EP0129926B1 - Dispositif de commande automatique d'une opération de trancanage - Google Patents

Dispositif de commande automatique d'une opération de trancanage Download PDF

Info

Publication number
EP0129926B1
EP0129926B1 EP84200844A EP84200844A EP0129926B1 EP 0129926 B1 EP0129926 B1 EP 0129926B1 EP 84200844 A EP84200844 A EP 84200844A EP 84200844 A EP84200844 A EP 84200844A EP 0129926 B1 EP0129926 B1 EP 0129926B1
Authority
EP
European Patent Office
Prior art keywords
cable
winding
image
drum
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84200844A
Other languages
German (de)
English (en)
Other versions
EP0129926A2 (fr
EP0129926A3 (en
Inventor
Bruno Buluschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maillefer SA
Original Assignee
Maillefer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maillefer SA filed Critical Maillefer SA
Priority to AT84200844T priority Critical patent/ATE56682T1/de
Publication of EP0129926A2 publication Critical patent/EP0129926A2/fr
Publication of EP0129926A3 publication Critical patent/EP0129926A3/fr
Application granted granted Critical
Publication of EP0129926B1 publication Critical patent/EP0129926B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2848Arrangements for aligned winding
    • B65H54/2854Detection or control of aligned winding or reversal
    • B65H54/2869Control of the rotating speed of the reel or the traversing speed for aligned winding
    • B65H54/2875Control of the rotating speed of the reel or the traversing speed for aligned winding by detecting or following the already wound material, e.g. contour following
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/42Cameras

Definitions

  • the present invention relates to the winding of large diameter cables on spools according to the preamble of claim 1 (known from EP-A-43368).
  • large diameter cable is meant insulated electrical cables with an outside diameter greater than 10 mm.
  • the diameter of the cables does not exceed 60 mm.
  • these cables are produced in segments as long as possible and they are wound on spools whose dimensions often reach several meters in diameter.
  • the winders supporting these coils and driving them in rotation are large mass devices requiring for their drive powerful and bulky motors.
  • Patent CH 576,392 describes a winder of this kind in which the cutting trolley is supported by a rail parallel to the axis of the spool holder and the spool holder itself has two independent uprights, one of the 'other and likely to move on rails also parallel to the same axis. It is thus possible to carry out either cutting operations in which the cutting carriage and consequently the cable guide move parallel to the axis of the coil over the entire length of the latter, or so-called self-cutting operations in which the cutting carriage remains fixed and it is the whole of the reel support which moves in translation in front of the cutting carriage.
  • the cutting trolley is movable in front of the spool holder and its drive is connected to the spool drive so that the speed of the cutting is proportional to the speed of the winding.
  • fig. 1 schematically shows a coil 1 on which a cable 2 is being deposited turn by turn.
  • the coil 1 comprises a cylindrical barrel 3 and two end flanges 4 and 5 also called cheeks having the form of discs.
  • the cable 2 is hooked by its end into a hole 6 formed in the barrel 3 of the coil 1.
  • the winding of the cable on the drum of the coil does not consist of successive parallel helices but forms a series of irregular curves.
  • the cable arrival strand designated by 7
  • the delay angle is maintained at a suitable angle called the delay angle and designated in FIG. 1 by r.
  • the angle of the strand 7 relative to a plane perpendicular to the axis of the coil must be modified and during the deposition of the last turn of a layer this angle must be brought to zero.
  • the delay angle is reversed, since during the deposition of a layer forming from left to right, this angle must be inverted compared to the value it has during the deposition of a layer forming from right to left.
  • EP 0 043 368 discloses a winder for large diameter cables which is equipped with an automatic control and command device.
  • This device comprises a detector which indicates, at each turn of the reel, the moment when the deflection which marks the start of a turn is at the location where the cable arrives on the winding, so as to move the reel by relative to the cable guide and thus maintain a delay angle of predetermined and constant value.
  • the object of the present invention is to create a device for automatically controlling a cutting operation capable of equipping large winders capable of supporting and driving reels intended to receive long lengths of cables of greater diameter. at 10 mm.
  • the subject of the present invention is an automatic control device for a cutting operation, capable of controlling the formation of a winding with successive turns and layers by a cable coming from a production or processing line, on the drum of a reel to which the cable is attached, the reel (1) being rotated about its axis on a support (10, 12), and the cable (2) passing through a cable guide (23, 24 ) which is movable relative to the reel support (10, 12) in the direction of said axis and which guides the cable with a predetermined delay angle towards a location for depositing a turn, characterized in that it com carries a turn formation detector (28, 29), comprising projection means (28, 29, 31), a reception surface (33) and detector means (34) placed on said reception surface and arranged to transmit an electrical signal representative of an image of the silhouette of a predetermined area of the winding comprising said location for depositing the cable, image formed on the receiving surface (33) by the projection means, in that it comprises furthermore separate drive means (x, y, z) capable of controlling the
  • MP means of analysis
  • FIGS. 2 and 3 We will begin by briefly describing the winding installation shown in FIGS. 2 and 3.
  • the barrel 3 and the left flange 5 of the coil 1 are visible in section through a plane perpendicular to the axis of the coil in FIG. 2.
  • the flange 5 is supported by a pinole 8 (fig. 3) carried itself by a bearing 9 integral with the left upright 10 of the winder.
  • the upper cross member 11 of the winding machine (fig. 2) extends parallel to the axis of the reel 1 and guides the upper end of the upright 12 which includes a bearing 13 itself guiding a pinole 14 supporting the right flange 4 of the reel 1.
