EP0130908A1 - Heat transfer process with a three-phase monovariant reaction - Google Patents

Heat transfer process with a three-phase monovariant reaction Download PDF

Info

Publication number
EP0130908A1
EP0130908A1 EP84401360A EP84401360A EP0130908A1 EP 0130908 A1 EP0130908 A1 EP 0130908A1 EP 84401360 A EP84401360 A EP 84401360A EP 84401360 A EP84401360 A EP 84401360A EP 0130908 A1 EP0130908 A1 EP 0130908A1
Authority
EP
European Patent Office
Prior art keywords
gas
heat pump
pump according
reaction
calories
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84401360A
Other languages
German (de)
French (fr)
Other versions
EP0130908B1 (en
Inventor
Didier Payre
Georges Crozat
Bernard Spinner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe National Elf Aquitaine
Original Assignee
Societe National Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine filed Critical Societe National Elf Aquitaine
Priority to AT84401360T priority Critical patent/ATE29578T1/en
Publication of EP0130908A1 publication Critical patent/EP0130908A1/en
Application granted granted Critical
Publication of EP0130908B1 publication Critical patent/EP0130908B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type

Definitions

  • the present invention relates to a thermochemical heat pump making it possible to transfer calories between a first source of calories and a second source of calories.
  • This heat pump operates on an intermittent cycle of heat storage and destocking.
  • thermochemical heat pump Several types have already been proposed which have either continuous or intermittent operation and which can operate to supply calories-heating- or to draw-cooling.
  • the reaction medium comprises a liquid phase, this is what is for example carried out in liquid gas absorption systems. .
  • these systems have the disadvantage of being divariant, that is to say that the heat exchanges are not done at constant temperature which raises many problems when one wants to provide for effective management of L ' energy.
  • the invention provides, on the contrary, a monovariant system, that is to say a system for which the relation between the logarithm of the pressure and 1 / T is unique and quasi-linear.
  • thermochemical heat pumps with a three-phase monovariant system for LequeL
  • the absorption of gas by a saturated solution corresponds to a single equilibrium, that is to say say that there is only one reaction whereas MAR has considered that the heat exchange takes place during two distinct reactions each concerning a different solid compound.
  • the invention provides a thermochemical heat pump for transferring calories from a first heat source to a second heat source by using a reaction medium. It is characterized in that the exchange of calories between one of the two sources and said reaction medium takes place during a reaction between a gas and a liquid phase constituted by a solution saturated with solid or two immiscible liquids, said reaction being monovariant.
  • the exchange of calories between the second source and the reaction medium takes place during a gas-liquid phase change reaction of said gas, a monovariant reaction, or during an absorption reaction of said gas by a solid,
  • the gas may consist of water vapor or ammonia, or alternatively chosen from methanol, ethanol, butanol, Methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, Fluoroalkanes, chlorinated fluoroalkanes, difluoromethylsilane, Chlorodifluorosilane, Disiloxane, Propane, butane, Acetone and acethaldehyde, fluoroalkanes being themselves chosen from CC1 3 F, CC1 2 F 2 , CHCl 2 F, CHC1F 2 , Cl 3 C 2 F 3 , Cl 2 C 2 F 4 , C 2 HC1F 4 , C 2 H 2 C1F 3 , CH 2 CIF and C 2 H 2 F 4 .
  • the heat pump according to the invention comprises a saturated solution, in Liquefied gas, of a solid chosen from CaCl 2 , KOH, LiCl, LiBr, ZnC1 2 , ZnBr 2 and Gas, in these cases, is H 2 O.
  • the heat pump comprises two reactors, each placed in a heat exchange situation with one of the heat sources and they are connected together by a gas transfer pipe.
  • This tubing can be fitted with a compressor.
  • the reactor in which the monovariant reaction of the gas with the saturated solution takes place is provided with a stirring system.
  • the heat pump comprises a reactor 1 and a reactor 2, linked together by line 3.
  • Each reactor is provided with a heat exchanger 4 to 5 allowing the exchange of calories between the reaction medium and the external sources of calories. .
  • Reactor 1 contains the liquid in equilibrium with its vapor phase
  • Reactor 2 contains the saturated solid solution.
  • the gas from reactor 1 condenses at the saturated solution and releases its latent heat of condensation ⁇ H while diluting the solution.
  • the differential heat of dilution of the saturated solution is + ⁇ H D , it is an exothermic reaction.
  • excess solid dissolves to maintain the concentration at saturation, with a heat ⁇ H S of dissolution of the salt in the saturated solution.
  • the gas evaporates from the solution contained in reactor 1 to go to reactor 2 which then plays the role of condenser. The solution is concentrated and the solid must crystallize. The enthalpies involved are the same as before, in opposite sign.
  • FIG. 4 shows a heating installation produced according to the present invention and in LaqueLLe
  • the heating period corresponds only to the destocking phase. It is understood that, as mentioned above, the installation could also be used for heating during the storage period.
  • Part A of Figure 4 represents the storage phase while Part B represents the destocking phase.
  • the heat pump is symbolized by its two reactors (1) and (2) and by the gas pipe (3).
  • the reactor (1) is connected to a hot source constituted, in the installation shown, by a solar collector (12).
  • the calories given up in the reactor (2) during the condensation of the gas are rejected into the atmosphere but they could as well be used for heating or even be stored.
  • the reactor (2) is supplied with calories by a cold source, symbolized by the arrow (11). The calories are recovered in reactor 1 and used for heating.
  • the three-phase system used was Saturated solution of Lithium chloride, water vapor and Lithium chloride monohydrate.
  • the range of existence of the hydrate in solid form with the saturated solution is between 19 and 95 ° C.
  • the mass storage capacity, measured between a storage operation at 90 ° C and a destocking operation at 45 ° C, was 146 Wh / kg.
  • ⁇ T temperature rise of approximately 41 ° C.
  • a chemical heat pump according to the invention has been produced which involves a reaction of the gas with a saturated solution and a reaction of absorption of said gas by a solid.
  • phase rule shows that the system is mono-variant.
  • FIG. 3 shows the LiCl / LiCl H 2 0 absorption curve, referenced by the reference 9. This curve is located to the right of the curve corresponding to the saturated solution.
  • the assembly works as in the previous example, with a storage phase and a destocking phase, and gives identical results.
  • a compressor can be provided on the tubing (3) so as to improve the reaction kinetics or else to place a stirring device inside the reactor (1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A thermochemical heat pump for the transfer of calories between two calorie sources (1, 4) and (2, 5). The heat pump embodies a monovariant system for which the relationship between the logarithm of the pressure and 1/T is singular and quasi-linear. Application to heating.

