitt 88 durch den Innenbereich 86 hindurch transportiert und unter Zusatz von Wasser durch Austragöffnungen 17, die sich in der Nähe des Werkzeugglocken-Bodenabschnitts 88 in einer Wandung einer Innenhohlwelle 25 befinden, in den Innenraum 92 dieser Innenhohlwelle eingebracht, durch den Innenraum hindurch, zum Bohrmaschinenschwanzende 84 transportiert und von dort über eine biegsame Rohrleitung 56, gegebenenfalls durch an die Tunnelbohrmaschine schwanzseitig angesetzte Tunnelrohrabschnitte 83 hindurch ausgetragen. Die Werkzeugglocke 6 ist konzentrisch zur Bohrmaschinen-Längsmittelachse L an einen Flanschabschnitt 21 einer Außenhohlwelle 27 angebracht. An dem dem Flanschabschnitt 21 gegenüberliegenden Ende der Außenhohlwelle 27 ist ein Drehantrieb 37 vorgesehen, der die Außenhohlwelle und damit die Werkzeugglocke rechts- oder linksdrehend antreibt.
  • Die Innenhohlwelle 25 ist konzentrisch in der Außenhohlwelle 27 gelagert und geführt und besitzt an ihrem der Werkzeugglocke 6 zugewandten Ende ein Mahlwerkzeug 89. Zur Radiallagerung der Innenhohlwelle 25 in der Außenhohlwelle 27 dienen, wie dargestellt, Radiallager 23 und 41. Aus Fig. 2 ist ersichtlich, daß das Radiallager 23 auf einer die Umfangsfläche der Innenhohlwelle 25 umschließenden Gleitführungsbuchse 22 sitzt, welche eine Relativverschiebung der Innenhohlwelle 25 in axialer Richtung zur Außenhohlwelle 27 und damit zur Werkzeugglocke 6 gestattet. Eine entsprechende Gleitlagerbuchse befindet sich auch an dem lediglich in Fig. 1 dargestellten weiteren Radiallager 41, das sich in Richtung des Schwanzendes der Maschine hinter der Außenhohlwelle 27 befindet. Aus Fig. 1 sind ferner ein Drehantrieb 54 und ein Verschiebeantrieb 62 ersichtlich. Mittels des Verschiebeantriebs 62 kann die Innenhohlwelle 25 aus der in Fig. 1 mit voll ausgezogenen Linien dargestellten Position, in der sich das Mahlwerkzeug 89 in seiner in die Werkzeugglocke 6 zurückgezogenen Stellung befindet und einer mit gestrichelten Linien in den Fig. 1 und 2 angedeuteten Stellung verlagert werden, in der zumindest das vordere Ende des Mahlwerkzeugs 89 über die von der Schneid- und Mahlwerkzeugkrone 2 eingenommene Ebene hinausragt. Der Drehantrieb 54 gestattet eine Links- oder Rechtsdrehung der Innenhohlwelle 25, und zwar unabhängig von der Rotation und Drehrichtung der Außenhohlwelle 27. Aus Fig. 1 ist ferner ersichtlich, daß die Tunnelbohrmaschine 80 aus zwei Hauptteilen besteht, einem kopfendseitigen Steuerabschnitt 93 und einem schwanzendseitigen Nachlaufabschnitt 94. In Fig. 2 ist dargestellt, wie die beiden Abschnitte mit einander überlappenden Umfangsrändern 29, 32 und einem zwischengefügten Dichtring 30 ineinandergreifen. Diese aus den Umfangsrändern und dem Dichtring bestehende Anordnung dient in erster Linie als Dichtschutz, damit in den Innenbereich des Nachlaufabschnitts 94 kein Erdreich und dgl. eindringen kann. Die eigentliche Kopplung zwischen dem Steuerabschnitt 93 und dem Nachlaufabschnitt 94 erfolgt allein über Steuerzylinder 33, von denen in Fig. 1 lediglich zwei von mehreren über den Innenumfang verteilt vorgesehenen Steuerzylindern dargestellt sind. Durch ausgewählte Betätigung dieser Steuerzylinder läßt sich der kopfendseitige Steuerabschnitt 93 bezüglich der Längsmittelachse L um einige Winkelgrade verschwenken, wodurch ein Auffahren von Tunnelkurven möglich ist.
  • In Fig. 1 ist ein Traggehäuse 95 dargestellt, welches eine Lagerung 36 der Außenhohlwelle 27, einen Teil des Drehantriebs 37 für die Außenhohlwelle und die Radiallager 41, die zur Abstützung der Innenhohlwelle 25 dienen, nach Art eines Gehäusemantels umgreift. Die Kontur dieses Traggehäuses 95 ist in Fig. 1 mit einer dichten Parallel-Strichlinienführung abgebildet. Das Traggehäuse 95 selbst welches somit die Außenhohlwelle 27, deren Drehantrieb 37, die Innenhohlwelle 25 und die Dreh- und Verschiebeantriebe 54 bzw. 62 abstützt, ist am kopfendseitigen Steuerabschnitt 93 angebracht, und zwar über einen Tragflansch 