  • the two uprights 10 and 12 of the winder rest on bases 15 and 16, provided with rollers 17 which roll on two parallel rails 18.
  • the rollers 17 are linked to drive means making it possible to move the whole of the winder back and forth on the rails 18, while means for driving the reel 1 (not shown) rotate one of the pinoles 8 or 14 provided with coupling elements to the corresponding flange of the reel.
  • the drive means of the coil are capable of rotating the latter around its axis at a constant or variable speed depending on conditions which can be predetermined. Thus, for example, the drive of the coil can take place at constant resistance torque.
  • a cutting support which comprises a rigid vertical upright 19 provided with guide means shown in the drawing by a dovetail groove 20 extending vertically and capable of guiding a horizontal arm 21 which can thus be moved vertically from top to bottom and bottom to top on the upright 19.
  • This support arm 21 itself has in its upper face a guide groove 22 in which slides a cutting carriage 23.
  • the latter carries two rollers cylindrical with vertical axes 24 arranged parallel to one another at such a distance from each other that the strand 7 of the cable 2 is guided closely between these two rollers.
  • Driving means not shown make it possible to move the carriage 23 from left to right and from right to left parallel to the axis of the coil 1 in front of the latter, the strand 7 of the cable being further guided in the height direction.
  • the rollers 25 are supported at their ends by uprights 26 which rest on the support arm 21.
  • Another support arm 27 secured to the horizontal base 21 makes it possible to fix above this base a camera 28, the principle of the optical system is shown schematically in FIG. 4.
  • This camera 28 has a lens 29 whose axis of the optical system is oriented horizontally and perpendicular to the axis of the coil 1.
  • the height of the axis of the objective 29 can be chosen at will and as will be seen later, it is controlled so that this axis is tangent to the last complete layer of the winding formed on the coil 1.
  • the axis of the objective 29 a direction different from that which has just been defined, in particular a slightly inclined direction, the rule of the tangency to the last complete layer of the winding being however a general rule
  • the described winding installation comprises a light ramp 30 arranged vertically opposite the camera 28 but on the other side of the coil.
  • this light ramp has the effect of projecting in a direction perpendicular to the axis of the coil the image of the silhouette of the winding, i.e. the image we obtain if we cut the winding being formed by a vertical plane passing through the axis of the coil.
  • This device is an optical device of a type known per se, in particular a device of the brand Reticon sold by the company EG & G. Inc. in Wellesley (Mass. USA).
  • This device called “image detection system” includes a lens 29 of the zoom type making it possible to vary the focal length and the magnification of the device.
  • the image formed by the objective is reflected by a 45 ° mirror 31 and projected as a real image onto a reception surface 33.
  • This reception surface 33 is materialized by a grid 34 which, in the embodiment described, is square and made up of a series of photodetector cells. These cells, for example photosensitive diodes are connected in a circuit materialized by a microprocessor MP.
  • a grid 34 formed of 1024 cells distributed over a square of 32 cells on the side allows detection sufficiently fine to meet the operating conditions.
  • the ramp 30 projects onto the objective 29 the shadow of the winding silhouette.
  • the objective 29 itself makes it possible to choose the size of the area of the winding which will be projected onto the grid 34 and it has been observed in particular that a magnification such as the area of the winding which is projected onto the grid 34 has the appearance shown in FIG. 5, was a suitable magnification.
  • FIG. 5 we see on the grid 34 formed of 1024 photodetector cells the image of the silhouette of a part of the winding comprising four turns of cables designated by A, B.
  • the cells are adjusted so that their state (conductive or non-conductive) changes according to whether they are exposed to the radiation from the ramp 30 where, for them, the ramp 30 is masked by the winding.
  • the 1024 cells will be divided into series each corresponding to a column so that by suitable switching of the electronic circuit MP, it will be possible, at any time, to perform a scanning operation during which all of the detector elements of the grid 34 will be explored successively, for example by successive columns.
  • This exploration will give rise to an electrical signal composed of a series of pulses in binary code giving for each element of the grid 34 its lit or hidden state.
  • the photo-diodes of the grid 34 will be explored by successive series, each series being composed by the elements of the same column.
  • Fig. 5 gives by way of example the result of such an exploration.
  • the 1024 photo-detector elements of the grid 34 are represented in the form of a square matrix numbered by lines and by columns. Each of these elements is designated by the number 35.
  • the image of the silhouette of a predetermined area of the winding as it appears on this grid is clearly represented in this fig. 5.
  • the silhouette of two turns A and B of the last complete layer deposited on the winding is clearly visible in the left part of the image as well as part of the silhouette of a turn C belonging to the same layer.
  • a fourth turn D of the last complete layer is completely embedded in the part of the image for which the elements are in the masked state. Above this complete layer, two turns E and F of the layer being formed appear. As it is visible in the drawing, this layer in formation is formed by successive turns going from right to left, although this may actually correspond to a layer forming from left to right as a result of the reversal of the image.
  • the winding being formed masks on the grid 34 the cells 35 which are on the right and below in FIG. 5, of a limit line G.
  • This line in fact envelops the profiles of the turns A, B, C. F and E.
  • a program element introduced in the microprocessor MP can determine the position on the grid 34, at any time, of the point S of this line corresponding to the vertex of the re-entrant right angle defined by the profiles of the turns B, C and F.
  • the essential characteristics of the detected image is therefore represented by the coordinates Y and X of the point S on the grid 34.
  • the central point of the grid being determined by reference coordinates C1 and C2, the ordinate Y designates the level at which the upper line of the layer formed by the turns A, B, C and D is located, while the abscissa X denotes the position along the X axis of the free edge of the image of the coil F.