Description

La présente invention concerne une pompe à chaleur thermochimique permettant de réaliser des transferts de calories entre une première source de calories et une deuxième source de calories.The present invention relates to a thermochemical heat pump making it possible to transfer calories between a first source of calories and a second source of calories.

Cette pompe à chaleur fonctionne selon un cycle intermittent de stockage de chaleur et de destockage.This heat pump operates on an intermittent cycle of heat storage and destocking.

On a déjà proposé plusieurs types de pompe à chaleur ther- mochimiques ayant soit un fonctionnement continu, soit un fonctionnement intermittent et qui peuvent fonctionner pour fournir des calories-chauffage- ou en prélever-refroidissement.Several types of thermochemical heat pump have already been proposed which have either continuous or intermittent operation and which can operate to supply calories-heating- or to draw-cooling.

Pour obtenir de bons échanges de chaleur entre le milieu réactionnel et La source de calories, on a essayé de réaliser des systèmes pour LesqueLs Le milieu réactionnel comporte une phase Liquide, c'est ce qui est par exemple réalisé dans les systèmes à absorption gaz Liquide. Malheureusement, ces systèmes présentent L'inconvénient d'être divariants , c'est-à-dire que Les échanges de chaleurs ne se font pas à température constante ce qui soulève de nombreux problèmes lorsque L'on veut prévoir une gestion efficace de L'énergie.In order to obtain good heat exchanges between the reaction medium and the source of calories, we have tried to produce systems for the following. The reaction medium comprises a liquid phase, this is what is for example carried out in liquid gas absorption systems. . Unfortunately, these systems have the disadvantage of being divariant, that is to say that the heat exchanges are not done at constant temperature which raises many problems when one wants to provide for effective management of L ' energy.

On peut par exemple se reporter à La publication faite par JEAGER. F. A. et HALL-C.,A, "Ammoniated salt heat pump, thermal storage system", International Seminar on thermo- chemical energy storage, STOCKHOLM, 1980 p 339. Ces auteurs ont étudié l'ammoniacation de NH4Cl, NH4SCN et ne se sont intéressés qu'aux domaines de composition présentant une phase Liquide unique pour lesquels La variance est deux.One can for example refer to The publication made by JEAGER. FA and HALL-C., A, "Ammoniated salt heat pump, thermal storage system", International Seminar on thermo- chemical energy storage, STOCKHOLM, 1980 p 339. These authors studied the ammoniacation of NH 4 Cl, NH 4 SCN and were only interested in the composition areas with a single liquid phase for which the variance is two.

L'invention prévoit, au contraire, un système monovariant c'est-à-dire un système pour lequel La relation entre le logarithme de La pression et 1/T est unique et quasi-Linéaire.The invention provides, on the contrary, a monovariant system, that is to say a system for which the relation between the logarithm of the pressure and 1 / T is unique and quasi-linear.

Des essais dans ce sens ont été effectués par R.W. MAR qui dans son articte "Chemical heat pump reactions above the solidus. A feasibility study" Rapport S.A.N.D. 79-8036, indique que des systèmes basés sur La réaction de CaCl2 et de l'eau, au dessus de La courbe de solidus ne peuvent pas être utilisés pour réaliser des pompes à chaleur thermochi- miques car ils présentent des vitesses de réactions très faibles. Au confraire, Les demandeurs se sont aperçus qu'il était possible de réaliser des pompes à chaleur thermochi- miques avec un système triphasique monovariant pour LequeL L'absorption du gaz par une solution saturée correspond à un seul équilibre, c'est-à-dire que L'on a une seule réaction alors que MAR a considéré que L'échange thermique se faisait au cours de deux réactions distinctes concernant chacune un composé solide différent.Tests in this direction were carried out by RW MAR which in its article "Chemical heat pump reactions above the solidus. A feasibility study" Report SAND 79-8036, indicates that systems based on the reaction of CaCl 2 and water , above the solidus curve cannot be used to make thermochemical heat pumps because they have very low reaction rates. On the contrary, The applicants have realized that it is possible to produce thermochemical heat pumps with a three-phase monovariant system for LequeL The absorption of gas by a saturated solution corresponds to a single equilibrium, that is to say say that there is only one reaction whereas MAR has considered that the heat exchange takes place during two distinct reactions each concerning a different solid compound.