64 (Fig. 2). Ausgehend von diesem Tragflansch und damit vom Steuerabschnitt 93 ragt das Traggehäuse in den Innenraum des Nachlaufabschnitts 94 hinein, so daß bei einer Verschwenkung des Steuerabschnitts mittels der Steuerzylinder 33 das Traggehäuse 95 mit sämtlichen daran abgestützten Bauelementen mitgeschwenkt wird. Um einen ausreichenden Freiheitsgrad für den Verschwenkvorgang sicherzustellen, sind die am Traggehäuse 95 angeordneten Funktionselemente optimal kompakt gruppiert. Der Drehantrieb 37 umfaßt in diesem Sinne Tandem-Hydromotoren 100, die in Axialrichtung gesehen sternförmig um die Außenhohlwelle 27 bzw. den entsprechenden Abschnitt des Traggehäuses 95 angeordnet sind und über Antriebsritzel 40 einen auf die Außenhohlwelle aufgesetzten Antriebszahnkranz 39 in Drehung versetzen. Eine entsprechende Anordnung von Hydromotoren 101 ist für den Drehantrieb 54 der Innenhohlwelle 25 vorgesehen. Auch hier kann erforderlichenfalls eine Tandem-Motoranordnung gewählt werden. Als Verschiebeantrieb 62 dienen Hubzylinder 104, welche, wie aus Fig. 1 ersichtlich, einerseits am Traggehäuse 95 und andererseits am Gehäuse des Drehantriebs 54 angreifen und bei ihrer Betätigung eine Relativverschiebung zwischen der Außenhohlwelle 27 und der Innenhohlwelle 25, auch teleskopieren genannt, bewirken. Ersichtlicherweise sind die während des Verschiebens die Innenhohlwelle führenden Gleitlagerbuchsen 22 hohen Belastungen und, insbesondere beim Zurückziehen der Hohlwelle aufgrund von möglichen Materialeinwirkungen auf die Hohlwellenoberfläche in hohem Maße verschleißgefährdet. In Fig. 2 sind Dichtelemente 19 angeordnet, die die Innenhohlwelle umschließen und deren Oberfläche möglichst frei von Verunreinigungen halten. Zur Erhöhung der Gleitsicherheit zwischen der Innenhohlwelle 25 und der Gleitführungsbuchse können im Lagerungsbereich Hochdruckfettkanäle vorgesehen sein, welche eine zusätzliche und je nach Bedarf steuerbare Schmiermittelzugabe ermöglichen.
  • Aus den Fig. 3 und 4 ist die Ausbildung einer Ausführungsform der Abbau-Werkzeugglocke 6 ersichtlich. Der Glockenöffnungs-Randbereich 85 (Fig. 2) trägt, wie gesagt, die Schneid- und Mahlwerkzeugkrone 2. Diese besitzt gegenüber dem Außendurchmesser des kopfendseitigen Steuerabschnitts 93 einen Überschnitt, d. h., daß der Gesamtdurchmesser der Werkzeugglocke an der Schneid- und Mahlwerkzeugkrone 2 etwas größer ist als derjenige des Steuerabschnitts 93, damit der aus dem Erdreich geschnittene oder gebohrte Tunneldurchmesser ein problemloses Nachpressen der Tunnelbohrmaschine sowie der zu verlegenden Rohre erlaubt. In Richtung des Werkzeugglocken-Innenbereichs 86 schließen sich über den Umfang der Werkzeugglocken-Innenwand verteilt eine Vielzahl schaufelartiger Leistenelemente (vgl. Fig. 4) an. Diese Leistenelemente können rechts- oder linksgängig schraubenförmig verlaufen oder aus achsparallelen Leisten bestehen. Die jeweils optimale Werkzeugbesetzung der Werkzeugglocken-Innenwand 87 richtet sich nach dem jeweiligen Einsatzfall. Unter allen Umständen besitzen jedoch die Schaufeln eine Doppelfunktion, und zwar an ihrem dem Glockenöffnungs-Randbereich 85 zugewandten Abschnitt dienen sie vornehmlich als Abbau- und Förderwerkzeuge, während die dem Werkzeugglocken-Bodenabschnitt 88 zugewandt liegenden Leistenabschnitte zusätzlich zur Abförderung des Materials auch eine gegebenenfalls notwendige Zerkleinerung bewerkstelligen. Mit der Schneid- und Mählwerkzeugkrone 2 ist es möglich, beispielsweise während des Tunnelvortriebs unerwartet auftretende Gesteinsfindlinge oder Fundamente oder Teile großer Gesteinsbrocken je nach Lage anzuschneiden oder ganz durchzubohren, ohne daß es zu einem Herauslösen eines größeren Hindernisses kommt und auch ohne eine Notwendigkeit, einem solchen Hindernis ausweichen zu müssen. Die sich gegebenenfalls unmittelbar an die Schneid-und Mahlwerkzeugkrone 2 anschließenden Schaufeln im Schaufelbereich 1 (Fig. 2) unterstützen bereits nach einem kurzen Ansetzen der Schneid- und Mahlwerkzeugkrone an einem harten Gesteinsgegenstand im Zuge des weiteren Vortriebs das Abtragen oder bereits Zerkleinern des Hindernisses. Um derart harte und widerstandsfähige Gesteinsformationen durchbohren oder anschneiden zu können, ist es von Vorteil, wenn die Schneid- und Mahlwerkzeugkrone, wie auch die Schaufelwerkzeuge gepanzert ausgeführt sind.
