EP0131769A1 - Système pour assister la respiration - Google Patents

Système pour assister la respiration Download PDF

Info

Publication number
EP0131769A1
EP0131769A1 EP84106887A EP84106887A EP0131769A1 EP 0131769 A1 EP0131769 A1 EP 0131769A1 EP 84106887 A EP84106887 A EP 84106887A EP 84106887 A EP84106887 A EP 84106887A EP 0131769 A1 EP0131769 A1 EP 0131769A1
Authority
EP
European Patent Office
Prior art keywords
manifold
gas
conduit
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84106887A
Other languages
German (de)
English (en)
Other versions
EP0131769B1 (fr
Inventor
Joe Dean Usry
James Bert Bunnell
Chris Guy Faddis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bunnell Inc
Original Assignee
Bunnell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bunnell Inc filed Critical Bunnell Inc
Priority to AT84106887T priority Critical patent/ATE30514T1/de
Publication of EP0131769A1 publication Critical patent/EP0131769A1/fr
Application granted granted Critical
Publication of EP0131769B1 publication Critical patent/EP0131769B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0006Accessories therefor, e.g. sensors, vibrators, negative pressure with means for creating vibrations in patients' airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/204Proportional used for inhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0096High frequency jet ventilation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/911Unilimb inhalation-exhalation breathing tubes