Pour cela, L'invention prévoit une pompe à chaleur thermochimique permettant de transférer des calories d'une première source de chaleur vers une deuxième source de chaleur par utilisation d'un milieu réactionnel. Elle est caractérisée en ce que l'échange de calories entre une des deux sources et ledit milieu réactionnel a lieu lors d'une réaction entre un gaz et une phase liquide constituée par une solution saturée en solide ou deux Liquides non miscibles, Ladite réaction étant monovariante.For this, the invention provides a thermochemical heat pump for transferring calories from a first heat source to a second heat source by using a reaction medium. It is characterized in that the exchange of calories between one of the two sources and said reaction medium takes place during a reaction between a gas and a liquid phase constituted by a solution saturated with solid or two immiscible liquids, said reaction being monovariant.

Selon l'invention, L'échange de calories entre La deuxième source et le milieu réactionnel se fait lors d'une réaction de changement de phase gaz-liquide dudit gaz, réaction monovariante, ou lors d'une réaction d'absorption dudit gaz par un solide,According to the invention, the exchange of calories between the second source and the reaction medium takes place during a gas-liquid phase change reaction of said gas, a monovariant reaction, or during an absorption reaction of said gas by a solid,

Le gaz peut être constitué par de la vapeur d'eau ou de l'ammoniac, ou encore choisi parmi le méthanol, l'éthanol, le butanol, La méthykamine, la diméthylamine, la triméthyl- amine, l'éthylamine, la diéthylamine, Les fluoroalcanes, les fluoroalcanes chlorés, le difluorométhylsilane, Le chlorodifluorosilane, Le disiloxane, Le propane, le butane, L'acétone et l'acéthaldéhyde, les fluoroalcanes étant eux mêmes choisis parmi CC13F, CC12 F2, CHCl2F, CHC1F2,Cl3 C2 F3, Cl2C2F4, C2HC1F4, C2H2C1F3, CH2CIF et C2 H 2F4. De préférence, La pompe à chaleur selon L'invention comporte une solution saturée, dans Le gaz Liquéfié, d'un solide choisi parmi CaCl2, KOH, LiCl, LiBr, ZnC12, ZnBr2 et Le gaz, dans ces cas là, est H2O.The gas may consist of water vapor or ammonia, or alternatively chosen from methanol, ethanol, butanol, Methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, Fluoroalkanes, chlorinated fluoroalkanes, difluoromethylsilane, Chlorodifluorosilane, Disiloxane, Propane, butane, Acetone and acethaldehyde, fluoroalkanes being themselves chosen from CC1 3 F, CC1 2 F 2 , CHCl 2 F, CHC1F 2 , Cl 3 C 2 F 3 , Cl 2 C 2 F 4 , C 2 HC1F 4 , C 2 H 2 C1F 3 , CH 2 CIF and C 2 H 2 F 4 . Preferably, the heat pump according to the invention comprises a saturated solution, in Liquefied gas, of a solid chosen from CaCl 2 , KOH, LiCl, LiBr, ZnC1 2 , ZnBr 2 and Gas, in these cases, is H 2 O.

Selon un mode particulier de L'invention, la pompe à chaleur comporte deux réacteurs, placés chacun en situation d'échange thermique avec une des sources de calories et ils sont reliés entre eux par une tubulure de transfert du gaz. Cette tubulure peut être munie d'un compresseur.According to a particular embodiment of the invention, the heat pump comprises two reactors, each placed in a heat exchange situation with one of the heat sources and they are connected together by a gas transfer pipe. This tubing can be fitted with a compressor.

Le réacteur dans lequel a lieu La réaction monovariante du gaz avec La solution saturée est muni d'un système d'agitation.The reactor in which the monovariant reaction of the gas with the saturated solution takes place is provided with a stirring system.

Les avantages, ainsi que le fonctionnement de la pompe à chaleur selon L'invention, apparaitront plus clairement à la lecture de La description suivante faite d'une manière non limitative en référence aux dessins dans lesquels :

  • - La figure 1 représente une pompe selon L'invention pendant la phase de stockage
  • - La figure 2 représente La même pompe pendant La phase de destockage
  • - la figure 3 est un diagramme de Clapeyron,
  • - la figure 4 est une installation de chauffage selon L'invention.
The advantages, as well as the operation of the heat pump according to the invention, will appear more clearly on reading the following description made in a nonlimiting manner with reference to the drawings in which:
  • - Figure 1 shows a pump according to the invention during the storage phase
  • - Figure 2 shows the same pump during the destocking phase
  • FIG. 3 is a Clapeyron diagram,
  • - Figure 4 is a heating installation according to the invention.

On a représenté sur la figure 1, d'une manière schématique, une pompe à chaleur pendant La phase de stockage de l'énergie, sur La figure 2 la même pompe pendant La phase de déstockage et sur La figure 3 Le diagramme de Clapeyron correspondait.There is shown in Figure 1, schematically, a heat pump during the energy storage phase, in Figure 2 the same pump during the destocking phase and in Figure 3 The Clapeyron diagram corresponded .

La pompe à chaleur comporte un réacteur 1 et un réacteur 2, reliés entre eux par la conduite 3. Chaque réacteur est muni d'un échangeur de chaleur 4 à 5 permettant L'échange de calories entre Le milieu réactionnel et les sources extérieures de calories.The heat pump comprises a reactor 1 and a reactor 2, linked together by line 3. Each reactor is provided with a heat exchanger 4 to 5 allowing the exchange of calories between the reaction medium and the external sources of calories. .

Le réacteur 1 contient Le liquide en équilibre avec sa phase vapeur, le réacteur 2 contient La solution saturée de solide.Reactor 1 contains the liquid in equilibrium with its vapor phase, Reactor 2 contains the saturated solid solution.

