EP0146702B1 - Process for the continuous electrolytic deposition of metals - Google Patents

Process for the continuous electrolytic deposition of metals Download PDF

Info

Publication number
EP0146702B1
EP0146702B1 EP84111757A EP84111757A EP0146702B1 EP 0146702 B1 EP0146702 B1 EP 0146702B1 EP 84111757 A EP84111757 A EP 84111757A EP 84111757 A EP84111757 A EP 84111757A EP 0146702 B1 EP0146702 B1 EP 0146702B1
Authority
EP
European Patent Office
Prior art keywords
anode
cathode
strip
electrolyte
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84111757A
Other languages
German (de)
French (fr)
Other versions
EP0146702A1 (en
Inventor
Werner Bechem
Hubertus Peters
Jürgen Solms
Dietrich Dr. Wolfhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoesch AG
Original Assignee
Hoesch AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoesch AG filed Critical Hoesch AG
Priority to AT84111757T priority Critical patent/ATE36015T1/en
Publication of EP0146702A1 publication Critical patent/EP0146702A1/en
Application granted granted Critical
Publication of EP0146702B1 publication Critical patent/EP0146702B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/007Electroplating using magnetic fields, e.g. magnets
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/011Electroplating using electromagnetic wave irradiation

Definitions

  • the invention relates to a process for the continuous electrolytic deposition of metals from aqueous solutions of the metal salts on metal strip under high current densities and very low electrolyte voltages at high electrolyte flow rates, the metal strip being guided past a rotating anode and constantly fresh in the gap formed between the anode and cathode Electrolyte solution is introduced, and an apparatus for performing the method.
  • the cost-effectiveness of electrolytic strip finishing systems e.g. B. of plants for galvanizing steel strip depends u. a. on the possibility of achieving high current densities in the galvanic process at acceptable voltages.
  • the maximum current density that can be achieved depends on the thickness of the Nernst and Prandl boundary layers that determine the galvanic reaction kinetics.
  • high flow velocities of the electrolyte are used to reduce these boundary layer thicknesses. Given the distances mentioned between the anode and the strip to be coated, large amounts of the electrolyte have to be pumped around for this purpose, which necessitates the installation of corresponding pump units with high energy consumption.
  • a moving, rotating anode for the electrolytic finishing of metal strip is known from GB-A-1 265 921.
  • a metal strip to be selectively strip-shaped electrolytically refined is guided in a straight line by means of a plastic guide at a certain, not too great distance, over a rotating, cylindrical anode, which is immersed in an electrolyte below the axis of rotation.
  • the metal strip is connected to the negative pole of a power source by means of metal springs or metal rollers acting from above and pulled through the guide at a mechanically adjustable distance from the anode.
  • the rotating anode scoop roller conveys the circumference of the electrolyte into the gap between the cathode (band) and the anode, keeps it filled and causes the electrolyte exchange in the anode-cathode space.
  • a disadvantage of this process is that the practically usable electrolysis section on the strip to be finished is very short.
  • the use of the described method is further limited by the fact that the electrolyte is spun off above a certain anode rotation speed.
  • the invention is therefore based on the object of specifying an electrolysis process of the type mentioned at the outset and an apparatus for carrying out the process in which the disadvantages of the aforementioned process are avoided and, in contrast thereto, a larger amount of coating metal per unit of time with a high current density , can be deposited and a longer distance between the anode and the cathode can be set over a longer electrolysis path in order to achieve a lower voltage loss in the electrolyte and accordingly a lower heat development and lower process costs.
  • the object is achieved in such a way that the metal strip is guided around the rotating anode with a wrap angle at the bottom and is separated from it by the hydrodynamic load-bearing action of the electrolyte flow caused by the rotary movement of the anode and the strip movement in the space between the anode and the strip is generated, wherein the device for performing the method is specified in claim 5.
  • the relative movement between the metal strip and the anode and the strip tension determine the anode-cathode distance.
  • the electrolyte flow which produces the load-bearing effect, causes fresh electrolyte solution to be fed continuously into the anode-cathode space and thus no local overheating of the depletion on the metal ions to be deposited.
  • only low tensile stresses have to be applied to the metal strip to be finished, so that its technological values are not impaired.
  • FIGS. 1 to 3 of the drawing using exemplary embodiments.
  • the steel strip 2 After a customary pretreatment of the metal strip, in particular a cold-rolled steel strip 2, namely cleaning by degreasing and pickling, the steel strip 2 is guided around a metal cylinder 1, which is arranged in an electrolytic bath and is driven by a motor (not shown), by means of two deflection rollers arranged on the side .
  • the steel strip 2 connected as the cathode is driven by means of driven roller sets, which are not shown, with a strip tension of 2-50 N / mm 2 customary for strip finishing systems, via deflection rollers 3 below and around a metal cylinder 1 designed as an insoluble anode with a wrap angle of approx. 90 ° out.
  • the distance between the anode (metal cylinder 1) and cathode (steel strip 2) is set to z. B. selectively adjustable from less than 2 mm; this prevents contact between the anode and the cathode.
  • high current densities with the lowest separation voltages of 0.5 to 10 volts are achieved with an adapted supply of metal ions by means of a precisely metered amount of electrolyte; this in turn is achieved by means of the adjustable speed of the metal cylinder 1.
  • Another option for regulating the distance between the anode and cathode is provided by changing the strip tension.
  • a change in the relative speed can e.g. B. can be carried out as follows:
  • a gap of 0.936 mm is established at a speed of 5,000 rpm with an electrolyte delivery rate of 573.4 m 3 / h. If the number of revolutions is set to 2,500 rpm, there is a gap of 0.493 mm with a delivery rate of 115 m 3 / h.
  • devices can be provided for generating electrical or magnetic fields, by means of which the metal ions in the area of the boundary layers are accelerated in a targeted manner.
  • FIG. 1 a rotating metal cylinder 1 and a metal band 2 wrapping around it on a part of the circumference is shown in FIG. 1 as a movable anode, the wrapping angle being designated by a.
  • Electrolyte is pumped into the gap between the metal cylinder 1 and the metal strip 2 by means of the rotating metal cylinder 1 and, due to the surface roughness and peripheral speed of the metal cylinder, a certain amount of electrolyte is conveyed.
  • the guidance of the metal strip 2 takes over two deflection rollers 3, which are arranged on the side of the metal cylinder 1 and are preferably rubberized and driven.
  • the current is transferred to the metal strip 2 by line-contacting current rollers 4.
  • the distance between the rotating metal cylinder 1 and the running metal strip 2 can be set individually depending on the peripheral speed of the metal cylinder 1 and the strip tension used.
  • FIG. 2 shows a similar application of the method according to the invention as shown in FIG. 1; 1, the transmission of the current to the metal strip 1 by partially wrapped current rollers 4 is provided here.
  • the possibility of finishing on both sides is given with a device according to FIG. 3.
  • the device is in turn formed by the rotating metal cylinder 1 as an anode, below and around which the metal strip 2 is guided by the deflection rollers 3; the current is transferred to the metal strip 2 by the current-contacting current rollers 4.
  • the gap between the metal strip 2 and the metal cylinder 1 is in turn set by means of the peripheral speed of the rotating metal cylinder 1 and the strip tension used.
  • an insoluble anode 5 is preferably used.
  • this anode 5 can also be replaced by a soluble anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