  • Der in Fig. 5 und 6 gezeigte Mahlwerkzeugkopf 11 des Mahlwerkzeugs 89 ist, wie ein Vergleich mit Fig. 4 zeigt, mit einem entsprechenden Außenmantelprofil, das aus Leisten 12 gebildet wird, besetzt. Auch hier sind die Leisten oder Leistenzähne schraubenförmig zur Längsmittelachse angeordnet und dienen entsprechend wie die Leisten der Werkzeugglocke im gemäß Fig. 2 vorderen Bereich des Mahlwerkzeugs 89 vornehmlich zur Förderung des Abraums und im dem Werkzeugglocken-Bodenabschnitt 88 zugewandten Bereich zum Zermahlen oder Zerkleinern für den Abtransport ansonsten zu großer Erdreichbestandteile. Aufgrund der Glockenform der Werkzeugglocken-Innenwand 87 und der kuppelförmigen Ausbildung des Mahlwerkzeugs 89 wird zwischen diesen beiden koaxial zueinander angeordneten Werkzeugteilen ein Ringraum 91 ausgebildet, der sich in Richtung des Werkzeugglocken-Bodenabschnitts 88 verkleinert. Je nach der Außenprofilgebung des Mahlwerkzeugs 89 und auch der Krümmung der Werkzeugglocken-Innenwand 87 läßt sich die Größe und Form dieses Ringraums 91 verändern. Wesentlich ist, daß der Ringraum 91 eine Größe besitzt, die auf die sich anschließenden Abtransportkanäle eingestellt ist, damit keine Blockierung der Abförderwege durch zu große Gesteinsbrocken möglich ist. Auch ist es wichtig, daß die gegenseitige Zuordnung der Werkzeugprofile an der Innenwand der Glocke und am Außenmantel des Mahlwerkzeugs 89 so ausgewählt wird, daß das zu zermahlende Gestein im Zerkleinerungsvorgang auch allseits erfaßt und entsprechend gebrochen oder zermahlen wird.
  • In den Fig. 7 und 8 sind mehrere Ausführungsmöglichkeiten für den Werkzeugbesatz dargestellt, wobei die gezeigte Besatzmöglichkeit des Mahlwerkzeugkopfes auch für die nicht gesondert dargestellte Werkzeugglocke 6 vorgesehen ist. In Fig. 7 besitzt ein Mahlwerkzeugkopf Pyramidenwarzen 74, ein weiterer Prismenwarzen 75 und ein dritter eingepreßte Hartmetall-Pellets 76. In Fig. 8 ist gezeigt, wieder Werkzeugkopf mit eingepreßten Hartmetall-Leistenstücken 77, mit aufgeschweißten Verschleißzähnen oder -leisten 78 sowie mit eingesetzten Hartmetall-Rundschaftmeißeln 79 bestückt werden kann. In Fig. 9 sind verschiedene Abwicklungen dargestellt; 71 zeigt eine Abwicklung eines Zahn-oder Warzenbesatzes in achsparalleler Ausführung, 72 zeigt eine entsprechende Abwicklung eines Zahn- oder Warzenbesatzes mit Rechts- oder Links-Schraubensteigung und 73 zeigt die Abwicklung eines Zahn- oder Warzenbesatzes in versetzter Anordnung.
  • In Fig. 2 ist der Mahlwerkzeugkopf 11 als rotationssymmetrischer Teil dargestellt. Entweder der gesamte Teil oder dessen Werkzeugbesatz könnte auch exzentrisch zur Längsmittellinie L angeordnet werden, so daß zusätzlich zu der Mahlfunktion der Verzahnungen oder des Warzenbesatzes auch eine Brecher- bzw. Vorbrecherwirkung zwischen Werkzeugglocke und Mahlwerkzeug erzielt werden kann. Um die Tunnelbohrmaschine 80 auch problemlos auf die beim jeweiligen Tunnelvortrieb erwartete Bodenbeschaffenheit umrüsten zu können, kann die Werkzeugglocke 6 vom Bohrmaschinenkopfende 81 her über Schrauben 14 von ihrem Lagerflansch an der Außenhohlwelle 27 abgeschraubt werden. Eine entsprechende Verschraubung 13 dient zum Austausch des Mahlwerkzeugkopfes 11.