  • the electronic circuit can emit control signals which will act on the various drive means that the device comprises, in order to correct the position of the point S determined by the coordinates X and Y and cause it to coincide with the center of the image, c . with the coordinates C1 and C2.
  • FIG. 6 the functional diagram of the control device described and we will now indicate how the result of the analysis of the image formed on the grid 34 at each scanning of the photo-diodes 35 is processed to act on the drive means.
  • the microprocessor MP which receives the information from the various detector means and which supplies the orders to the drive means.
  • a control panel 36 includes a number of control buttons 37 associated with indicator lamps 38 making it possible to put the device in the desired state so that the various control programs can run.
  • the different drive means are represented by the boxes 39 marked x, y, z and! respectively.
  • the marked box! is an alarm signal and draws the attention of the supervisory staff when a situation not foreseen by one of the programs arises.
  • the drive means marked z is a motor which acts on the cutting trolley 23 already described previously in relation to FIG. 2.
  • This motor can for example drive a pinion 40 in engagement with a rack 41 carried by the base 21.
  • the latter moves vertically on the upright 19 of the cutting device.
  • the control motor z makes it possible to move the two guide cylinders 24 in the horizontal direction relative to the camera 28
  • the rack and pinion gear 40, 41 is also equipped with a position detector which by a line 42 supplies the circuit MP with information on the instantaneous position of the cylinders 24 between which the cable passes relative to the base 21 and consequently to camera 28.
  • the drive motor acts therein in a manner which is not shown in detail in FIG. 6 on the base 21 to move it along the upright 19.
  • a detector 43 is also associated with it so that, by a line 44, information on the height of the base 21 and therefore of the camera 28, can be transmitted to the circuit MP.
  • the motor x acts on the bases 15 and 16 of the gantry winder and controls the rollers 17 thus causing an overall displacement of the winder on the rails 18.
  • a position mark 45 and a detector incorporated in the control of the rollers 17 make it possible to transmit to the circuit MP by a line 46 information on the instantaneous position of the winder along the rails 18.
  • the motor which rotates the coil 1 is shown diagrammatically in FIG. 6 and designated by 47. Normally, this motor is not directly controlled as a function of the results of the analysis of the image appearing on the grid 34. Indeed, it must meet other conditions. Its speed will be adjusted for example as a function of the resistance that the cable encounters in the line from which it comes and this motor will ensure the rotation of the coil, for example with a constant resistance torque. It can also work at constant speed. However, this motor is associated with an orientation detector shown diagrammatically in FIG. 6.
  • a wheel 48 rotating at the same speed as the coil 1 can be provided with regularly spaced tabs 49, so as to supply signals passing near a position detector 50, these signals being transmitted by a line 51 to the MP circuit in which they reach a counter which thus memorizes the orientation of the coil at all times.
  • the winding operation Before starting the control device, the winding operation must be prepared by first hooking the cable by its end into the opening 6 (fig. 1), this opening being located at one end of the drum 3 which can be the right end or the left end, and the coil being placed so that this opening is on the upper horizontal generator of the barrel.
  • the cutting device i.e. more precisely the base 21 will be placed so that the camera 28 whose axis of the lens 29 is fixed is clearly above the barrel of the coil. As shown in the drawing, this axis is oriented horizontally and perpendicular to the axis of the coil, although different axes can also be chosen. However, any movement of the winder or the base 21 carrying the camera should keep this axis parallel to itself.
  • Another essential adjustment to be made before the device is started consists in adjusting the magnification of the optical system 29 of the camera 28 as a function of the diameter of the cable. It is to allow this adjustment that the camera 28 is equipped with a variable focal length lens 29. The magnification will therefore be adjusted so that the image projected on the grid 34 corresponds in length to approx. 4 turns.
  • the conditions of fig. 5 correspond approximately to real conditions and it can be seen that the line G formed by straight line segments at right angles which limit the excited photo-diodes compared to those which are not gives an analog image of the real silhouette of the profile of the winding.
  • the automatic control device To allow the automatic control device to start, it is first of all necessary to lower the camera 28 and to start a program which brings the upper generator of the drum of the coil to be in the center of the image, c . that the ordinate Y is brought to be equal to the set value C1. This result is obtained by acting on the motor y which moves the base 21. Then, the winder is moved by acting on the motor x so that the image of the flange in the vicinity of which the cable is hung, appears in the center of the grid, i.e. that the abscissa X is equal to C2.
  • the preparation program for the operation of the automatic control device includes the adjustment of the starting position of the carriage 23.
  • the latter must be moved on the base 21 by control of the motor z, and this so that the abscissa Z is equal to zero, or in other words, that the center of the distance between the two rollers 24 coincides with a vertical reference plane which marks the axis of the camera lens 28.
  • the drive motor 47 of the coil 1 can be started.
  • the start of this second turn is immediately detected on the grid 34 by the fact that the abscissa X which locates the free flank of the last turn of the winding (turn F) differs from the value C2.
  • this detection is carried out immediately and depending on the results of the analysis, control signals are sent to either of the motors x or z, or possibly on both engines at the same time.
  • signals can also be sent to the y motor jointly or separately from the signals sent to the x and z motors.
  • one of the important features of the device described is that, depending on the importance or the speed of the variation of the detected image compared to the set image which corresponds to the desired conditions, differentiated control signals acting either on motor x or on motor z will be emitted by the MP circuit.
  • the position of the cutting trolley 23 relative to the axis of the objective 29, i.e. the Z coordinate will be set to correspond to a setpoint giving the desired angle r.