Dans cet exemple, les réactifs et les réactions mises en jeux sont les suivantes :

  • réacteur 1 - Le liquide est de L'eau, de sorte que l'on a La réaction
    Figure imgb0001
    réacteur 2 - le solide est du chlorure de lithium monohydraté, il est en solution dans l'eau.
    Figure imgb0002
In this example, the reagents and reactions involved are as follows:
  • reactor 1 - The liquid is Water, so that we have The reaction
    Figure imgb0001
    reactor 2 - the solid is lithium chloride monohydrate, it is in solution in water.
    Figure imgb0002

Lors de La phase de déstockage, Le gaz provenant du réacteur 1 se condense au niveau de la solution saturée et libère sa chaleur latente de condensation Δ H tout en diluant La solution. La chaleur différentielle de dilution de la solution saturée est+ Δ HD, c'est une réaction exothermique. Parallèlement, du solide en excès se dissous pour maintenir La concentration à La saturation, avec une chaleur Δ HS de dissolution du sel dans la solution saturée. Lors de phase de stockage, le gaz s'évapore à partir de la solution contenue dans le réacteur 1 pour aller dans le réacteur 2 qui joue alors le rôle de condenseur. La solution se concentre et Le solide doit cristalliser. Les enthalpies mises en jeu sont les mêmes que précédemment, en signe opposé.During the destocking phase, the gas from reactor 1 condenses at the saturated solution and releases its latent heat of condensation Δ H while diluting the solution. The differential heat of dilution of the saturated solution is + Δ H D , it is an exothermic reaction. At the same time, excess solid dissolves to maintain the concentration at saturation, with a heat Δ H S of dissolution of the salt in the saturated solution. During the storage phase, the gas evaporates from the solution contained in reactor 1 to go to reactor 2 which then plays the role of condenser. The solution is concentrated and the solid must crystallize. The enthalpies involved are the same as before, in opposite sign.

En principe, on néglige les enthalpies Δ HD et Δ Hs qui sont d'un ordre de grandeur très inférieur à Δ HL et généralement de signe opposé.In principle, we ignore the enthalpies Δ H D and Δ H s which are of an order of magnitude much less than Δ H L and generally of opposite sign.

Si on se reporte à La figure 3 qui est un diagramme de Clapeyron des réactions mises en jeu dans lequel La courbe (7) correspond à l'équilibre Liquide-vapeur et la courbe(8) correspond à l'équilibre Solide+gaz → SoLution saturée, on voit que si on fournit une quantité de calories Δ H1 à une température Th, on récupère Δ H2 à une température Tu qui est inférieure à Th.If we refer to Figure 3 which is a Clapeyron diagram of the reactions involved in which The curve (7) corresponds to the liquid-vapor equilibrium and the curve (8) corresponds to the Solid + gas equilibrium → SoLution saturated, we see that if we supply a quantity of calories Δ H 1 at a temperature Th, we recover Δ H 2 at a temperature Tu which is lower than Th.

De même, pendant La phase de désfiockage si on fournit Δ H2 à La température Tb, on va récupérer Δ H1 à La température T'u, qui est supérieure à Tb.Similarly, during the defiockage phase if Δ H 2 is supplied at temperature Tb, we will recover Δ H 1 at temperature T'u, which is greater than Tb.

Dans un but de simplification, on considérera que Tu et T'u sont identiques.For the sake of simplification, we will consider that Tu and T'u are identical.

On comprend donc que pendant les deux étapes du cycle, stockage et destockage, de la chaleur est délivrée à la température Tu qui correspond à la température utile pour le chauffage.It is therefore understood that during the two stages of the cycle, storage and destocking, heat is delivered at the temperature Tu which corresponds to the temperature useful for heating.

L'intérêt de ce système réside dans Le fait qu'il est monovariant dans les deux réactions et que alors, la température Tu est constante. De plus, Les échanges de calories sont faciLités par la présence d'une phase liquide dans chaque réacteur.The interest of this system lies in the fact that it is monovariant in the two reactions and that then, the temperature Tu is constant. In addition, the exchange of calories is facilitated by the presence of a liquid phase in each reactor.

On représente sur la figure 4 une installation de chauffage réalisée selon la présente invention et dans LaqueLLe La période de chauffage correspond uniquement à La phase de destockage. IL est bien entendu que, comme il a été mentionné plus haut, L'instaLLation pourrait aussi être utllisée en chauffage pendant La période de stockage.FIG. 4 shows a heating installation produced according to the present invention and in LaqueLLe The heating period corresponds only to the destocking phase. It is understood that, as mentioned above, the installation could also be used for heating during the storage period.

La partie A de la figure 4 représente La phase de stockage alors que La partie B représente la phase de déstockage.Part A of Figure 4 represents the storage phase while Part B represents the destocking phase.

La pompe à chaleur est symbolisée par ses deux réacteurs (1) et (2) et par La conduite de gaz (3).The heat pump is symbolized by its two reactors (1) and (2) and by the gas pipe (3).

Pendant La phase de stockage, le réacteur (1) est relié à une source chaude constituée, dans l'installation représentée, par un capteur solaire (12). Les calories cédées dans Le réacteur (2) lors de La condensation du gaz sont rejetées à L'atmosphère mais elles pourraient aussi bien être utilisées pour le chauffage ou encore être stockées.During the storage phase, the reactor (1) is connected to a hot source constituted, in the installation shown, by a solar collector (12). The calories given up in the reactor (2) during the condensation of the gas are rejected into the atmosphere but they could as well be used for heating or even be stored.

Pendant la phase de déstockage, Le réacteur (2) est alimenté en caLories par une source froide, symbolisé par La flèche (11). Les calories sont récupérées dans Le réacteur 1 et utilisées pour Le chauffage.During the destocking phase, the reactor (2) is supplied with calories by a cold source, symbolized by the arrow (11). The calories are recovered in reactor 1 and used for heating.