  • Das Eintreten und Abfördern des gegebenenfalls zerkleinerten Erdreichs über die Austragöffnungen 17 wird durch eine Spülwasserzufuhr bedingt bzw. unterstützt. Gemäß Fig. 2 sind in der Werkzeugglocken-Wandung in der Nähe des Bodenabschnitts 88 mehrere Reihen, im abgebildeten Beispiel vier parallel liegende Reihen, Förderkanäle 99 vorgesehen, die in Umfangsrichtung über die Werkzeugglocke 6 verteilt sind. Diese Förderkanäle 99 enden an ihrer dem Ringraum 91 zugewandten Seite in Förderdüsen 16 und an ihrem entsprechend anderen Ende in einer Ringraumkammer 70, in der Spülwasser bei relativ niedrigem Druck gespeichert ist. Dieses Spülwasser strömt durch die Förderkanäle 99 und die Förderdüsen 16, die eine entsprechende Öffnungsweite haben, um einen großen Wasserdurchsatz zu erhalten und spülen das im Ringraum 91 befindliche Fördergut in den Innenraum 92 der Innenhohwelle 25 hinein, von wo es durch die schwanzendseitig vorgesehene biegsame Rohrleitung 56 abtransportiert wird. Beim abgebildeten Ausführungsbeispiel sind über den Umfang der Innenhohlwelle gleichmäßig verteilt vier Austragöffnungen 17 vorgesehen, die in Richtung des Schwanzendes der Tunnelbohrmaschine zum Innenraum 92 hin schräg verlaufen, um ein möglichst strömungsgünstiges Abfördern zu gestatten. Die Ringraumkammer 70 ist ein Abschnitt eines äußeren Ringraums 9, der innerhalb des Steuerabschnitts 93 untergebracht ist, und zwar zwischen der Werkzeugglocken-Außenwand 96 und einem diese Außenwand konzentrisch auf Abstand umschließenden Steuerabschnittmantel 10. Zwischen dem Steuerabschnittmantel 10 und der Außenwand der demontierbaren Werkzeugglocke 6 sind Abdichtmittel 4, 5, 18 vorgesehen, welche den Ringraum 9 flüssigkeitsdicht und druckfest abschließen. Der Ringraum 9 ist durch ein Ringsegment 69 in die vorgenannte Ringraumkammer 70 für das Spülwasser und eine zweite Ringraumkammer 98 unterteilt. Entsprechende Dichtelemente des Ringsegments 69 sorgen für ein druckfestes Abschließen der Ringraumkammer 98 innerhalb des Ringraums 9. Diese Ringraumkammer 98 ist ebenfalls an eine Wasserzufuhr angeschlossen, jedoch steht das Wasser in dieser Kammer unter wesentlich höherem Druck als in der benachbarten Kammer 70. Die Ringraumkammer 98 steht über Düsenkanäle 8, die durch die Werkzeugglockenwand hindurchgehen, mit Druckdüsen 97 an der Werkzeugglocken-Innenwand 87 in Verbindung, welche vornehmlich in den Abbaubereich, vor allem in den Schaufelbereich 1 unter hohem Druck stehendes Wasser aus der besagten Ringraumkammer 98 austragen. Aufgrund der geschilderten Druckverhältnisse und der Wahl enger Querschnitte für die Düsen 97 treten aus ihnen scharfe Wasserstrahlen aus, welche dazu dienen, die Werkzeugausrüstung und den gesamten Werkzeugglocken-Innenbereich von anhaftendem Erdreich freizuhalten, damit die Werkzeugfunktion nicht beeinträchtigt wird und ferner dazu, möglichst weitreichend in die Ortsbrust hineinzuspülen, um dadurch das Abtragen des abzufördernden Materials zu unterstützen. Auch üben diese Düsen beim Mahlen und Zerkleinern des Materials an den Werkzeugen und an der Schneid- und Mahlwerkzeugkrone 2 eine gewisse Kühlwirkung aus und unterstützen das Abschleifen von Gestein. In Fig. 2 sind mehrere Reihen Druckdüsen 97 eingezeichnet, eine dem Kopfende zugewandte Reihe von Düsen wird über einen Druckwasserkanal 3 gespeist. Wenn die Einsatzbedingungen es erforderlich machen, daß nur ganz bestimmte ausgewählte Druckdüsen in Funktion treten können gegebenenfalls vor der Montage der jeweils geeigneten Werkzeugglocke 6, die nicht benötigten Druckwasserdüsenkanäle mittels Düsenverschlußstopfen 68 abgesperrt werden.
  • Da das Mahlwerkzeug 89 auf der Innenhohlwelle bezüglich seiner Rotationsrichtung, seiner Rotationsgeschwindigkeit und seiner Axialposition relativ zur Werkzeugglocke 6 und deren Rotationsgeschwindigkeit und Drehrichtung verlagert werden kann, lassen sich praktisch alle nur denkbaren Einsatzbedingungen mit der Tunnelbohrmaschine 80 in der beschriebenen Weise bewältigen. Insgesamt wird mit der Tunnelbohrmaschine die Möglichkeit eröffnet, auf alle auftauchenden Hindernisse während des Tunnelvortriebs über die fernsteuerbare Bedienung der Antriebe adäquat zu reagieren und dabei die Tunnelbohrmaschine auch so anzusteuern, daß die Beanspruchungsgrenzen der Werkzeuge nicht überschritten werden.