Definitions

  • This invention relates to a new and improved method and apparatus for applying air pressure pulses to a person's respiratory system to assist ventilation and respiration.
  • the '917 patent discloses apparatus for "vibrating portions of a patient's airway" at a rate which is greater than the patient's normal rate of inhalation and exhalation. The purpose of this is to exercise and massage the airway and associated organs to thus loosen and remove mucous therefrom. It was also stated in the patent that it was believed that vibrating portions of a patient's airway aided in the breathing function by circulating the gas more thoroughly to and from the walls of the lungs.
  • serial no. 322,742 a system is described for applying a series of high pressure air pulses to a person's respiratory system, with the frequency of the pulses being varied over some range encompassing the natural or resonant frequency of the person's respiratory system. This system achieves a degree of ventilation of a person's respiratory system not heretofore achieved.
  • the present invention improves upon and simplifies the above-described system by providing mechanisms which may be readily serviced and replaced, and which delivers high energy density positive pressure pulses to a patient to better ventilate the patient's respiratory system.
  • a specific illustrative embodiment which includes a source of gas under pressure, and an elongate tubular manifold, one end of which is for placement in the mouth and throat of a person to be treated.
  • a valve and conduit couple the other end of the tubular manifold to the source of gas to periodically interrupt the flow of gas to the person.
  • the valve is placed as close to the tubular manifold as possible so that the gas pressure pulses produced by the action of interrupting the flow of gas will be as sharp and as high in energy density as possible. Such gas pressure pulses will provide better ventilation for the person being treated.
  • two lumens are defined in the tubular manifold, a first of which delivers the gas to the person, and a second of which is coupled at one end to a pressure transducer, with the other end terminating near said one end of the manifold.
  • the pressure transducer detects the pressure in the manifold via the second lumen and provides a signal indicating what this pressure is. This signal may be utilized to adjust the pressure of the gas supplied to the manifold to some desired level.
  • the pressure transducer just as the gas pulse producing valve, is placed as close as possible to the manifold to improve the frequency response of the measurement.
  • a conduit is provided to deliver gas from the gas source to the second lumen to clear out the lumen.
  • a second valve is positioned in the conduit for normally blocking the flow of gas and for periodically opening to allow gas to flow to the second lumen.
  • FIG. 1 shows a schematic of a system for applying a series of high energy density gas pulses to a patient's respiratory system.
  • the system is coupled to the patient by a tubular manifold 4 which is inserted into the mouth and throat of a patient in a conventional manner.
  • the tubular manifold 4 is shown in fragmented form in FIG. 1 and would be long enough and narrow enough for easy insertion into the mouth and throat of a patient.
  • a third passageway 16 is defined in the tubular manifold 4 to enable communication between the end of the manifold 20 (which is inserted into the mouth of the patient) and an exit opening 24. It is through the passageway 16 that a patient exhales air when undergoing treatment with the apparatus of FIG. 1.
  • the tubular manifold 4 is coupled by way of a coupling collar or fitting 28 to a housing 36.
  • the rear end of the manifold 4 is tapered for insertion into the coupling collar 28 and held in place by friction or by a suitable adhesive.
  • the coupling collar 28 is attached to and communicates with a pair of conduits 40 and 44 respectively which are contained in the housing 36.
  • the conduits 40 and 44 extend across the housing and are attached to coupling collars 48 and 52 disposed in the wall on the other side of the housing.
  • Another pair of conduits 56 and 60 are joined to the housing 36 by way of the coupling collars 48 and 52 respectively.
  • the conduits 56 and 60 are tapered for insertion into the collars 48 and 60 where they are held in place by friction.
  • the other end of the conduits 56 and 60 are connected to a pressure regulator 64 which is joined to a source 68 of air and oxygen under pressure.
  • the air and oxygen source 68 supplies air and oxygen to the pressure regulator 64 which controls the pressure at which the air and oxygen is supplied to conduits 56 and 60.
  • the air and oxygen flows from these conduits through conduits 40 and 44 to lumens 8 and 12 in the tubular manifold 4.
  • valve 72 Disposed on the conduit 44 is a valve 72 for periodically interrupting the flow of air and oxygen through the conduit. Operation of the valve 72 is carried out under control of a control circuit 76 which might, for example, be a conventional microprocessor.
  • the control circuit 76 supplies electrical signals to the valve 72 to periodically cause the valve to open and allow the flow of air and oxygen through the conduit 44.