  • this angle is adjusted so as to be zero, then it takes the value of a delay angle determined in accordance with the winding conditions to ensure the regular deposition of the following turns against each other.
  • this angle can be temporarily changed.
  • the control device automatically re-engages the winding control program which runs until the new layer is practically complete and the internal surface of the opposite flange appears. again in the picture.
  • the device described makes it possible to act immediately and to correct the abnormal deviations without, for example, the number of connections to be established and the complication of the scanning circuits reaching uncontrollable values.
  • the basic element of the program consists in the fact that at the time of the formation of a new turn, the point S moves relative to the point of coordinates C1, C2.
  • This adjustment deviation expressed by a certain number of obscured cells is detected by the microprocessor and a signal is transmitted to one of the adjustment motors in order to make up for the detected deviation.
  • an optical system camera which may include a grid 34 having a surface area of 3 ⁇ 3 mm, it is obvious that the projection means capable of forming the image of the reception surface.
  • a predetermined area of the winding could be means of another type, using other radiation than visible light rays, for example infrared radiation or, where appropriate, ultrasound.
  • projection means means any arrangement having the effect that a radiation is partially obscured by the profile of the winding in the vicinity of the winding point and using this occultation to delimit on the receiving surface two regions, one of which represents the profile of the winding and the other the external environment of this profile.
  • a particularly advantageous means of projection consists of a lamp fixed immediately under the lens of the camera, and directing a light beam along an axis parallel to that of this lens and in a flat panel which has reflective properties for the light of the lamp and which is arranged vertically and parallel to the axis of the coil, at the location of the ramp 30, instead of the latter.
  • a reflective panel any flat surface coated with a sheet of material having catadioptric properties can be used, such as the sheets known under the name of "Scotchlight".
  • the "projection means" then being constituted by the wall or the bay and ambient light.
  • the lamp placed under the lens of the camera may have sufficient contrast by lighting the reel so that the profile of the latter appears in clear tone by relative to the dark environment, on the receiving surface furnished with the grid of photodetectors.

Landscapes

  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Winding Filamentary Materials (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Coiling Of Filamentary Materials In General (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Control And Safety Of Cranes (AREA)
  • Coating With Molten Metal (AREA)

Description

  • La présente invention concerne l'enroulement de câbles de grand diamètre sur des bobines selon le préambule de la revendication 1 (connu du EP-A-43368). Par câble de grand diamètre on entend des câbles électriques isolés dont le diamètre extérieur est supérieur à 10 mm. Cependant, en général, le diamètre des câbles ne dépasse pas 60 mm. Normalement, ces câbles sont produits en segments dont la longueur est aussi grande que possible et ils sont enroulés sur des bobines dont les dimensions atteignent souvent plusieurs mètres de diamètre. Les bobinoirs supportant ces bobines et les entraînant en rotation sont des appareils de grande masse nécessitant pour leur entraînement des moteurs puissants et volumineux. Le brevet CH 576 392 par exemple décrit un bobinoir de ce genre dans lequel le chariot de trancanage est supporté par un rail parallèle à l'axe du support de bobine et le support de bobine lui-même comporte deux montants indépendants l'un de l'autre et susceptibles de se déplacer sur des rails également parallèles au même axe. On peut ainsi réaliser soit des opérations de trancanage dans lesquelles le chariot de trancanage et par conséquent le guide-câble se déplacent parallèlement à l'axe de la bobine sur toute la longueur de cette dernière, soit des opérations dites d'auto-trancanage dans lesquelles le chariot de trancanage reste fixe et c'est l'ensemble du support de bobine qui se déplace en translation devant le chariot de trancanage.
  • On sait depuis longtemps réaliser des opérations de trancanage automatiques sur des bobinoirs de petites dimensions prévus pour la formation de bobines de fils téléphoniques par exemple, ces bobines ayant des joues atteignant un diamètre de 40 cm. Dans ce cas, le chariot de trancanage est mobile devant le support de bobine et son entraînement est connecté à l'entraînement de la bobine de sorte que la vitesse du trancanage est proportionnelle à la vitesse de l'enroulement.
  • Toutefois, lorsqu'il s'agit d'enrouler des câbles de grandes dimensions il n'est pas possible de commander une opération de trancanage automatique en rendant simplement la vitesse du chariot de trancanage proportionnelle à la vitesse de rotation de la bobine. Jusqu'à maintenant l'opération de trancanage est en général surveillée de façon constante par un opérateur. Pour illustrer les conditions mécaniques dans lesquelles les spires successives du câble se déposent sur le fût de la bobine on considérera tout d'abord la fig. 1 qui montre de façon schématique une bobine 1 sur laquelle un câble 2 est en train de se déposer spire par spire. La bobine 1 comporte un fût cylindrique 3 et deux flasques d'extrémité 4 et 5 aussi appelées joues ayant la forme de disques. Le câble 2 est accroché par son extrémité dans un trou 6 ménagé dans le fût 3 de la bobine 1. Celle-ci est entraînée en rotation dans le sens de la flèche A, de sorte qu'une première spire se dépose au contact du flasque 4. Toutefois, à la fin de la première spire, le câble 2 doit effectuer un mouvement de déviation sur la gauche afin que la seconde spire vienne se placer parallèlement et au contact de la première. Ainsi, l'enroulement du câble sur le fût de la bobine n'est pas constitué d'hélices successives parallèles mais forme une série de courbes irrégulières. Dans les bobinoirs connus sur lesquels l'opération d'enroulement est contrôlée constamment par un opérateur, on maintient le brin d'arrivée du câble, désigné par 7, sous un angle convenable appelé l'angle de retard et désigné à la fig. 1 par r. Evidemment, lorsque le dépôt d'une couche de spires est terminé, l'angle du brin 7 par rapport à un plan perpendiculaire à l'axe de la bobine doit être modifié et pendant le dépôt de la dernière spire d'une couche cet angle doit être amené à zéro. Lorsque la première spire de la couche suivante a été formée, il faut ensuite guider le brin 7 du câble de façon que l'angle de retard se renverse, puisque pendant le dépôt d'une couche se formant de gauche à droite, cet angle doit être inversé par rapport à la valeur qu'il a au cours du dépôt d'une couche se formant de droite àgauche.