Dans cet exemple de réalisation, Les résultats énergétiques suivants ont été obtenus.In this exemplary embodiment, the following energy results have been obtained.

Le système triphasique utilisé était La solution saturée de chlorure de Lithium, la vapeur d'eau et Le chlorure de Lithium monohydraté. Pour ce système, Le domaine d'existence de L'hydrate sous forme soLide avec La solution saturée est compris entre 19 et 95°C. La capacité de stockage massique, mesurée entre une opération de stockage à 90°C et une opération de déstockage à 45°C, était de 146 Wh/kg. Enfin, on a obtenu, pendant Le destockage, une remontée de température d'environ 41°C (Δ T).The three-phase system used was Saturated solution of Lithium chloride, water vapor and Lithium chloride monohydrate. For this system, the range of existence of the hydrate in solid form with the saturated solution is between 19 and 95 ° C. The mass storage capacity, measured between a storage operation at 90 ° C and a destocking operation at 45 ° C, was 146 Wh / kg. Finally, during the destocking, a temperature rise of approximately 41 ° C. (Δ T) was obtained.

Le tableau ci-après donne les résultats obtenus avec d'autres sels.

Figure imgb0003
The table below gives the results obtained with other salts.
Figure imgb0003

On a d'autre part réalisé une pompe à chaleur chimique selon L'invention qui met en jeu une réaction du gaz avec une solution saturée et une réaction d'absorption dudit gaz par un solide.On the other hand, a chemical heat pump according to the invention has been produced which involves a reaction of the gas with a saturated solution and a reaction of absorption of said gas by a solid.

Pour cela on a pris Le même dispositif que précédemment. Dans Le premier réacteur, on a placé La solution solide saturée de Liquide LiCL, H2O( ).For this we took the same device as before. The saturated solid solution of Liquid LiCL, H 2 O () was placed in the first reactor.

Dans l'autre réacteur, on a placé Le solide constitué par du chlorure de lithium anhydre qui est susceptible d'absorber de l'eau vapeur pour donner LiCl H20 qui est solide.The solid consisting of anhydrous lithium chloride, which is capable of absorbing steam water, was placed in the other reactor, to give LiCl H 2 O which is solid.

La règle des phases montre que Le système est mono-variant.The phase rule shows that the system is mono-variant.

On a représenté sur La figure 3 La courbe d'absorption LiCl/LiCl H20, référencée par Le repère 9. Cette courbe se situe à droite de La courbe correspondant à La solution saturée. L'ensemble fonctionne comme dans l'exemple précédent, avec une phase de stockage et une phase de déstockage, et donne des résultats identiques.FIG. 3 shows the LiCl / LiCl H 2 0 absorption curve, referenced by the reference 9. This curve is located to the right of the curve corresponding to the saturated solution. The assembly works as in the previous example, with a storage phase and a destocking phase, and gives identical results.

Mais l'invention n'est pas Limitée aux modes de réalisation décrits. ELle en englobe au contraire toutes les variantes.However, the invention is not limited to the embodiments described. On the contrary, it encompasses all variants.

C'est ainsi par exemple que l'on peut prévoir un compresseur sur La tubulure (3) de façon à améliorer La cinétique de réaction ou encore de placer un dispositif d'agitation à l'intérieur du réacteur (1).Thus, for example, a compressor can be provided on the tubing (3) so as to improve the reaction kinetics or else to place a stirring device inside the reactor (1).

Claims (12)