  • a second valve 80 is disposed in conduit 40 to normally prevent the flow of air and oxygen through the conduit.
  • the valve 80 is also operated under control of the control circuit 76.
  • a pressure transducer 84 is also disposed in the conduit 40 between the valve 80 and the lumen 8.
  • the pressure transducer 84 senses the pressure of the air and oxygen "down stream" of the valve 80 and, in particular, the pressure of the air and oxygen in the tubular manifold 4.
  • the pressure transducer 84 supplies a signal to the control circuit 76 indicating the pressure of the air and oxygen in the manifold.
  • An exemplary pressure transducer is Validyne Engineering Sales Corp., Model DP45.
  • the control circuit 76 in response to signals from the pressure transducer 84, controls the pressure regulator 64 to maintain a certain desired output pressure.
  • a certain pressure level is generally necessary to properly ventilate a patient, but it is desired that this pressure be minimized to the extent possible while still providing adequate ventilation for the patient.
  • the pressure regulator 64 would typically reduce the pressure of the air and oxygen received from the source 68 from about 50 pounds per square inch to as low as about 2 pounds per square inch.
  • the predetermined pressure level desired for the regulator 64 would be preprogramed into the control circuit 76 via control switches 88.
  • valve 80 and conduit 56 are provided so that air and oxygen from the source 68 can be periodically supplied to the conduit 40 and lumen 8 to clear the conduit and lumen.
  • the valve 80 is periodically opened to allow the flow of air and oxygen through the conduit 40 and lumen 8 to clear any foreign material which may have gathered.
  • Valve 72 which operates which much greater frequency than does valve 80 to produce high frequency pressure pulses for delivery to the patient, may tend to get hot thus increasing the possibility of failure.
  • a short piece of conduit or tubing 92 is coupled to the conduit 40 and is directed towards the valve 72. Then, when the conduit 80 is periodically opened, air and oxygen are directed both to the lumen 8 and toward the valve 72 to cool the valve.
  • valve 80 could be a three way valve which receives air and oxygen from conduit 56 and directs air and oxygen into conduit 40 and conduit 92.
  • FIG. 2 shows an exemplary valve for use as valve 72 in FIG. 1.
  • the valve shown in FIG. 2 since it is not positioned within the conduit through which the air and oxygen flows, is noncontaminating.
  • the valve in question includes a rigid anvil 104 against which a flexible and resilient conduit 44 is positioned.
  • Fixed on the other side of the conduit is a solenoid 108 having a movable armature 112 which, when the winding or coil 116 of the solenoid is energized, is caused to move upwardly towards the anvil 104 to pinch and close the conduit 44.
  • the conduit 44 is periodically closed to interrupt the flow of air and oxygen therethrough as described earlier. Since the valve is located externally of the conduit 44, there is no chance that the valve will contaminate the air and oxygen flowing through the conduit.
  • the solenoid 108 may be of conventional design.
  • High energy density pressure pulses are produced by the apparatus of FIG. 1 by placing the valve 72 adjacent to the tubular manifold 4.
  • placement of the valve 72 within about six inches of the manifold 4, for a manifold of about six to twelve inches in length provides the desired pressure pulses.
  • the pressure pulses produced by the valve are sharper and have a higher energy density upon reaching the patient than would be the case if the valve were far removed from the patient. The farther away such valve is from the patient, the more the pressure pulse wave front is blunted or dissipated.
  • sharper pressure pulses greater ventilation is achieved and the overall mean pressure of the pulses supplied to the patient can be reduced. This results in less trauma to the patient.
  • the housing 36 is provide with fittings 28, 48 and 52 which allow for the ready connection and disconnection of the housing with the manifold 4 and with the conduits 56 and 60. With this arrangement, if a failure occurs with either of the valves or with the pressure transducer, the housing 36 can simply be disconnected from the system and a new housing with component parts inserted in its place to allow for repair of the defective parts without interruption of use of the system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Electrotherapy Devices (AREA)
  • Magnetic Treatment Devices (AREA)
  • Massaging Devices (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • External Artificial Organs (AREA)
  • Measuring Fluid Pressure (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Control Of Eletrric Generators (AREA)
EP84106887A 1983-06-20 1984-06-15 Système pour assister la respiration Expired EP0131769B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84106887T ATE30514T1 (de) 1983-06-20 1984-06-15 System zur unterstuetzung der atmung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/505,816 US4538604A (en) 1983-06-20 1983-06-20 System for assisting respiration
US505816 1983-06-20