  • On connaît, par le document EP 0 043 368, un bobinoir pour câbles de grand diamètre qui est équipé d'un dispositif de contrôle et de commande automatique. Ce dispositif comporte un détecteur qui indique, à chaque tour de la bobine, le moment où la déviation qui marque le début d'une spire se trouve à l'emplacement où le câble arrive sur l'enroulement, de manière à déplacer la bobine par rapport au guide-câble et, ainsi, conserver un angle de retard de valeur prédéterminé et constant.
  • Toutefois, la pratique montre que ce réglage est trop grossier pour donner des résultats satisfaisants dans tous les cas, de sorte qu'il était nécessaire de concevoir un dispositif plus souple que celui du document précité, afin de rendre possible effectivement une commande automatique.
  • La présente invention a pour but de créer un dispositif de commande automatique d'une opération de trancanage susceptible d'équiper des bobinoirs de grandes dimensions capables de supporter et d'entraîner des bobines destinées à recevoir de grandes longueurs de câbles d'un diamètre supérieur à 10 mm.
  • Dans ce but, la présente invention a pour objet un dispositif de commande automatique d'une opération de trancanage, capable de commander la formation d'un enroulement à spires et couches successives par un câble provenant d'une ligne de production ou de traitement, sur le fût d'une bobine auquel le câble est accroché, la bobine (1) étant entraînée en rotation autour de son axe sur un support (10, 12), et le câble (2) traversant un guide-câble (23, 24) qui est mobile par rapport au support de bobine (10, 12) dans le sens dudit axe et qui guide le câble avec un angle de retard prédéterminé vers un emplacement de dépôt d'une spire, caractérisé en ce qu'il comporte un détecteur de formation de spire (28, 29), comprenant des moyens de projection (28, 29, 31), une surface de réception (33) et des moyens détecteurs (34) placés sur ladite surface de réception et agencés pour émettre un signal électrique représentatif d'une image de la silhouette d'une zone prédéterminée de l'enroulement comprenant ledit emplacement de dépôt du câble, image formée sur la surface de réception (33) par les moyens de projection, en ce qu'il comporte en outre des moyens d'entraînement distincts (x, y, z) capables de provoquer des déplacements relatifs au moins dans le sens de l'axe du support de bobine entre le guide-câble (23, 24) et le détecteur de formation de spire (28, 29), et entre le support de bobine (10, 12) et le détecteur de formation de spire (28, 29), et en ce qu'il comporte enfin des moyens d'analyse (MP) dudit signal électrique, agencés pour élaborer des signaux de commande agissant sur lesdits moyens d'entraînement (x, y, z), de façon à maintenir, à un emplacement donné sur ladite surface de réception (33), ladite image de la silhouette de l'emplacement du dépôt du câble.
  • On va décrire ci-après à titre d'exemple une forme d'exécution du dispositif selon l'invention en se référant au dessin annexé, dont:
    • la fig. 1 est une vue schématique d'une bobine en cours d'enroulement déjà décrite ci-dessus,
    • la fig. 2 est une vue en coupe par un plan perpendiculaire à l'axe de la bobine d'un bobinoir équipé de la dite forme d'exécution du dispositif de commande,
    • la fig. 3 est une vue en plan de dessus du bobinoir représenté à la fig. 2,
    • la fig. 4 est une vue schématique du système optique incorporé au dispositif de commande,
    • la fig. 5 est une vue schématique à échelle agrandie montrant une grille d'éléments photo- électriques utilisée dans le dispositif de commande décrit,
    • la fig. 6 est un schéma électrique des éléments essentiels du dispositif de commande, et
    • la fig. 7 est un diagramme explicatif d'un algorithme du programme.
  • On commencera par décrire succinctement l'installation de bobinage représentée aux fig. 2 et 3. Le fût 3 et le flasque gauche 5 de la bobine 1 sont visibles en coupe par un plan perpendiculaire à l'axe de la bobine à la fig. 2. Le flasque 5 est supporté par une pinole 8 (fig. 3) portée elle-même par un palier 9 solidaire du montant gauche 10 du bobinoir. La traverse supérieure 11 du bobinoir (fig. 2) s'étend parallélement à l'axe de la bobine 1 et guide l'extrémité supérieure du montant 12 qui comporte un palier 13 guidant lui-même une pinole 14 supportant le flasque droit 4 de la bobine 1. Les deux montants 10 et 12 du bobinoir reposent sur des embases 15 et 16, munies de galets 17 qui roulen sur deux rails parallèles 18. Les galets 17 sont liés à des moyens d'entrainement permettant de déplacer l'ensemble du bobinoir en va et vient sur les rails 18, tandis que des moyens d'entraînement de la bobine 1 (non représentés) font tourner l'une des pinoles 8 ou 14 munie d'éléments d'accouplement au flasque correspondant de la bobine. Les moyens d'entraînement de la bobine sont capables de faire tourner cette dernière autour de son axe à une vitesse constante ou variable en fonction de conditions qui peuvent être prédéterminées. Ainsi par exemple, l'entraînement de la bobine peut avoir lieu à couple de résistance constant.