There is disclosed a method and a device for the continuous electrolytic deposition of metals from aqueous solutions of metallic salts onto a metal strip using a high flow speed of the electrolyte between anode and cathode in order to obtain high current densities at relatively low voltages, especially for the electrolytic coating of steel strip with non-ferrous metals, preferably with zinc. In order, particularly, in the case of a one-sided strip coating, to set and be able to regulate a very small distance between anode and cathode, these is thereby achieved low voltage losses in the electrolyte and a correspondingly lesser development of heat, while inducing a very rapid exchange of the electrolyte in the space between anode and cathode. There is obtained a high current density. Finally, not to adversely affect the industrial qualities of the strip by a very low friction of the strip to be coated, it is disclosed that the metal strip as cathode be passed along a rotating cylindrical anode and that fresh electrolytic solution be constantly introduced into the space formed between anode and cathode.

Description

Die Erfindung betrifft ein Verfahren zum kontinuierlichen elektrolytischen Abscheiden von Metallen aus wässrigen Lösungen der Metallsalze auf Metallband unter hohen Stromdichten und sehr niedrigen Elektrolytspannungen bei hohen Elektrolytströmungsgeschwindigkeiten, wobei das Metallband als Kathode an einer rotierenden Anode vorbeigeführt und in den zwischen Anode und Kathode gebildeten Spalt ständig frische Elektrolytlösung eingeführt wird, sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a process for the continuous electrolytic deposition of metals from aqueous solutions of the metal salts on metal strip under high current densities and very low electrolyte voltages at high electrolyte flow rates, the metal strip being guided past a rotating anode and constantly fresh in the gap formed between the anode and cathode Electrolyte solution is introduced, and an apparatus for performing the method.

Es ist bekannt, in Anlagen zur elektrolytischen Bandveredelung nicht bewegte lösliche oder unlösliche Anoden in Anlagen mit horizontaler, vertikaler oder radialer Bandführung im Veredelungsteil einzusetzen.It is known to use non-moving soluble or insoluble anodes in systems for electrolytic strip finishing in systems with horizontal, vertical or radial strip guidance in the finishing part.