Publications (2)

Publication Number Publication Date
EP0131769A1 true EP0131769A1 (fr) 1985-01-23
EP0131769B1 EP0131769B1 (fr) 1987-11-04

Family

ID=24011969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84106887A Expired EP0131769B1 (fr) 1983-06-20 1984-06-15 Système pour assister la respiration

Country Status (8)

Country Link
US (1) US4538604A (fr)
EP (1) EP0131769B1 (fr)
JP (1) JPS6034459A (fr)
AT (1) ATE30514T1 (fr)
AU (1) AU565742B2 (fr)
CA (1) CA1234522A (fr)
DE (1) DE3467094D1 (fr)
MX (1) MX154837A (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2217331A1 (fr) * 2007-11-19 2010-08-18 Carefusion 2200, Inc Système de thérapie respiratoire à dispositif de commande électromécanique
EP2349422A1 (fr) * 2008-10-05 2011-08-03 Respinova Ltd. Protocole et procédés d'administration pulsatile de médicament
EP2455137A2 (fr) * 2006-09-05 2012-05-23 High Tech Health Limited Dispositif respiratoire fonctionnant de manière aléatoire
CN103338806A (zh) * 2010-10-29 2013-10-02 伊尔贝特·雅各布斯·库珀斯 导管

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU575060B2 (en) * 1983-08-01 1988-07-21 Sensormedics Corporation High frequency ventilator
GB2156217B (en) * 1984-01-28 1987-07-01 Litechnica Limited Laser bronchoscope ventilator
SE450995B (sv) * 1986-01-21 1987-08-24 Gambro Engstrom Ab Doserings- och forgasningsanordning, foretredesvis avsedd for tillforsel av narkosgas till en ferskgasstrom i en narkosanleggning
US4838259A (en) * 1986-01-27 1989-06-13 Advanced Pulmonary Technologies, Inc. Multi-frequency jet ventilation technique and apparatus
US4747403A (en) * 1986-01-27 1988-05-31 Advanced Pulmonary Technologies, Inc. Multi-frequency jet ventilation technique and apparatus
US4744356A (en) * 1986-03-03 1988-05-17 Greenwood Eugene C Demand oxygen supply device
US5150291A (en) * 1986-03-31 1992-09-22 Puritan-Bennett Corporation Respiratory ventilation apparatus
US4838257A (en) * 1987-07-17 1989-06-13 Hatch Guy M Ventilator
DE3804016A1 (de) * 1988-02-10 1989-08-24 Beiersdorf Ag Vorrichtung zur behandlung menschlicher extremitaeten durch intermittierende kompression
JP2611418B2 (ja) * 1989-02-22 1997-05-21 東レ株式会社 食品包装用防曇性フィルム
US5303699A (en) * 1991-11-18 1994-04-19 Intermed Equipamento Medico Hospitalar Ltda. Infant ventilator with exhalation valves
US5617847A (en) * 1995-10-12 1997-04-08 Howe; Stephen L. Assisted breathing apparatus and tubing therefore
US5865173A (en) * 1995-11-06 1999-02-02 Sunrise Medical Hhg Inc. Bilevel CPAP system with waveform control for both IPAP and EPAP
US5769797A (en) 1996-06-11 1998-06-23 American Biosystems, Inc. Oscillatory chest compression device
US5752506A (en) * 1996-08-21 1998-05-19 Bunnell Incorporated Ventilator system
AUPO418696A0 (en) 1996-12-12 1997-01-16 Resmed Limited A substance delivery apparatus
US6279574B1 (en) 1998-12-04 2001-08-28 Bunnell, Incorporated Variable flow and pressure ventilation system
CA2410271C (fr) 2000-07-13 2009-10-06 Electromed, Inc. Procede et appareil d'application d'impulsions sur un corps
WO2005082107A2 (fr) 2004-02-26 2005-09-09 Ameriflo, Inc. Procede et dispositif de regulation d'un ecoulement de fluide et de maintien dudit ecoulement
US7617826B1 (en) 2004-02-26 2009-11-17 Ameriflo, Inc. Conserver
US7448594B2 (en) 2004-10-21 2008-11-11 Ameriflo, Inc. Fluid regulator
US8460223B2 (en) 2006-03-15 2013-06-11 Hill-Rom Services Pte. Ltd. High frequency chest wall oscillation system
US8202237B2 (en) 2007-10-03 2012-06-19 Electromed, Inc. Portable air pulsator and thoracic therapy garment
USD639954S1 (en) 2009-04-02 2011-06-14 Electromed, Inc. Thoracic garment
CN102283628B (zh) * 2011-07-08 2013-09-11 舒妮 电控高频喷射通气喉镜
WO2021225993A1 (fr) * 2020-05-02 2021-11-11 BreathDirect, Inc. Système et méthode de ventilation d'une personne

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831596A (en) * 1971-11-10 1974-08-27 Synthelabo Control device for a respiratory apparatus
US4106503A (en) * 1977-03-11 1978-08-15 Richard R. Rosenthal Metering system for stimulating bronchial spasm
US4202330A (en) * 1978-06-26 1980-05-13 Jariabka Daniel S Life support system and valve for use therewith
US4206754A (en) * 1976-06-02 1980-06-10 Boc Limited Lung ventilators
US4265237A (en) * 1978-07-17 1981-05-05 Dragerwerk Aktiengesellschaft Apparatus for enhancing a person's breathing and/or artificial respiration
US4270530A (en) * 1978-11-03 1981-06-02 Dragerwerk Aktiengesellschaft Tracheal tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653379A (en) * 1970-08-20 1972-04-04 Joseph G Glenn Adjustable pressure ippb ventilator
GB1585091A (en) * 1976-02-10 1981-02-25 Venegas J G Remedial apparatus for use in assisting the breathing of living creatures
US4176671A (en) * 1978-02-21 1979-12-04 Indicon Inc. Fast responsive valve
DE2947659C2 (de) * 1979-11-27 1986-11-20 Drägerwerk AG, 2400 Lübeck Beatmungsgerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831596A (en) * 1971-11-10 1974-08-27 Synthelabo Control device for a respiratory apparatus
US4206754A (en) * 1976-06-02 1980-06-10 Boc Limited Lung ventilators
US4106503A (en) * 1977-03-11 1978-08-15 Richard R. Rosenthal Metering system for stimulating bronchial spasm
US4202330A (en) * 1978-06-26 1980-05-13 Jariabka Daniel S Life support system and valve for use therewith
US4265237A (en) * 1978-07-17 1981-05-05 Dragerwerk Aktiengesellschaft Apparatus for enhancing a person's breathing and/or artificial respiration
US4270530A (en) * 1978-11-03 1981-06-02 Dragerwerk Aktiengesellschaft Tracheal tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455137A2 (fr) * 2006-09-05 2012-05-23 High Tech Health Limited Dispositif respiratoire fonctionnant de manière aléatoire
EP2455137A3 (fr) * 2006-09-05 2013-04-24 Actegy Limited Dispositif respiratoire fonctionnant de manière aléatoire
EP2217331A1 (fr) * 2007-11-19 2010-08-18 Carefusion 2200, Inc Système de thérapie respiratoire à dispositif de commande électromécanique
EP2217331A4 (fr) * 2007-11-19 2014-06-25 Carefusion 2200 Inc Système de thérapie respiratoire à dispositif de commande électromécanique
US10195381B2 (en) 2007-11-19 2019-02-05 Vyaire Medical Consumables Llc Patient interface assembly for respiratory therapy
EP2349422A1 (fr) * 2008-10-05 2011-08-03 Respinova Ltd. Protocole et procédés d'administration pulsatile de médicament
EP2349422A4 (fr) * 2008-10-05 2014-03-26 Respinova Ltd Protocole et procédés d'administration pulsatile de médicament
CN103338806A (zh) * 2010-10-29 2013-10-02 伊尔贝特·雅各布斯·库珀斯 导管