  • Devant le bobinoir proprement dit, est placé un support de trancanage qui comporte un montant vertical rigide 19 muni de moyens de guidage représentés au dessin par une gorge à queue d'aronde 20 s'étendant verticalement et apte à guider un bras horizontal 21 qui peut ainsi être déplacé verticalement de haut en bas et de bas en haut sur le montant 19. Ce bras de support 21 présente lui-même dans sa face supérieure une gorge de guidage 22 dans laquelle coulisse un chariot de trancanage 23. Ce dernier porte deux rouleaux cylindriques d'axes verticaux 24 disposés parallèlement l'un à l'autre à une distance telle l'un de l'autre que le brin d'arrivée 7 du câble 2 est guidé étroitement entre ces deux rouleaux. Des moyens d'entrainement non représentés permettent de déplacer le chariot 23 de gauche à droite et de droite à gauche parallèlement à l'axe de la bobine 1 devant cette dernière, le brin 7 du câble étant en outre guidé dans le sens de la hauteur entre deux rouleaux horizontaux 25 également distants l'un de l'autre d'une distance égale au diamètre du câble. Les rouleaux 25 sont supportés à leurs extrémités par des montants 26 qui reposent sur le bras de support 21. Un autre bras de support 27 solidaire du socle horizontal 21 permet de fixer au-dessus de ce socle une caméra 28 dont le principe du système optique est représenté schématiquement à la fig. 4. Cette caméra 28 possède un objectif 29 dont l'axe du système optique est orienté horizontalement et perpendiculairement à l'axe de la bobine 1. Comme le bras 27 est supporté par le socle 21 qui est lui-même mobile en hauteur, la hauteur de l'axe de l'objectif 29 peut être choisie à volonté et comme on le verra plus loin, elle est commandée de façon à ce que cet axe soit tangent à la dernière couche complète de l'enroulement formé sur la bobine 1. Bien entendu, selon les circonstances on peut aussi choisir pour l'axe de l'objectif 29 une direction différente de celle qui vient d'être définie, notamment une direction légèrement inclinée, la règle de la tangence à la dernière couche complète de l'enroulement étant toutefois une règle générale
  • Finalement, l'installation de bobinage décrite comporte une rampe lumineuse 30 disposée verticalement en regard de la caméra 28 mais de l'autre côté de la bobine. On se rend compte que cette rampe lumineuse a pour effet de projeter dans une direction perpendiculaire à l'axe de la bobine l'image de la silhouette de l'enroulement, c.à.d. l'image que l'on obtient si l'on coupe l'enroulement en cours de formation par un plan vertical passant par l'axe de la bobine.
  • On décrira maintenant le principe de la caméra 28. Il s'agit d'un appareil optique d'un type connu en soi, notamment d'un appareil de la marque Reticon vendu par la société EG & G. Inc. à Wellesley (Mass. U.S.A.). Cet appareil dénommé "système de détection d'images" comporte un objectif 29 du type zoom permettant de varier la distance focale et le grossissement de l'appareil. L'image formée par l'objectif est réfléchie par un miroir à 45° 31 et projetée en image réelle sur une surface de réception 33. Cette surface de réception 33 est matérialisée par une grille 34 qui dans la forme d'exécution décrite, est carrée et constituée par une série de cellules photo-détectrices. Ces cellules, par exemple des diodes photosensibles sont connectées dans un circuit matérialisé par un micro-processeur MP. Dans la forme d'exécution décrite on a trouvé qu'une grille 34 formée de 1024 cellules réparties sur un carré de 32 cellules de côté permettait une détection suffisamment fine pour répondre aux conditions de fonctionnement. En effet, la rampe 30 projette sur l'objectif 29 l'ombre de la silhouette de l'enroulement. L'objectif 29 permet lui-même de choisir la grandeur de la zone de l'enroulement qui sera projetée sur la grille 34 et on a constaté en particulier qu'un grossissement tel que la zone de l'enroulement qui est projetée sur la grille 34 a l'allure représentée à la fig. 5, était un grossissement convenable. A cette figure 5 on voit sur la grille 34 formée de 1024 cellules photodétectrices l'image de la silhouette d'une partie de l'enroulement comportant quatre spires de câbles désignées par A, B. C et D et faisant partie de la dernière couche complète déposée sur la bobine et l'image des deux dernières spires E et F de la couche en cours de formation, la spire F étant une spire partielle et la disposition géométrique étant telle que la partie de la silhouette désignée par F représente l'endroit où le brin 7 du câble 2 vient précisément se déposer sur l'enroulement. On constate que les cellules sont ajustées de façon que leur état (conducteur ou non conducteur) change selon qu'elles sont exposées au rayonnement de la rampe 30 où que, pour elles, la rampe 30 est masquée par l'enroulement. De préférence, les 1024 cellules seront réparties en séries correspondant chacune à une colonne de sorte que par une commutation convenable du circuit électronique MP on pourra, à chaque instant, effectuer une opération de balayage au cours de laquelle tous les éléments détecteurs de la grille 34 seront explorés successivement, par exemple par colonnes successives. Cette exploration donnera naissance à un signal électrique composé d'une suite d'impulsions en code binaire donnant pour chaque élément de la grille 34 son état éclairé ou caché. De préférence, les photos-diodes de la grille 34 seront explorées par séries successives, chaque série étant composée par les éléments d'une même colonne.