Die Wirtschaftlichkeit von elektrolytischen Bandveredelungsanlagen, z. B. von Anlagen zur Verzinkung von Stahlband, hängt u. a. von der Möglichkeit ab, bei vertretbaren Spannungen hohe Stromdichten beim galvanischen Prozeß zu erzielen. Neben der chemischen Zusammensetzung des Elektrolyten hängt die maximal erreichbare Stromdichte von der Dicke der die galvanische Reaktionskinetik bestimmenden Nernst'schen und Prandl'schen Grenzschichten ab. Zur Verringerung dieser Grenzschichtdicken werden bei neueren Anlagen hohe Strömungsgeschwindigkeiten des Elektrolyten angewendet. Bei den erwähnten Abständen zwischen der Anode und dem zu beschichtenden Band müssen zu diesem Zweck große Mengen des Elektrolyten umgepumpt werden, was die Installation entsprechender Pumpaggregate mit hohem Energieverbrauch erforderlich macht.The cost-effectiveness of electrolytic strip finishing systems, e.g. B. of plants for galvanizing steel strip depends u. a. on the possibility of achieving high current densities in the galvanic process at acceptable voltages. In addition to the chemical composition of the electrolyte, the maximum current density that can be achieved depends on the thickness of the Nernst and Prandl boundary layers that determine the galvanic reaction kinetics. In newer systems, high flow velocities of the electrolyte are used to reduce these boundary layer thicknesses. Given the distances mentioned between the anode and the strip to be coated, large amounts of the electrolyte have to be pumped around for this purpose, which necessitates the installation of corresponding pump units with high energy consumption.

Die Nutzung einer bewegten, rotierenden Anode für die elektrolytische Veredelung von Metallband ist aus GB-A-1 265 921 bekannt. In diesem Fall wird ein selektiv streifenförmig elektrolytisch zu veredelndes Metallband mittels einer Kunststoff-Führung geradlinig in einem bestimmten, nicht zu großen Abstand über eine rotierende, zylinderförmige Anode geführt, die unterhalb der Drehachse in einen Elektrolyten eintaucht. Das Metallband wir über von oben wirkende Metallfedern oder Metallrollen mit dem Minuspol einer Stromquelle verbunden und durch die Führung in einem mechanisch einstellbaren Abstand von der Anode hindurchgezogen. Die drehende Anode (Schöpfrolle) fördert den Elektrolyten auf ihrem Umfang in den zwischen Kathode (Band) und Anode bestehenden Spalt, hält diesen gefüllt und bewirkt den Elektrolytaustausch im Anoden-Kathoden-Raum.The use of a moving, rotating anode for the electrolytic finishing of metal strip is known from GB-A-1 265 921. In this case, a metal strip to be selectively strip-shaped electrolytically refined is guided in a straight line by means of a plastic guide at a certain, not too great distance, over a rotating, cylindrical anode, which is immersed in an electrolyte below the axis of rotation. The metal strip is connected to the negative pole of a power source by means of metal springs or metal rollers acting from above and pulled through the guide at a mechanically adjustable distance from the anode. The rotating anode (scoop roller) conveys the circumference of the electrolyte into the gap between the cathode (band) and the anode, keeps it filled and causes the electrolyte exchange in the anode-cathode space.

Nachteilig bei diesem Verfahren ist, daß die praktisch nutzbare Elektrolysestrecke auf dem zu veredelnden Band sehr kurz ist. Der Einsatz des beschriebenen Verfahrens wird ferner begrenzt von der Tatsache, daß oberhalb einer bestimmten Anodendrehgeschwindigkeit der Elektrolyt abgeschleudert wird.A disadvantage of this process is that the practically usable electrolysis section on the strip to be finished is very short. The use of the described method is further limited by the fact that the electrolyte is spun off above a certain anode rotation speed.

Von daher liegt der Erfindung die Aufgabe zugrunde, ein Elektrolyseverfahren der eingangs genannten Art sowie eine Vorrichtung zur Durchführung des Verfahrens anzugeben, bei dem bzw. der die Nachteile des vorgenannten Verfahrens vermieden werden und im Gegensatz zu diesem eine größere Menge Überzugsmetall je Zeiteinheit bei hoher Stromdichte, abgeschieden werden kann und über eine längere Elektrolysestrecke ein geringerer Abstand zwischen der Anode und der Kathode einstellbar ist, um einen geringeren Spannungsverlust im Elektrolyten und dementsprechend eine geringere Wärmeentwicklung und geringere Prozeßkosten zu erreichen.The invention is therefore based on the object of specifying an electrolysis process of the type mentioned at the outset and an apparatus for carrying out the process in which the disadvantages of the aforementioned process are avoided and, in contrast thereto, a larger amount of coating metal per unit of time with a high current density , can be deposited and a longer distance between the anode and the cathode can be set over a longer electrolysis path in order to achieve a lower voltage loss in the electrolyte and accordingly a lower heat development and lower process costs.