Also Published As

Publication number Publication date
US4538604A (en) 1985-09-03
JPH0449422B2 (fr) 1992-08-11
DE3467094D1 (en) 1987-12-10
AU565742B2 (en) 1987-09-24
JPS6034459A (ja) 1985-02-22
EP0131769B1 (fr) 1987-11-04
MX154837A (es) 1987-12-15
ATE30514T1 (de) 1987-11-15
CA1234522A (fr) 1988-03-29
AU2933584A (en) 1985-01-03

Similar Documents

Publication Publication Date Title
US4538604A (en) System for assisting respiration
EP0512285B1 (fr) Respirateur à jet
EP0080155B1 (fr) Appareil pour assister la respiration
EP0549299B1 (fr) Respirateur pour la ventilation en pression positive continue (CPAP)
JP3130026B2 (ja) 呼吸補助装置
US10195381B2 (en) Patient interface assembly for respiratory therapy
EP1078646B1 (fr) Appareil thérapeutique pour la ventilation spontanée en pression positive continue
US4648395A (en) Synchronized feed type oxygen concentrator for use in an open breathing system
US4456008A (en) Respiratory apparatus and method
US2208633A (en) Anesthetizing apparatus
JPH09173455A (ja) ベンチレータシステムのための方法及びベンチレータシステム
JPS59101159A (ja) 二連噴流管を有する人工呼吸器
JP2000084083A (ja) 呼吸補助装置
Oh et al. Resistance of humidifiers, and inspiratory work imposed by a ventilator-humidifier circuit
EP3897795B1 (fr) Assistance à la pression, insufflation/exsufflation mécanique et système d'aspiration
EP0290062A2 (fr) Appareil de respiration par injection de gaz à haute fréquence
CN210933251U (zh) 压力控制装置、麻醉机及呼吸机
EP0122630B1 (fr) Dispositif d'amélioration d'aides respiratoires
CN110433368B (zh) 压力控制装置及压力控制方法
JPH0819611A (ja) 気道陽圧式呼吸補助装置
JP2846352B2 (ja) 呼吸ガス供給管及び呼吸ガス供給装置
US11464929B2 (en) System and method for vibratory, high frequency ventilation of neonates and infants
CN114949485A (zh) 一种感测呼吸并提供通气治疗的装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850712

17Q First examination report despatched

Effective date: 19860804

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19871104

Ref country code: LI

Effective date: 19871104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19871104

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19871104

Ref country code: CH

Effective date: 19871104

Ref country code: AT

Effective date: 19871104

REF Corresponds to:

Ref document number: 30514

Country of ref document: AT

Date of ref document: 19871115

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871130

REF Corresponds to:

Ref document number: 3467094

Country of ref document: DE

Date of ref document: 19871210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000704

Year of fee payment: 17

Ref country code: BE

Payment date: 20000704

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000727

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

BERE Be: lapsed

Owner name: BUNNELL INC.

Effective date: 20010630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403