Claims (22)

1. Tunnelbohrsystem zum Auffahren von Tunneln mittels Rohrvorpressung, insbesondere für Tunnelrohre nichtbegehbaren Innendurchmessers mit einer im wesentlichen zylinderförmigen, in Richtung ihrer Längsmittelachse (L) in das Erdreich preßbaren Tunnelbohrmaschine (80), die an einem Bohrmaschinen-Kopfende (81) eine der zu verlegenden Rohrgröße eines Tunnelrohrs entsprechende Abbaueinrichtung (82) aufweist und die an einem Bohrmaschinen-Schwanzende (84) mit einer Stirnseite eines Tunnelrohrabschnitts (83) des vorzupressenden Tunnelrohrs in Abstützverbindung bringbar ist, wobei von der Abbaueinrichtung gelöstes Erdreich unter Zusatz von Wasser durch das Innere der Bohrmaschine und, bei an ihr Schwanzende angesetztem Tunnelrohrabschnitt, ebenfalls durch dessen Innenraum hindurch abgefördert wird, dadurch gekennzeichnet, daß die Abbaueinrichtung (82) eine koaxial zur Bohrmaschinen-Längsmittelachse (L) drehbar gelagerte Abbau-Werkzeugglocke (6) aufweist, deren Glockenöffnungs-Randbereich (85) am Bohrmaschinen-Kopfende (81) liegt, daß die Öffnungsweite der Werkzeugglocke in etwa dem jeweils zu bohrenden Tunnelquerschnitt entspricht, daß am Glockenöffnungs-Randbereich (85) eine Schneid- und Mahlwerkzeugkrone (2) vorgesehen ist, daß ausgehend von dieser Schneid- und Mahlwerkzeugkrone in einen sich in Richtung des Bohrmaschinen-Schwanzendes (84) verengenden Werkzeugglocken-Innenbereich (86) hinein entlang zumindest des größten Teils einer Werkzeugglocken-Innenwand (87) Förder- und Zerkleinerungswerkzeuge (1, 15) vorgesehen sind, daß ferner ein aus einem dem Glockenöffnungs-Randbereich in Richtung der Längsmittelachse gegenüberliegenden Werkzeugglocken-Bodenabschnitt (88) heraustretendes, in den Werkzeugglocken-Innenbereich (86) hineinragendes, ebenfalls koaxial zur Bohrmaschinen-Längsmittelachse bezüglich der Werkzeugglocke relativ drehsowie längsverschiebbar gelagertes Mahlwerkzeug (89) vorgesehen ist, welches im Längsschnitt ein solches Außenprofil besitzt, daß zwischen der sich verengenden Werkzeugglocken-Innenwand (87) und einer Außenmantelfläche (90) des Mahlwerkzeugs (89) ein in Richtung des Werkzeugglocken-Bodenabschnitts (88) sich verkleinernder Ringraum (91) gebildet wird, daß in diesen Ringraum einmündende, zur Druckwassereinspeisung dienende Förderdüsen (16) vorgesehen sind und daß der Ringraum mit dem Bohrmaschinen-Schwanzende (84) über Austragkanäle (17, 92) für den Abtransport des in den Werkzeugglocken-Innenbereich eingebrachten und im Ringraum gegebenenfalls zerkleinerten Erdreichs in Verbindung steht.
2. Tunnelbohrsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Tunnelbohrmaschine (80) in einen kopfendseitigen Steuerabschnitt (93) und einen schwanzendseitigen Nachlaufabschnitt (94) unterteilt und der Steuerabschnitt relativ zum Nachlaufabschnitt, bezogen auf die Längsmittelachse (L) universell um einige Winkelgrade auslenkbar ist, daß die Werkzeugglocke (6) der Abbaueinrichtung (82) an ihrem Werkzeugglocken-Bodenabschnitt (88) an einer koaxial zur Längsmittelachse im und am Steuerabschnitt (93) drehbar gelagerten Außenhohlwelle (27) angebracht ist, daß an der Außenhohlwelle ein Drehantrieb (37) für die Werkzeugglocke (6) vorgesehen ist, daß das in den Werkzeugglocken-Innenbereich (86) hineinragende Mahlwerkzeug (89) an seinem dem Glockenöffnungs-Randbereich (85) zugewandten Abschnitt einen Mahlwerkzeugkopf (11) aufweist, der an der Stirnseite einer konzentrisch in der Außenhohlwelle relativ dreh- und axialverschieblichen Innenhohlwelle (25) angebracht ist, daß die Innenhohlwelle in Richtung des schwanzendseitigen Nachlaufabschnitts (94) über das Ende der Außenhohlwelle hinausragt, daß an diesem hinausragenden Abschnitt der Innenhohlwelle (25) Dreh- und Verschiebeantriebe (54, 62) vorgesehen sind, daß die Förderdüsen (16) an der Werkzeugglocken-Innenwand (87) angeordnet sind und daß die Austragkanäle die Wandung der Innenhohlwelle (25) durchbrechende Austragöffnungen (17), den Innenraum (92) der Innenhohlwelle (25) und eine an den schwanzendseitigen Abschnitt der Innenhohlwelle angeschlossene biegsame Rohrleitung (56) umfassen.