  • La fig. 5 donne à titre d'exemple le résultat d'une telle exploration. Sur cette figure, les 1024 éléments photo-détecteurs de la grille 34 sont représentés sous forme d'une matrice carrée numérotée par lignes et par colonnes. Chacun de ces éléments est désigné par le chiffre 35. L'image de la silhouette d'une zone prédéterminée de l'enroulement telle qu'elle apparaît sur cette grille est clairement représentée à cette fig. 5. La silhouette de deux spires A et B de la dernière couche complète déposée sur l'enroulement est clairement visible dans la partie de gauche de l'image de même qu'une partie de la silhouette d'une spire C appartenant à la même couche. Une quatrième spire D de la dernière couche complète est entièrement noyée dans la partie de l'image pour laquelle les éléments sont à l'état masqué. Au-dessus de cette couche complète on voit apparaître deux spires E et F de la couche en cours de formation. Telle qu'elle est visible au dessin, cette couche en formation se forme par spires successives allant de droite à gauche, bien que ceci puisse correspondre en réalité à une couche se formant de gauche à droite par suite du renversement de l'image.
  • L'enroulement en cours de formation masque sur la grille 34 les cellules 35 qui se trouvent à droite et en-dessous à la fig. 5, d'une ligne limite G. Cette ligne enveloppe en effet les profils des spires A, B, C. F et E. Par l'analyse de l'état des cellules voisines de la ligne G, un élément de programme, introduit dans le microprocesseur MP, peut déterminer la position sur la grille 34, à un instant quelconque, du point S de cette ligne correspondant au sommet de l'angle droit rentrant défini par les profils des spires B, C et F. Les caractéristiques essentielles de l'image détectée sont donc représentés par les coordonnées Y et X du point S sur la grille 34.
  • Le point central de la grille étant déterminé par des coordonnées de consigne C1 et C2, l'ordonnée Y désigne le niveau auquel se trouve la ligne supérieure de la couche formée par les spires A, B, C et D, tandis que l'abscisse X désigne la position le long de l'axe des X du flanc libre de l'image de la spire F. Après comparaison des résultats d'un balayage de la grille 34 avec les valeurs de consigne prédéterminées C1 et C2, le circuit électronique peut émettre des signaux de commande qui vont agir sur les différents moyens d'entraînement que comporte le dispositif, afin de corriger la position du point S déterminé par les coordonnées X et Y et l'amener à coincider avec le centre de l'image, c.à.d. avec les coordonnées C1 et C2.
  • De façon plus précise, on a représenté à la fig. 6 le schéma fonctionnel du dispositif de commande décrit et on indiquera maintenant comment le résultat de l'analyse de l'image formée sur la grille 34 à chaque balayage des photo-diodes 35 est traité pour agir sur les moyens d'entraînement. On voit à cette fig. 6 le microprocesseur MP qui reçoit les informations des différents moyens détecteurs et qui fournit les ordres aux moyens d'entraînement. Un tableau de commande 36 comporte un certain nombre de boutons de commande 37 associés à des lampes témoin 38 permettant de mettre le dispositif dans l'état voulu pour que les différents programmes de commande puissent se dérouler. Les différents moyens d'entraînement sont représentés par les cases 39 marquées respectivement x, y, z et !. La case marquee ! est un signal d'alarme et appelle l'attention du personnel surveillant lorsqu'une situation non prévue par l'un des programmes se présente. Le moyen d'entraînement marqué z est un moteur qui agit sur le chariot de trancanage 23 déjà décrit précédemment en relation avec la fig. 2. Ce moteur peut par exemple entraîner un pignon 40 en prise avec une crémaillière 41 portée par le socle 21. Celui-ci se déplace verticalement sur le montant 19 du dispositif de trancanage. On voit à la fig. 6 la caméra 28 qui est supportée dans une position fixe dans le sens horizontal mais mobile dans le sens vertical par le socle 21. Le moteur de commande z permet de déplacer les deux cylindres de guidage 24 dans le sens horizontal par rapport à la caméra 28. L'engrenage à crémaillière 40, 41 est également équipé d'un détecteur de position qui par une ligne 42 fournit au circuit MP une information sur la position instantanée des cylindres 24 entre lesquels passe le câble par rapport au socle 21 et par conséquent à la caméra 28.
  • Le moteur d'entraînement y agit d'une façon qui n'est pas représentée en détail à la fig. 6 sur le socle 21 pour le déplacer le long du montant 19. Un détecteur 43 lui est également associé afin que, par une ligne 44, une information sur la hauteur du socle 21 et par conséquent de la caméra 28, puisse être transmise au circuit MP.
  • Finalement, le moteur x agit sur les embase 15 et 16 du bobinoir à portique et commande les galets 17 provoquant ainsi un déplacement d'ensemble du bobinoir sur les rails 18. Un repère de position 45 et un détecteur incorporé à la commande des galets 17 permettent de transmettre au circuit MP par une ligne 46 une information sur la position instantanée du bobinoir le long des rails 18.
  • Le moteur qui entraîne en rotation la bobine 1 est représenté schématiquement à la fig. 6 et désigné par 47. Normalement, ce moteur n'est pas commandé directement en fonction des résultats de l'analyse de l'image apparaissant sur la grille 34. En effet, il doit répondre à d'autres conditions. Sa vitesse sera réglée par exemple en fonction de la résistance que le câble rencontre dans la ligne dont il provient et ce moteur assurera la rotation de la bobine, par exemple avec un couple de résistance constant. Il peut aussi travailler à vitesse de rotation constante. Néanmoins, à ce moteur est associé un détecteur d'orientation représenté schematiquement à la fig. 6. Une roue 48 tournant à la même vitesse que la bobine 1, peut être pourvue de taquets 49 régulièrement espacés, de façon à fournir des signaux en passant à proximité d'un détecteur de position 50, ces signaux étant transmis par une ligne 51 au circuit MP dans lequel ils atteignent un compteur qui mémorise ainsi à chaque instant l'orientation de la bobine.