1 - Pompe à chaleur thermochimique permettant de transférer des calories d'une première source de chaleur (1,4) vers une deuxième source de chaleur (2,5) par utilisation d'un milieu réactionnel, caractérisée en ce que L'échange de calories entre une des deux sources et ledit milieu réactionnel a lieu Lors d'une réaction entre gaz et une phase liquide constituée par une solution saturée en solide ou deux Liquides non miscibles, ladife réaction étant monovariante.1 - Thermochemical heat pump for transferring calories from a first heat source (1,4) to a second heat source (2,5) by using a reaction medium, characterized in that The exchange of calories between one of the two sources and said reaction medium takes place During a reaction between gas and a liquid phase consisting of a saturated solid solution or two immiscible liquids, the reaction reaction being monovariant. 2 - Pompe à chaleur selon La revendication 1, caractérisée en ce que l'échange de calories entre La deuxième source et Le milieu réactionnel se fait lors d'une réaction de changement de phase gaz-liquide dudit gaz.2 - Heat pump according to claim 1, characterized in that the exchange of calories between the second source and the reaction medium takes place during a gas-liquid phase change reaction of said gas. 3 - Pompe à chaleur selon la revendication 1, caractérisée en ce que Le gaz est La vapeur d'eau.3 - Heat pump according to claim 1, characterized in that the gas is water vapor. 4 - Pompe à chaleur selon La revendication 1, caractérisée en ce que Le gaz est de L'ammoniac.4 - Heat pump according to claim 1, characterized in that the gas is ammonia. 5 - Pompe à chaleur selon La revendication 1, caractérisée en ce que Le gaz est choisi parmi Le méthanol, l'éthanol Le butanol, La méthylamine, la diméthylamine, la triméthyl- amine, l'éthylamine, la diéthylamine, les fluoroalcal- canes, Les fluoroalcanes chlorés, le difluorométhylsilane, le chorodifluorosilane, Le disiloxane, Le propane, le butane, L'acétone et l'acétaldéhyde.5 - Heat pump according to claim 1, characterized in that the gas is chosen from methanol, ethanol butanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, fluoroalkalcanes , Chlorinated fluoroalkanes, difluoromethylsilane, chorodifluorosilane, disiloxane, propane, butane, acetone and acetaldehyde. 6 - Pompe à chaleur selon La revendication 1, caractérisée en ce que les fLuoroaLcanes chlorés sont choisis parmi CCl3F,CCl2F2, CHCl2F, CHC2F2, Cl3C2F3, Cl2C2F4, C2H ClF4, C2H2ClF3, CH2ClF et C2H2F4·6 - Heat pump according to claim 1, characterized in that the chlorinated fLuoroaLcanes are chosen from CCl 3 F, CCl 2 F 2 , CHCl 2 F, CHC2F 2 , Cl 3 C 2 F 3 , Cl 2 C 2 F 4 , C 2 H ClF 4 , C 2 H 2 ClF 3 , CH 2 ClF and C 2 H 2 F 4 · 7 - Pompe à chaleur selon La revendication 1, caractérisé en ce que La phase liquide est constituée par une solution saturée, dans Le gaz Liquéfié, d'un solide choisi parmi CaCl2, KOH, LiCl2, LiBr, ZnC12, ZnBr2.7 - Heat pump according to claim 1, characterized in that The liquid phase consists of a saturated solution, in Liquefied gas, of a solid chosen from CaCl 2 , KOH, LiCl 2 , LiBr, ZnC1 2 , ZnBr 2 . 8 - Pompe à chaleur selon La revendication 7, caractérisée en ce que Le gaz est H20.8 - Heat pump according to claim 7, characterized in that the gas is H20. 9 - Pompe à chaleur selon la revendication 1, caractérisée en ce qu'elle comporte deux réacteurs placés chacun en situation d'échange thermique avec L'une des sources et reliés entre eux par une tubulure de transfert du gaz.9 - Heat pump according to claim 1, characterized in that it comprises two reactors each placed in a heat exchange situation with one of the sources and connected together by a gas transfer pipe. 10 - Pompe à chaleur selon La revendication 9, caractérisée en ce que La tubulure de transfert du gaz est munie d'un compresseur.10 - Heat pump according to claim 9, characterized in that The gas transfer pipe is provided with a compressor. 11 - Pompe à chaleur selon la revendication 9, caractérisée en ce que le réacteur dans lequel a lieu La réaction monovariante du gaz avec la solution saturée est muni d'un système d'agitation.11 - Heat pump according to claim 9, characterized in that the reactor in which takes place The monovariant reaction of the gas with the saturated solution is provided with a stirring system. 12 - Pompe à chaleur selon La revendication 1, caractérisée en ce que L'échange de calories entre la deuxième source et Le milieu réactionnel se fait lors d'une réaction d'absorption du gaz sur un solide.12 - Heat pump according to claim 1, characterized in that the exchange of calories between the second source and the reaction medium takes place during an absorption reaction of the gas on a solid.
EP84401360A 1983-07-01 1984-06-26 Heat transfer process with a three-phase monovariant reaction Expired EP0130908B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401360T ATE29578T1 (en) 1983-07-01 1984-06-26 HEAT TRANSFER METHOD USING A MONOVARIAN THREE-PHASE REACTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8310955 1983-07-01
FR8310955A FR2548340B1 (en) 1983-07-01 1983-07-01 THREE-PHASE HEAT PUMP

Publications (2)

Publication Number Publication Date
EP0130908A1 true EP0130908A1 (en) 1985-01-09
EP0130908B1 EP0130908B1 (en) 1987-09-09

Family

ID=9290394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401360A Expired EP0130908B1 (en) 1983-07-01 1984-06-26 Heat transfer process with a three-phase monovariant reaction

Country Status (7)

Country Link
US (2) US4682476A (en)
EP (1) EP0130908B1 (en)
JP (1) JPS6026261A (en)
AT (1) ATE29578T1 (en)
CA (1) CA1236312A (en)
DE (1) DE3466059D1 (en)
FR (1) FR2548340B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582790A1 (en) * 1985-06-04 1986-12-05 Elf Aquitaine THERMO-CHEMICAL METHOD AND DEVICE FOR HEAT STORAGE AND STORAGE
WO1989009374A1 (en) * 1988-03-30 1989-10-05 Societe Nationale Elf Aquitaine Chemical heat carrier, process for regenerating said heat carrier and use of the latter
WO1996009500A1 (en) * 1994-09-22 1996-03-28 Thermal Energy Accumulator Products Pty. Ltd. A temperature control system for fluids