Nach der Erfindung wird die Aufgabe in der Weise gelöst, daß das Metallband mit einem Umschlingungswinkel unten um die rotierende Anode herumgeführt und von dieser durch die hydrodynamische Tragwirkung der Elektrolytströmung getrennt wird, die durch die Drehbewegung der Anode und die Bandbewegung im Raum zwischen Anode und Band erzeugt wird, wobei die Vorrichtung zur Durchführung des Verfahrens im Anspruch 5 angegeben ist. Dabei bestimmen die Relativbewegung zwischen Metallband und Anode sowie der Bandzug den Anoden-Kathoden-Abstand. Die Elektrolytströmung, die die Tragwirkung erzeugt, bewirkt, daß in den Anoden-Kathodenraum ständig frische Elektrolytlösung zugeführt wird und somit keine örtliche Überhitzung der Verarmung an den abzuscheidenden Metallionen auftritt. Schließlich sind zur Durchführung des Verfahrens nur geringe Zugspannungen auf das zu veredelnde Metallband aufzubringen, wodurch dessen technologische Werte nicht beeinträchtigt werden.According to the invention the object is achieved in such a way that the metal strip is guided around the rotating anode with a wrap angle at the bottom and is separated from it by the hydrodynamic load-bearing action of the electrolyte flow caused by the rotary movement of the anode and the strip movement in the space between the anode and the strip is generated, wherein the device for performing the method is specified in claim 5. The relative movement between the metal strip and the anode and the strip tension determine the anode-cathode distance. The electrolyte flow, which produces the load-bearing effect, causes fresh electrolyte solution to be fed continuously into the anode-cathode space and thus no local overheating of the depletion on the metal ions to be deposited. Finally, only low tensile stresses have to be applied to the metal strip to be finished, so that its technological values are not impaired.

Weitere bevorzugte Verfahrensmerkmale sind in den Ansprüchen 2 bis 4 angegeben. Eine weitere Ausbildung einer Vorrichtung zur Durchführung des Verfahrens ist im Anspruch 6 angegeben.Further preferred process features are given in claims 2 to 4. A further embodiment of a device for performing the method is specified in claim 6.

Die Vorteile des Verfahrens und der Vorrichtung nach der Erfindung sind insbesondere darin zu sehen, daß ein sehr kleiner und leicht regelbarer Abstand bzw. Spalt zwischen der Anode und der Kathode einstellbar ist und somit geringe Spannungsverluste im Elektrolyten entstehen und eine geringe Wärmeentwicklung (Joul'sche Wärme) zu beobachten ist. Es werden ferner durch einen sehr schnellen Elektrolytaustausch mit einer Geschwindigkeit von ca. 2 bis ca. 500 m/sec. in dem Spalt zwischen Anode und Kathode genügend Metallionen an die Kathodenoberfläche herangeführt, so daß für die elektrolytische Veredelung des Metallbandes hohe Stromdichten erreicht werden. Zur Durchführung des Verfahrens werden weiterhin nur sehr niedrige Bandzüge erforderlich, so daß die technologischen Werte des Bandes nicht beinträchtigt werden. Alle diese Vorteile münden letztendlich in Veredelungskosten für das Metallband, die gegenüber den bisherigen Kosten als gering zu bezeichnen sind.The advantages of the method and the device according to the invention can be seen, in particular, in the fact that a very small and easily adjustable distance or gap between the anode and the cathode can be set, thus resulting in low voltage losses in the electrolyte and low heat development (Joul's Heat) can be observed. There are also a very fast electrolyte exchange at a speed of about 2 to about 500 m / sec. Enough metal ions are brought to the cathode surface in the gap between the anode and cathode, so that high current densities are achieved for the electrolytic finishing of the metal strip. Very low strip tension is still required to carry out the process, so that the technological values of the strip are not impaired. All of these advantages ultimately result in finishing costs for the metal strip, which can be described as low compared to the previous costs.

Das Verfahren und die Vorrichtung nach der Erfindung ist in den Fig. 1 bis 3 der Zeichnung anhand von Ausführungsbeispielen näher erläutert.The method and the device according to the The invention is explained in more detail in FIGS. 1 to 3 of the drawing using exemplary embodiments.