3. Tunnelbohrsystem nach Anspruch 2, dadurch gekennzeichnet, daß die Außenhohlwelle (27), deren Drehantrieb (37), ferner die Innenhohlwelle (25) sowie deren Dreh- und Verschiebeantriebe (54, 62) in bzw. an einem die Außenhohlwelle umgebenden Traggehäuse (95) gelagert sind, daß dieses Traggehäuse am kopfendseitigen Steuerabschnitt (93) befestigt ist und in den schwanzendseitigen Nachlaufabschnitt (94) hineinragt, derart, daß es bei Auslenkung des Steuerabschnitts zusammen mit den von ihm getragenen Bauteilen im Innenraum des Nachlaufabschnitts frei auslenkbar ist und daß im Verbindungsbereich zwischen dem Steuerabschnitt und dem Nachlaufabschnitt innenraumseitig mehrere unabhängig voneinander betätigbare Steuerzylinder (33) vorgesehen sind.
4. Tunnelbohrsystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Steuerabschnitt (93) einen zumindest einen Teil einer Werkzeugglocken-Außenwand (96) konzentrisch auf Abstand umschließenden Steuerabschnittmantel (10) aufweist, daß zwischen diesem Mantel und der Werkzeugglocken-Außenwand ein äußerer, über Abdichtmittel (4, 5, 18) flüssigkeitsdichter und druckfester Ringraum (9) gebildet wird und daß dieser Ringraum über eine Vielzahl die Werkzeugglockenwand durchsetzende Kanäle (8, 99) mit an der Werkzeugglocken-Innenwand (87) angeordneten, zumindest teilweise in den inneren Ringraum (91) gerichtete Düsen (16, 97) verbunden ist.
5. Tunnelbohrsystem nach Anspruch 4, dadurch gekennzeichnet, daß der äußere Ringraum (9) durch ein Ringsegment (69) in zwei Ringraumkammern (70, 98) unterteilt ist, derart, daß die eine Ringraumkammer (70) dem Werkzeugglocken-Bodenabschnitt (88) zugewandt ist und über eine Vielzahl entlang der Werkzeugglocken-Innenwand (87) verteilte Förderdüsen (16) relativ großen Querschnitts mit dem inneren Ringraum (91) in Verbindung steht und daß die zweite Ringraumkammer (98) dem Glockenöffnungs-Randbereich (85) zugewandt ist und daß aus ihr eine Vielzahl entlang des Umfangs sowie in Richtung der Längsmittelachse (L) auf unterschiedliche Abstände entlang der Werkzeugglocken-Innenwand verteilte Druckdüsen (97) relativ kleinen Querschnitts austreten und in den von der Werkzeugglocke umschlossenen abbaunahen Bereich hineingerichtet sind.
6. Tunnelbohrsystem nach Anspruch 5, dadurch gekennzeichnet, daß die dem Werkzeugglocken-Bodenabschnitt (88) zugewandte Ringraumkammer (70) mit einer Niederdruck-Wassereinspeisung und die dem Glockenöffnungs-Randbereich (85) zugewandte Ringraumkammer (98) mit einer Hochdruck-Wassereinspeisung verbunden ist.
7. Tunnelbohrsystem nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Druck-und/oder die Förderdüsen (97, 16) verstellbare Düsenköpfe zur Strahlrichtungseinstellung aufweisen.
8. Tunnelbohrsystem nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Druck- und/oder die Förderdüsen (97, 16) einzeln mittels Stopfen (68) verschließbar sind.
9. Tunnelbohrsystem nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Druckdüsen (97) durch Sammelkanäle (3) gespeist werden und daß die Düsen mittels Stopfen (68) gruppen- bzw. strahlsegmentweise verschließbar sind.
10. Tunnelbohrsystem nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Werkzeugglocke (6) an der Außenhohlwelle (27) und der Mahlwerkzeugkopf (11) an der Innenhohlwelle (25) über entsprechende Verschraubungen (13, 14) angebracht, vom Kopfende (81) der Tunnelbohrmaschine her montier- und somit austauschbar sind, daß die Außenmantelfläche (90) des Mahlwerkzeugkopfes (11) im Längsschnitt kuppelförmig profiliert ist, daß das Mahlwerkzeug (89) in seiner vollständig in Richtung des Werkzeugglocken-Bodenabschnitts (88) zurückgezogenen Stellung mit seinem Kopf in einem Abstand von etwa 2/3 der Länge des Werkzeugglocken-Innenbereichs (86) in diesen hineinragt und in seiner vorgeschobenen Stellung zumindest über die Ebene, in der die Schneid-und Mahlwerkzeugkrone (2) liegt, hinausragt.