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548340B1 (en) * 1983-07-01 1986-03-21 Elf Aquitaine THREE-PHASE HEAT PUMP
ES2036677T3 (en) * 1987-04-14 1993-06-01 Uwe Rockenfeller CHEMICAL ENERGY ACCUMULATION SYSTEM.
US4974419A (en) * 1988-03-17 1990-12-04 Liquid Co2 Engineering Inc. Apparatus and method for simultaneously heating and cooling separate zones
IN171470B (en) * 1987-07-07 1992-10-24 Int Thermal Packaging Inc
US4759191A (en) * 1987-07-07 1988-07-26 Liquid Co2 Engineering, Inc. Miniaturized cooling device and method of use
US4949549A (en) * 1987-07-07 1990-08-21 International Thermal Packaging, Inc. Cooling device with improved waste-heat handling capability
US4993239A (en) * 1987-07-07 1991-02-19 International Thermal Packaging, Inc. Cooling device with improved waste-heat handling capability
US4901535A (en) * 1987-07-07 1990-02-20 Sabin Cullen M Temperature changing device improved evaporation characteristics
US4744224A (en) * 1987-07-27 1988-05-17 Erickson Donald C Intermittent solar ammonia absorption cycle refrigerator
DE3837880A1 (en) * 1988-11-08 1990-05-10 Zeolith Tech REFRIGERATED TANK FOR A SORPTION APPARATUS
US5197302A (en) * 1989-01-05 1993-03-30 International Thermal Packaging, Inc. Vacuum insulated sorbent-driven refrigeration device
US5048301A (en) * 1989-01-05 1991-09-17 International Thermal Packaging Vacuum insulated sorbent driven refrigeration device
US5018368A (en) * 1989-10-12 1991-05-28 International Thermal Packaging, Inc. Multi-staged desiccant refrigeration device
US5490398A (en) * 1993-03-15 1996-02-13 Airex Research And Development, Inc. High efficiency absorption cooling and heating apparatus and method
FR2723438B1 (en) 1994-08-02 1996-09-20 Lorraine Carbone IMPROVED POWER CHEMICAL HEAT PUMP REACTOR
FR2748093B1 (en) * 1996-04-25 1998-06-12 Elf Aquitaine THERMOCHEMICAL DEVICE TO PRODUCE COLD AND / OR HEAT
SE515688C2 (en) * 1998-12-18 2001-09-24 Suncool Ab Chemical heat pump and process for cooling and / or heating
US7260940B2 (en) * 2002-12-13 2007-08-28 The Tokyo Electric Power Company, Incorporated Heat pump using gas hydrate, and heat utilizing apparatus
SE527721C2 (en) * 2003-12-08 2006-05-23 Climatewell Ab Chemical heat pump operating according to the hybrid principle
FR2878940A1 (en) * 2004-12-06 2006-06-09 Guy Karsenti AIR CONDITIONING DEVICE OF THE ABSORPTION HEAT PUMP TYPE, ESPECIALLY FOR LOW VOLUME SPEAKERS, AND SPEAKER HAVING THE SAME
CN101737996B (en) * 2008-11-17 2012-02-01 苏庆泉 Heat pump circulating system and cooling/heating united supply method
EP2759679A1 (en) * 2013-01-23 2014-07-30 Siemens Aktiengesellschaft Thermal storage device for the utilisation of low temperature heat
US20210325092A1 (en) * 2018-02-06 2021-10-21 John Saavedra Heat Transfer Device
CN113025281A (en) * 2021-03-18 2021-06-25 天津大学 Refrigerant containing organic silicon

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE380828A (en) *
US2138686A (en) * 1933-02-28 1938-11-29 Altenkirch Edmund Intermittent absorption refrigerating apparatus
FR2172754A1 (en) * 1972-02-21 1973-10-05 Greiner Leonard Heating and cooling apparatus with absorption chemical - and fluid to be absorbed
US3828566A (en) * 1973-02-05 1974-08-13 C Wetzel Dry adsorption refrigeration system
FR2307236A1 (en) * 1975-04-10 1976-11-05 Allied Chem METHOD AND DEVICES FOR HEATING BY ABSORPTION, AND COMPOSITIONS USED FOR THIS PURPOSE, INCLUDING FLUOROHYDROCARBON SOLUTES DISSOLVED IN FURAN CORE ABSORBENTS
FR2393246A1 (en) * 1977-05-31 1978-12-29 Brunberg Ernst Ake METHOD AND APPARATUS FOR COOLING A SPACE
DE2923480A1 (en) * 1979-06-09 1980-12-18 Erno Raumfahrttechnik Gmbh METHOD FOR STORAGE, IN PARTICULAR, LOW TEMPERATURE HEAT
EP0035871A1 (en) * 1980-03-07 1981-09-16 Thermal Energy Storage, Inc Closed vaporization heat transfer system
US4319626A (en) * 1976-07-06 1982-03-16 Martin Marietta Corp. Chemical storage of energy
US4332139A (en) * 1978-12-27 1982-06-01 The Director-General Of The Agency Of Industrial Science And Technology Method for storage and recovery of thermal energy
US4386501A (en) * 1981-07-29 1983-06-07 Martin Marietta Corporation Heat pump using liquid ammoniated ammonium chloride, and thermal storage system
US4411384A (en) * 1980-08-29 1983-10-25 The United States Of America As Represented By The Secretary Of The Navy Heat driven heat pump using paired ammoniated salts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2144441A (en) * 1932-10-27 1939-01-17 Schlumbohm Peter Method of conditioning an absorption refrigerating system
US2182453A (en) * 1936-01-18 1939-12-05 William H Sellew Heat transfer process and apparatus
US4532778A (en) * 1979-11-16 1985-08-06 Rocket Research Company Chemical heat pump and chemical energy storage system
FR2548340B1 (en) * 1983-07-01 1986-03-21 Elf Aquitaine THREE-PHASE HEAT PUMP