Nach einer üblichen Vorbehandlung des Metallbandes, insbesondere eines kaltgewalzten Stahlbandes 2, nämlich einer Reinigung durch Entfetten und Beizen, wird das Stahlband 2 um einen Metallzylinder 1, der in einem Elektrolytbad angeordnet und mittels eines nicht dargestellten Motors angetrieben wird, mittels zweier seitlich angeordneter Umlenkrollen geführt. Das als Kathode geschaltete Stahlband 2 wird mittels angetriebener Rollensätze, die nicht dargestellt sind, mit einem für Bandveredelungsanlagen üblichen Bandzug von 2-50 N/mm2 über Umlenkrollen 3 unterhalb und um einen als unlösliche Anode ausgebildeten Metallzylinder 1 mit einem Umschlingungswinkel von a ca. 90° geführt.After a customary pretreatment of the metal strip, in particular a cold-rolled steel strip 2, namely cleaning by degreasing and pickling, the steel strip 2 is guided around a metal cylinder 1, which is arranged in an electrolytic bath and is driven by a motor (not shown), by means of two deflection rollers arranged on the side . The steel strip 2 connected as the cathode is driven by means of driven roller sets, which are not shown, with a strip tension of 2-50 N / mm 2 customary for strip finishing systems, via deflection rollers 3 below and around a metal cylinder 1 designed as an insoluble anode with a wrap angle of approx. 90 ° out.

Durch den z. B. in der gleichen Richtung wie das Stahlband 2 umlaufenden Metallzylinder 1 wird in den Spalt zwischen Metallzylinder 1 und Stahlband 2 Elektrolyt eingezogen bzw. eingebracht, so daß das Stahlband 2 durch die Elektrolytströmung unterhalb der umlaufenden Oberflä-. che des Metallzylinders 1 getragen und gegen diese abgestützt wird, ohne zusätzliche Pumpaggregate einsetzen zu müssen. Die hydrodynamische Tragwirkung der Elektrolytströmung im Spalt zwischen Anode und Kathode vermeidet somit die Kurzschlußbildung zwischen den Elektroden.By the z. B. in the same direction as the steel strip 2 revolving metal cylinder 1 is drawn or introduced into the gap between the metal cylinder 1 and steel strip 2 electrolyte, so that the steel strip 2 by the electrolyte flow below the circumferential surface. surface of the metal cylinder 1 is supported and supported against this without having to use additional pump units. The hydrodynamic load-bearing effect of the electrolyte flow in the gap between the anode and cathode thus avoids the formation of a short circuit between the electrodes.

Durch eine Veränderung der Relativgeschwindigkeit zwischen dem Metallzylinder 1 und dem Stahlband 2 ist der Abstand zwischen Anode (Metallzylinder 1) und Kathode (Stahlband 2) auf Werte z. B. von weniger als 2 mm gezielt einstellbar; eine Berührung zwischen der Anode und der Kathode wird auf diese Weise verhindert. Mittels dieses geringen Abstandes werden hohe Stromdichten mit geringsten Abscheidespannungen von 0,5 bis 10 Volt bei einer angepaßten Metallionenzuführung durch eine genau dosierbare Elektrolytmenge erreicht ; diese wiederum wird mittels der regelbaren Drehzahl des Metallzylinders 1 erzielt. Eine weitere Regelungsmöglichkeit für den Abstand zwischen Anode und Kathode ist durch eine Änderung des Bandzuges gegeben.By changing the relative speed between the metal cylinder 1 and the steel strip 2, the distance between the anode (metal cylinder 1) and cathode (steel strip 2) is set to z. B. selectively adjustable from less than 2 mm; this prevents contact between the anode and the cathode. By means of this short distance, high current densities with the lowest separation voltages of 0.5 to 10 volts are achieved with an adapted supply of metal ions by means of a precisely metered amount of electrolyte; this in turn is achieved by means of the adjustable speed of the metal cylinder 1. Another option for regulating the distance between the anode and cathode is provided by changing the strip tension.

Eine Veränderung der Relativgeschwindigkeit kann z. B. wie folgt durchgeführt werden :A change in the relative speed can e.g. B. can be carried out as follows:

Bei einem Anodendurchmesser von 1 m und einem Bandzug von 10 N/mm2 stellt sich bei einer Drehzahl von 5.000 U/min ein Spalt von 0,936 mm ein mit einer Elektrolytfördermenge von 573,4 m3/h. Wird die Umdrehungszahl auf 2.500 U/min eingestellt, stellt sich ein Spalt von 0,493 mm bei einer Fördermenge von 115 m3/h ein.With an anode diameter of 1 m and a strip tension of 10 N / mm 2 , a gap of 0.936 mm is established at a speed of 5,000 rpm with an electrolyte delivery rate of 573.4 m 3 / h. If the number of revolutions is set to 2,500 rpm, there is a gap of 0.493 mm with a delivery rate of 115 m 3 / h.

Zur Verbesserung der Metallabscheidung aus dem Elektrolyten auf das Stahlband 2 können nicht dargestellte Einrichtungen zur Erzeugung von elektrischen oder magnetischen Feldern vorgesehen werden, durch die die Metallionen im Bereich der Grenzschichten gezielt beschleunigt werden.To improve the metal deposition from the electrolyte onto the steel strip 2, devices (not shown) can be provided for generating electrical or magnetic fields, by means of which the metal ions in the area of the boundary layers are accelerated in a targeted manner.