11. Tunnelbohrsystem nach Anspruch 10, dadurch gekennzeichnet, daß der Mahlwerkzeugkopf (11) ein zur Längsmittelachse (L) der Innenhohlwelle (25) exzentrisches Außenmantelprofil besitzt.
12. Tunnelbohrsystem nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Werkzeugglocken-Innenwand (87) das gleiche Wandprofil aufweist wie das jeweilige Außenmantelprofil des Mahlwerkzeugkopfes (1 i).
13. Tunnelbohrsystem nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Werkzeugglocken-Innenwand (87) ein vom Außenmantelprofil des Mahlwerkzeugkopfes (11) unterschiedenes Wandprofil besitzt.
14. Tunnelbohrsystem nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß die Werkzeugglocken-Innenwand (87) und/oder das Außenmantelprofil des Mahlwerkzeugkopfs (11) mit einer achsparallelen Leistenverzahnung versehen ist.
15. Tunnelbohrsystem nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß die Werkzeugglocken-Innenwand (87) und/oder das Außenmantelprofil des Mahlwerkzeugkopfs (11) mit einer rechts- oder linksgängigen schraubenartigen Leistenverzahnung versehen ist.
16. Tunnelbohrsystem nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß die Werkzeugglocken-Innenwand (87) und/oder das Außenmantelprofil des Mahlwerkzeugskopfs auf der jeweiligen Umfangsfläche mit einer Warzenverzahnung (71-75) versehen ist.
17. Tunnelbohrsystem nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß an der Werkzeugglocken-Innenwand (87) und/oder dem Außenmantelprofil des Mahlwerkzeugkopfs (11) Hartmetalleinsätze (76, 77, 79) vorgesehen sind.
18. Tunnelbohrsystem nach den Ansprüchen 2 und 10, dadurch gekennzeichnet, daß die die Innenhohlwelle (25) durchbrechenden Austragöffnungen (17) bei vollständig in Richtung des Werkzeugglocken-Bodenabschnitts (88) zurückgezogener Stellung der Innenhohlwelle mit ihren dem Ringraum (91) zugewandten Öffnungsrändern neben dem Werkzeugglocken-Bodenabschnitt sowie den Förderdüsen (16) gegegenüberliegend vorgesehen sind, daß Austragöffnungen (17) in gleichmäßigen Winkelabständen auf den Umfang der Innenhohlwelle verteilt und zum Innenraum (92) der Innenhohlwelle hin sowie in Richtung des Bohrmaschinen-Schwanzendes (84) geneigt sind.
19. Tunnelbohrsystem nach Anspruch 3, dadurch gekennzeichnet, daß der Drehantrieb (37) für die Werkzeugglocke (6) an der Außenhohlwelle (27) einen am antriebseitigen Ende der Außenhohlwelle angebrachten Zahnkranz (39) und sternförmig über den Umfang des Zahnkranzes verteilte, dicht neben den Zahnkranz gepackte, drehrichtungsumkehrbare Antriebsmotoren (100) umfaßt und daß die Antriebsmotoren über Ritzel (40) am Zahnkranz angreifen.
20. Tunnelbohrsystem nach Anspruch 19, dadurch gekennzeichnet, daß die Antriebsmotoren (100) in Axialrichtung beidseits des Zahnkranzes (39) für einen stufenlos reversierbaren Tandembetrieb gekoppelt vorgesehen sind.
21. Tunnelbohrsystem nach Anspruch 3, dadurch gekennzeichnet, daß der Drehantrieb (54) für das Mahlwerkzeug (89) einen auf die Innenhohlwelle (25) an ihrem antriebsseitigen Ende aufgesetzten weiteren Zahnkranz (47) und sternförmig über den Umfang dieses Zahnkranzes verteilte, dicht neben den Zahnkranz gepackte, in diesen über Ritzel (48) eingreifende stufenlos regelbare und in ihrer Drehrichtung umkehrbare Antriebsmotoren (101) umfaßt und daß der Verschiebeantrieb (62) Hubzylinder (104) aufweist, die zwischen der Innenhohlwelle und dem Traggehäuse wirksam sind und dabei die Innenhohlwelle entlang einer drehmomentabstützenden Hubschiene (61) verlagern.
22. Tunnelbohrsystem nach Anspruch 2, dadurch gekennzeichnet, daß zwischen dem antriebsseitigen Ende der Innenhohlwelle (25) und der an dieses Ende angeschlossenen biegsamen Rohrleitung (56) ein Drehdichtungsgehäuse (102) vorgesehen ist.
EP84115807A 1983-12-23 1984-12-19 Tunnelbohrsystem zum Auffahren von Tunneln mittels Rohrvorpressung Expired EP0146918B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84115807T ATE33057T1 (de) 1983-12-23 1984-12-19 Tunnelbohrsystem zum auffahren von tunneln mittels rohrvorpressung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6914/83 1983-12-23
CH691483 1983-12-23