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE380828A (en) *
US2138686A (en) * 1933-02-28 1938-11-29 Altenkirch Edmund Intermittent absorption refrigerating apparatus
FR2172754A1 (en) * 1972-02-21 1973-10-05 Greiner Leonard Heating and cooling apparatus with absorption chemical - and fluid to be absorbed
US3828566A (en) * 1973-02-05 1974-08-13 C Wetzel Dry adsorption refrigeration system
FR2307236A1 (en) * 1975-04-10 1976-11-05 Allied Chem METHOD AND DEVICES FOR HEATING BY ABSORPTION, AND COMPOSITIONS USED FOR THIS PURPOSE, INCLUDING FLUOROHYDROCARBON SOLUTES DISSOLVED IN FURAN CORE ABSORBENTS
US4319626A (en) * 1976-07-06 1982-03-16 Martin Marietta Corp. Chemical storage of energy
FR2393246A1 (en) * 1977-05-31 1978-12-29 Brunberg Ernst Ake METHOD AND APPARATUS FOR COOLING A SPACE
US4332139A (en) * 1978-12-27 1982-06-01 The Director-General Of The Agency Of Industrial Science And Technology Method for storage and recovery of thermal energy
DE2923480A1 (en) * 1979-06-09 1980-12-18 Erno Raumfahrttechnik Gmbh METHOD FOR STORAGE, IN PARTICULAR, LOW TEMPERATURE HEAT
EP0035871A1 (en) * 1980-03-07 1981-09-16 Thermal Energy Storage, Inc Closed vaporization heat transfer system
US4411384A (en) * 1980-08-29 1983-10-25 The United States Of America As Represented By The Secretary Of The Navy Heat driven heat pump using paired ammoniated salts
US4386501A (en) * 1981-07-29 1983-06-07 Martin Marietta Corporation Heat pump using liquid ammoniated ammonium chloride, and thermal storage system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SOLAR ENERGY, vol. 19, no. 1, 1977, Pergamon PressOXFORD (GB) D.R. BISWAS: "Thermal energy storage using sodium sulfate decahydrate and water", pages 99-100. *
SOLAR ENERGY, vol. 24, no. 6, 1980 OXFORD (GB) C. WYMAN et al.: "A review of collector and energy storage technology", pages 528-540. *
SOLAR ENERGY, vol. 27, no. 6, 1981, Pergamon Press Ltd. OXFORD (GB) J. FLECHON et al.: "Solar refrigeration: study of dry absorption", pages 583-586. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582790A1 (en) * 1985-06-04 1986-12-05 Elf Aquitaine THERMO-CHEMICAL METHOD AND DEVICE FOR HEAT STORAGE AND STORAGE
EP0206875A1 (en) * 1985-06-04 1986-12-30 Societe Nationale Elf Aquitaine Thermochemical method and device for storing and discharging heat
WO1989009374A1 (en) * 1988-03-30 1989-10-05 Societe Nationale Elf Aquitaine Chemical heat carrier, process for regenerating said heat carrier and use of the latter
FR2629575A1 (en) * 1988-03-30 1989-10-06 Elf Aquitaine CHEMICAL PIPE, METHOD FOR REGENERATING SUCH A PIPE AND USE OF THE SAME
EP0336816A1 (en) * 1988-03-30 1989-10-11 Societe Nationale Elf Aquitaine Chemical heat pipe, process of regeneration and use of same
WO1996009500A1 (en) * 1994-09-22 1996-03-28 Thermal Energy Accumulator Products Pty. Ltd. A temperature control system for fluids

Also Published As

Publication number Publication date
ATE29578T1 (en) 1987-09-15
DE3466059D1 (en) 1987-10-15
JPS6026261A (en) 1985-02-09
EP0130908B1 (en) 1987-09-09
FR2548340B1 (en) 1986-03-21
US4682476A (en) 1987-07-28
US4873842A (en) 1989-10-17
FR2548340A1 (en) 1985-01-04
CA1236312A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
EP0130908A1 (en) Heat transfer process with a three-phase monovariant reaction
EP0382586A1 (en) Device for producing cold and/or heat by solid-gas reaction
CA1273199A (en) Thermochemical heat storage and release process and device
CA2028327C (en) Apparatus and process for producing refrigeration and/or heat by solid-gas reaction managed by gravitational heat pipes
EP0148756A2 (en) System for the revaluation of low-level thermal energy using phenomena of evaporation, and solution of two fluids being in equilibrium of vapour pressure at different temperatures
EP1809955B1 (en) Production of very low-temperature refrigeration in a thermochemical device.
Zhang et al. Experimental investigation on a strontium chloride/ammonia sorption heat storage system
US20170158931A1 (en) Salt Mixture
FR3084542A1 (en) HEAT-MANAGED PHOTOVOLTAIC CELL
WO2015121743A1 (en) Thermal energy storage and delivery device
EP3721152B1 (en) Thermochemical heat pump and method for redistribution of variable power calorific energy
EP1432953B1 (en) Method for producing refigeration or heat using a sorption system
US3125159A (en) Apparatus for transferring heat
EP3543312B1 (en) Heat transfer medium melting composition, heat transfer system using same, and power generation device using heat transfer system
EP1523643B1 (en) Method for producing cold and installation therefor
EP1809956B1 (en) Production of very low-temperature refrigeration in a thermochemical device
EP0160047A1 (en) Process for the reversible transfer of thermal energy and heat transfer system useful therein
WO2024052614A1 (en) Lithium hydroxide-based thermal energy storage device
JP2018077002A (en) Chemical heat storage system
JPS6096892A (en) Method of regenerating heat
EP0336816A1 (en) Chemical heat pipe, process of regeneration and use of same
WO2004039488A2 (en) Method for using a thermochemical transformer, and device comprising a chemical reactor and a thermochemical transformer
Prado Montes Development of an Elevated Temperature Loop Heat Pipe for Space Applications and Investigation of Non Condensable Gas Impact on its Performance
FR2730299A1 (en) DIPHASIC HEAT EXCHANGER WITH CONTROLLED TEMPERATURE
EP2742275A1 (en) Method for filling a gas storage tank

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840630

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 29578

Country of ref document: AT

Date of ref document: 19870915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3466059

Country of ref document: DE

Date of ref document: 19871015

ITF It: translation for a ep patent filed

Owner name: TOP - PATENTS - ITALO INCOLLINGO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890616

Year of fee payment: 6

Ref country code: CH

Payment date: 19890616

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890622

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890629

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 6

Ref country code: LU

Payment date: 19890630

Year of fee payment: 6

Ref country code: GB

Payment date: 19890630

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890718

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900626

Ref country code: AT

Effective date: 19900626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: SOC. NATIONALE ELF AQUITAINE

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84401360.7

Effective date: 19910206