Nach dem Veredeln des Stahlbandes 2 mittels der vorbeschriebenen Einrichtung ist je nach der erforderlichen Schichtdicke des aufzubringenden Metalles eine weitere Behandlung in weiteren, in gleicher Weise aufgebauten Einrichtungen möglich. Nach dem Aufbringen der Metallschicht auf das Stahlband 2 wird dieses in üblicher Weise nachbehandelt, d. h. soweit es gefordert wird, phosphatiert, chromatiert, getrocknet usw. und schließlich aufgehaspelt.After finishing the steel strip 2 by means of the device described above, depending on the required layer thickness of the metal to be applied, further treatment in other devices constructed in the same way is possible. After the metal layer has been applied to the steel strip 2, it is aftertreated in the usual manner, i. H. if required, phosphated, chromated, dried etc. and finally coiled up.

Wird eine beidseitige Veredelung des Metallbandes gewünscht, so ist es selbstverständlich auch möglich, die nicht dem rotierenden Metallzylinder zugewandte Metallbandseite nach bekannten, dem Stand der Technik entsprechenden Verfahren zu veredeln.If finishing of the metal strip on both sides is desired, it is of course also possible to refine the metal strip side not facing the rotating metal cylinder according to known methods corresponding to the prior art.

Im einzelnen ist in Fig. 1 als bewegliche Anode ein rotierender Metallzylinder 1 und ein diesen auf einem Teil des Umfanges umschlingendes Metallband 2 dargestellt, wobei der Umschlingungswinkel mit a bezeichnet ist.In detail, a rotating metal cylinder 1 and a metal band 2 wrapping around it on a part of the circumference is shown in FIG. 1 as a movable anode, the wrapping angle being designated by a.

In den Spalt zwischen dem Metallzylinder 1 und dem Metallband 2 wird mittels des sich drehenden Metallzylinders 1 Elektrolyt gepumt und, bedingt durch die Oberflächenrauheit und Umfangsgeschwindigkeit des Metallzylinders, eine bestimmte Elektrolytmenge gefördert. Die Führung des Metallbandes 2 übernehmen zwei Umlenkrollen 3, die seitlich des Metallzylinders 1 angeordnet und vorzugsweise gummiert sowie angetrieben sind. Die Stromübertragung erfolgt in diesem Beispiel auf das Metallband 2 durch linienberührende Stromrollen 4. Der Abstand zwischen dem rotierenden Metallzylinder 1 und dem laufenden Metallband 2 ist individuell bedingt durch die Umfangsgeschwindigkeit des Metallzylinders 1 und den angewandten Bandzug einstellbar.Electrolyte is pumped into the gap between the metal cylinder 1 and the metal strip 2 by means of the rotating metal cylinder 1 and, due to the surface roughness and peripheral speed of the metal cylinder, a certain amount of electrolyte is conveyed. The guidance of the metal strip 2 takes over two deflection rollers 3, which are arranged on the side of the metal cylinder 1 and are preferably rubberized and driven. In this example, the current is transferred to the metal strip 2 by line-contacting current rollers 4. The distance between the rotating metal cylinder 1 and the running metal strip 2 can be set individually depending on the peripheral speed of the metal cylinder 1 and the strip tension used.

In Fig. 2 ist eine ähnliche Anwendung des erfindungsgemäßen Verfahrens wie in Fig. 1 dargestellt ; in Abwandlung zu Fig. 1 ist hier die Übertragung des Stromes auf das Metallband 1 durch teilweise umschlungene Stromrollen 4 vorgesehen.FIG. 2 shows a similar application of the method according to the invention as shown in FIG. 1; 1, the transmission of the current to the metal strip 1 by partially wrapped current rollers 4 is provided here.

Mit einer Vorrichtung gemäß Fig. 3 ist die Möglichkeit des beidseitigen Veredelns gegeben. Die Vorrichtung wird wiederum gebildet durch den rotierenden Metallzylinder 1 als Anode, unterhalb dessen und um den herum das Metallband 2 durch die Umlenkrollen 3 vorbeigeführt wird ; die Stromübertragung auf das Metallband 2 erfolgt durch die linienberührenden Stromrollen 4. Der Spalt zwischen Metallband 2 und Metallzylinder 1 wird wiederum mittels der Umfangsgeschwindigkeit des rotierenden Metallzylinders 1 und des angewandten Bandzugs eingestellt. Um eine Veredelung auf der dem Metallzylinder 1 abgewandten Seite des Metallbandes 2 zu erzielen, wird vorzugsweise eine unlösliche Anode 5 eingesetzt. Diese Anode 5 kann jedoch auch durch eine lösliche Anode ersetzt werden.The possibility of finishing on both sides is given with a device according to FIG. 3. The device is in turn formed by the rotating metal cylinder 1 as an anode, below and around which the metal strip 2 is guided by the deflection rollers 3; the current is transferred to the metal strip 2 by the current-contacting current rollers 4. The gap between the metal strip 2 and the metal cylinder 1 is in turn set by means of the peripheral speed of the rotating metal cylinder 1 and the strip tension used. In order to achieve a finishing on the side of the metal strip 2 facing away from the metal cylinder 1, an insoluble anode 5 is preferably used. However, this anode 5 can also be replaced by a soluble anode.