Publications (2)

Publication Number Publication Date
EP0146918A1 EP0146918A1 (de) 1985-07-03
EP0146918B1 true EP0146918B1 (de) 1988-03-16

Family

ID=4317029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84115807A Expired EP0146918B1 (de) 1983-12-23 1984-12-19 Tunnelbohrsystem zum Auffahren von Tunneln mittels Rohrvorpressung

Country Status (3)

Country Link
EP (1) EP0146918B1 (de)
AT (1) ATE33057T1 (de)
DE (1) DE3469934D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29516058U1 (de) * 1995-10-10 1995-12-14 Noell Serv & Maschtechn Gmbh Microtunnel-Bohrmaschine mit Brecher und pneumatischem Bohrgutabtransport

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537379C2 (de) * 1985-10-21 1994-06-16 Herrenknecht Gmbh Abbauwerkzeug einer Tunnelvortriebsmaschine für den Preßrohrvortrieb
DE10108292A1 (de) * 2001-02-21 2002-08-22 Lovat Mts Gmbh Micro Tunnellin Bohrvorrichtung
FR2846703B1 (fr) * 2002-10-30 2006-04-28 Claude Bresso Agencement d'abattage de la matiere dans un sol, tel qu'un tunnelier de creusage de galeries
ATE494477T1 (de) * 2005-10-25 2011-01-15 Crt Common Rail Technologies Ag Injektor für eine kraftstoffeinspritzanlage sowie kraftstoffeinspritzanlage mit einem solchen injektor
CN112160762A (zh) * 2020-10-13 2021-01-01 盾构及掘进技术国家重点实验室 一种高压水射流与滚刀复合破岩的掘进机刀盘

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756037A (en) * 1953-12-21 1956-07-24 Max B Kirkpatrick Mining machines having oppositely rotating boring heads
US3379264A (en) * 1964-11-05 1968-04-23 Dravo Corp Earth boring machine
FR1513066A (fr) * 1966-04-01 1968-02-09 Agroman Constr Mécanisme élargisseur de galeries applicable aux machines perforatrices
FR1538551A (fr) * 1967-07-26 1968-09-06 Perfectionnements aux perceuses de tunnels, souterrains, ou analogues
NL7604192A (nl) * 1976-04-21 1977-10-25 Helvoirt C Inrichting voor het maken van een gat door een dijk of dergelijke.
KR850000535B1 (ko) * 1980-06-30 1985-04-17 가부시기 가이샤 이세끼 가이하쓰 고오기 시일드터널 굴진방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29516058U1 (de) * 1995-10-10 1995-12-14 Noell Serv & Maschtechn Gmbh Microtunnel-Bohrmaschine mit Brecher und pneumatischem Bohrgutabtransport

Also Published As

Publication number Publication date
DE3469934D1 (en) 1988-04-21
EP0146918A1 (de) 1985-07-03
ATE33057T1 (de) 1988-04-15

Similar Documents

Publication Publication Date Title
EP2057348B1 (de) Verfahren und vorrichtung fur die fräsende bearbeitung von materialen
EP0580585B1 (de) Tunnelvortriebsmaschine
DE102013014837B4 (de) Verfahren und Vorrichtung zum Entfernen von Bodenmaterial vor der Vorderwand einer Schildvortriebsmaschine (SVM)
EP3039218B1 (de) Bohrkopf zum aufweiten einer pilotbohrung zum erstellen eines bohrlochs
EP0869222A2 (de) Fräsbrecherfahrzeug
DE102014110132B3 (de) Schildvortriebsmaschine (SVM) und Verfahren zum Lockern und/oder Zerkleinern von Steinen in einer SVM
DE3620026C2 (de)
DE3514563A1 (de) Tunnelvortriebsmaschine
EP0146918B1 (de) Tunnelbohrsystem zum Auffahren von Tunneln mittels Rohrvorpressung
DE112012001728T5 (de) Tunnelbohrvorrichtung
DE102014104208A1 (de) Verfahren zum Abbau von Bodenmaterial und zum Fördern von Bodenmaterial hinter die Druckwand einer SVM
DE2629284A1 (de) Fraesmaschine zur bankett-, graben- und boeschungsreinigung
DE4109871A1 (de) Rohrvorpresseinrichtung und rohrvorpressverfahren zum verlegen von rohrleitungen mit nicht-begehbarem innendurchmesser im erdboden
DE3416513A1 (de) Vortriebsmaschine fuer nichtbegehbare rohrleitungen
EP0564615A1 (de) Tunnelvortriebsmaschine
EP0155540B1 (de) Nach dem Bodenentnahmeprinzip arbeitende Einrichtung zum unterirdischen Vorpressen von Rohren
DE102013110730B4 (de) Verfahren und Vorrichtung zum Entfernen von Bodenmaterial vor der Druckwand einer Schildvortriebsmaschine (SVM) sowie ein Schneidrad für die Vorrichtung
DE3143906C2 (de)
EP0705947B1 (de) Vorrichtung zum Ersetzen von Rohren, insbesondere von Kanalisationsrohren
DE3920163C1 (de)
DE102014117326A1 (de) Vorrichtung und Verfahren zur Förderung des Abbaubodens in einer Schildvortriebsmaschine (SVM)
DE3537379C2 (de) Abbauwerkzeug einer Tunnelvortriebsmaschine für den Preßrohrvortrieb
DE102015101408A1 (de) Verfahren und Vorrichtung zum Fördern von abgebautem Bodenmaterial aus dem Druckraum hinter die Druckwand einer SVM
DE1459866A1 (de) Tunnelbohrmaschine
DE102014100764B4 (de) Vorrichtung und Verfahren zum Entfernen von Bodenmaterial vor der Druckwand einer Schildvortriebsmaschine (SVM)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL

17P Request for examination filed

Effective date: 19851214

17Q First examination report despatched

Effective date: 19870305

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880316

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19880316

Ref country code: BE

Effective date: 19880316

REF Corresponds to:

Ref document number: 33057

Country of ref document: AT

Date of ref document: 19880415

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3469934

Country of ref document: DE

Date of ref document: 19880421

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19881219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881231

Ref country code: LI

Effective date: 19881231

Ref country code: CH

Effective date: 19881231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001020

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001220

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011219

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011219