Claims (5)

1. Method for the continuous electrolytic deposition of metals from aqueous solutions of metal salts on to a metal band, at high current densities and very low electrolyte voltages at high electrolyte flow velocities, wherein the metal band is directed as the cathode past a rotating anode and fresh electrolyte solution is continuously introduced into the space formed between the anode and cathode, characterised in that the metal band is guided round the rotating anode with a wrapping angle (a) at the bottom and is separated from it by the hydrodynamic effect of the electrolyte flow, produced by rotation of the anode and movement of the band, in the space between the anode and the band.
2. Method according to claim 1, characterised in that the space formed between the anode and cathode is adjusted by variation of the relative velocity between the anode and cathode.
3. Method according to claims 1 and 2, characterised in that the space between the anode and cathode is adjusted by selecting the anode rotational velocity and/or by adjustment of the band tension.
4. Method according to claims 1 to 3, characterised in that the space between the anode and cathode is adjusted to a value between more than zero and less than 2 mm.
5. Apparatus for carrying out the method according to claims 1 to 4, characterised in that a driven metal cylinder (1) connected up as the anode is arranged in an electrolyte bath, around which the metal band (2) to be electroplated and connected up as the cathode is guided, where two guide rollers (3) arranged laterally to the driven metal cylinder (1) undertake the guidance and the transfer of current to the metal band (2) is effected by current rollers (4).
EP84111757A 1983-12-06 1984-10-02 Process for the continuous electrolytic deposition of metals Expired EP0146702B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84111757T ATE36015T1 (en) 1983-12-06 1984-10-02 PROCESS FOR CONTINUOUS ELECTROLYTIC DEPOSITION OF METALS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3343978 1983-12-06
DE19833343978 DE3343978A1 (en) 1983-12-06 1983-12-06 METHOD FOR CONTINUOUS ELECTROLYTIC DEPOSITION OF METALS

Publications (2)

Publication Number Publication Date
EP0146702A1 EP0146702A1 (en) 1985-07-03
EP0146702B1 true EP0146702B1 (en) 1988-07-27

Family

ID=6216116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111757A Expired EP0146702B1 (en) 1983-12-06 1984-10-02 Process for the continuous electrolytic deposition of metals

Country Status (7)

Country Link
US (1) US4576684A (en)
EP (1) EP0146702B1 (en)
JP (1) JPS60125392A (en)
KR (1) KR850005012A (en)
AT (1) ATE36015T1 (en)
DE (2) DE3343978A1 (en)
ES (1) ES536597A0 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661213A (en) * 1986-02-13 1987-04-28 Dorsett Terry E Electroplate to moving metal
US9157160B2 (en) 2013-08-22 2015-10-13 Ashworth Bros., Inc. System and method for electropolishing or electroplating conveyor belts

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT119031B (en) * 1929-03-05 1930-09-25 Oesterr Alpine Montan Device for the electrolytic production of sheet metal, strip, profile iron or the like.
US2461556A (en) * 1943-04-01 1949-02-15 Carnegie Illinois Steel Corp Method and apparatus for the electrolytic coating of metal strip
US3483113A (en) * 1966-02-11 1969-12-09 United States Steel Corp Apparatus for continuously electroplating a metallic strip
US3483098A (en) * 1966-02-11 1969-12-09 United States Steel Corp Method and apparatus for electroplating a metallic strip
CA940083A (en) * 1969-02-27 1974-01-15 Usui Kokusai Sangyo Kabushiki Kaisha Method of and apparatus for continuously electroplating one side of a steel strip
GB1265921A (en) * 1970-06-12 1972-03-08
NL7207219A (en) * 1972-05-27 1973-11-29
DE2303128A1 (en) * 1973-01-23 1974-08-01 Platmanufaktur Ab Packaged stacked articles lifted by fork lift truck - with lowest layer between fork arms held suspended in wrapping sheet welded to upper sheet
DE2324834C2 (en) * 1973-05-17 1978-09-07 Dr. Eugen Duerrwaechter Doduco, 7530 Pforzheim Device for continuous selective strip electroplating
CH594067A5 (en) * 1973-10-04 1977-12-30 Galentan Ag
NL7407632A (en) * 1974-06-07 1975-12-09 Philips Nv METHOD AND DEVICE FOR LOCAL GALVANIC COVERING OF TIRE MATERIAL.
NL7609324A (en) * 1976-08-23 1978-02-27 Philips Nv DEVICE FOR APPLYING METALLIC LAYER PATTERNS TO A TIRE IN A CONTINUOUS PROCESS.
AU526702B2 (en) * 1978-12-29 1983-01-27 Pet Incorporated Heat conserver for bell-type ovens
DE2917630A1 (en) * 1979-05-02 1980-11-13 Nippon Steel Corp ARRANGEMENT FOR ELECTROLYTIC GALVANIZING OF ROLLING STRIP
GB2117404B (en) * 1982-03-29 1985-07-17 Galentan Ag Device for applying blot-shaped coverings by electro-plating

Also Published As

Publication number Publication date
ATE36015T1 (en) 1988-08-15
ES8601339A1 (en) 1985-10-16
JPS60125392A (en) 1985-07-04
KR850005012A (en) 1985-08-19
DE3343978A1 (en) 1985-06-20
EP0146702A1 (en) 1985-07-03
DE3343978C2 (en) 1987-12-17
US4576684A (en) 1986-03-18
DE3472983D1 (en) 1988-09-01
ES536597A0 (en) 1985-10-16

Similar Documents

Publication Publication Date Title
DE69015517T2 (en) Continuous electroplating of electrically conductive foam.
DE3233010A1 (en) METHOD AND DEVICE FOR ELECTROPLATING
DE60103419T2 (en) METHOD FOR ELECTROPLATING A FOAMBAND
DE4229403A1 (en) Appts. for electrocoating of plastic sheet - with sheet passing horizontally through series of galvanising chambers
DE3432821A1 (en) METHOD AND DEVICE FOR CONTINUOUS GALVANIC ALLOY DEPOSITION
DE3317564A1 (en) Apparatus and process for coating a metal strip
DE2008606A1 (en) Apparatus for the continuous treatment of electrolytically influencing the metal wire and process for the continuous treatment of electrolytically influencing metal wires
DE2939190A1 (en) METHOD FOR TREATING A WIRE BASED ON AN IRONIC MATERIAL
DE2753936C2 (en)
WO2003038158A2 (en) Electroplating device and electroplating system for coating already conductive structures
WO2021023778A1 (en) Method and system for electroytically coating a steel strip by means of pulse technology
EP0146702B1 (en) Process for the continuous electrolytic deposition of metals
DE1796176A1 (en) Insulated wire and process for its manufacture
DE1816645A1 (en) Method and device for the selective galvanic coating of endless strips made of galvanizable material
EP0987350B1 (en) Process and apparatus for applying a phosphate coating on workpieces
EP0369983B1 (en) Process and apparatus for the electrolytic production of a metal foil
AT392294B (en) METHOD AND DEVICE FOR CONTINUOUS ELECTRODEPOSITION OF METALS WITH A HIGH CURRENT DENSITY IN VERTICAL CELLS
DE1919296A1 (en) Process and system for the production of copper-plated steel wires, especially those used for CO2 protective gas welding
DE102012100509B4 (en) Process for refining a metallic coating on a steel strip
WO1982003232A1 (en) Method for electro-plating an alloy layer on a metal object,especially a zinc-nickel alloy on a steel strip
DE3011005A1 (en) Continuous electroplating of steel strip on one or both sides - using anode box with perforated base and strip cathode and electrolyte which is continuously recirculated
DE2844708C2 (en) Process for the continuous electroplating of a strip of porous, non-conductive material
DE69109133T2 (en) DEVICE FOR IMPROVED CURRENT TRANSMISSION WHEN GALVANIZING IN A RADIAL CELL.
DE10145105B4 (en) Apparatus and method for metal coating steel strip
DE3209559A1 (en) Process for electrodepositing an alloy coating on a metal object, in particular a zinc/nickel alloy coating on steel strip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: RICCARDI SERGIO & CO.

EL Fr: translation of claims filed
TCNL Nl: translation of patent claims filed
17P Request for examination filed

Effective date: 19851211

17Q First examination report despatched

Effective date: 19861204

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 36015

Country of ref document: AT

Date of ref document: 19880815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3472983

Country of ref document: DE

Date of ref document: 19880901

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19880929

Year of fee payment: 5

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891002

Ref country code: AT

Effective date: 19891002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891031

Ref country code: CH

Effective date: 19891031

Ref country code: BE

Effective date: 19891031

BERE Be: lapsed

Owner name: HOESCH A.G.

Effective date: 19891031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84111757.5

Effective date: 19900706