  • Il reste maintenant à expliquer comment le dispositif décrit ci-dessus peut être programmé de façon à commander le dépôt régulier spire par spire et couche par couche du câble 2 sur la bobine 1, alors que l'image projetée sur la grille 34 ne représente qu'une zone de faible dimension du profil de l'enroulement.
  • Avant de mettre en route le dispositif de commande, l'opération de bobinage devra être préparée en accrochant tout d'abord le câble par son extrémité dans l'ouverture 6 (fig. 1), cette ouverture étant située à une extrémité du fût 3 qui peut être l'extrémité droite ou l'extrémité gauche, et la bobine étant placée de façon que cette ouverture se trouve sur la génératrice horizontale supérieure du fût. Le dispositif de trancanage, c.à.d. plus exactement le socle 21 sera placé de façon que la caméra 28 dont l'axe de l'objectif 29 est fixe se trouve nettement au-dessus du fût de la bobine. Tel qu'il est représenté au dessin, cet axe est orienté horizontalement et perpendiculairement à l'axe de la bobine, bien que des axes différents puissent aussi être choisis. Il convient cependant que tout déplacement du bobinoir ou du socle 21 portant la caméra maintienne cet axe parallèle à lui-même. Un autre réglage essentiel à effectuer avant la mise en route du dispositif consiste à ajuster le grossissement du système optique 29 de la caméra 28 en fonction du diamètre du câble. C'est pour permettre ce réglage que la caméra 28 est équipée d'un objectif à distance focale variable 29. Le grossissement sera donc ajusté de façon que l'image projetée sur la grille 34 corresponde en longueur à env. 4 spires. Les conditions de la fig. 5 correspondent approximativement à des conditions réelles et l'on voit que la ligne G formée de segments de droites à angle droit qui limitent les photo-diodes excitées par rapport à celles qui ne le sont pas donne une image analogique de la silhouette réelle du profil de l'enroulement.
  • Pour permettre la mise en route du dispositif de commande automatique il convient tout d'abord d'abaisser la caméra 28 et d'enclencher un programme qui amène la génératrice supérieure du fût de la bobine à se trouver au centre de l'image, c.à.d. que l'ordonnée Y est amenée à être égale à la valeur de consigne C1. Ce résultat est obtenu en agissant sur le moteur y qui déplace le socle 21. Ensuite, on déplace le bobinoir en agissant sur le moteur x afin que l'image du flasque au voisinage duquel le câble est accroché, apparaisse au centre de la grille, c.à.d. que l'abscisse X soit égale à C2.
  • Le programme de préparation au fonctionnement du dispositif automatique de commande comporte le réglage de la position de départ du chariot 23. Ce dernier doit être déplacé sur le socle 21 par commande du moteur z, et cela de façon que l'abscisse Z soit égale à zéro, ou autrement dit, que le centre de la distance entre les deux rouleaux 24 coincide avec un plan vertical de référence qui marque l'axe de l'objectif de la caméra 28. Dans ces conditions, te moteur d'entraînement 47 de la bobine 1 peut être mis en route. La première spire se dépose sur le fût de la bobine le long du flasque et après 3/4 de tours environ, qui sont détectés par le détecteur 48, 49, 50, un déplacement du chariot de trancanage 23 d'une distance z = D/2 (D étant égal au diamètre du câble), est commandé afin de passer à la formation de la seconde spire de l'enroulement. Le début de cette seconde spire est immédiatement détecté sur la grille 34 par le fait que l'abscisse X qui repère le flanc libre de la dernière spire de l'enroulement (spire F) diffère de la valeur C2. Comme la grille 34 subit une opération de balayage à intervalles répétés par exemple toutes les 20 ms, cette détection est opérée immédiatement et suivant les résultats de l'analyse, des signaux de commande sont envoyés sur l'un ou l'auttre des moteurs x ou z, ou éventuellement sur les deux moteurs en même temps. De plus, des signaux peuvent aussi être envoyés sur le moteur y conjointement ou séparément des signaux envoyés sur les moteurs x et z.
  • En effet, une des particularités importantes du dispositif décrit est que, suivant l'importance ou suivant la rapidité de la variation de l'image détectée par rapport à l'image de consigne qui correspond aux conditions désirées, des signaux de commande différenciés agissant soit sur le moteur x soit sur le moteur z seront émis par le circuit MP. Normalement, la position du chariot de trancanage 23 par rapport à l'axe de l'objectif 29, c.à.d. la coordonnée Z, sera réglée de façon à correspondre à une valeur de consigne donnant l'angle r désiré. Lors du dépôt de la première spire, cet angle est réglé de façon à être nul, puis il prend la valeur d'un angle de retard déterminé conformément aux conditions d'enroulement pour assurer le dépôt régulier des spires suivantes les unes contre les autres. Toutefois, lors de la détection de conditions anormales, cet angle peut être modifié passagèrement. Il suffit pour cela de programmer l'analyse des signaux représentant l'image portée sur la grille 34 afin que les signaux de commande émis agissent sur le moteur z. Grâce au fait que l'équipage mobile 23, 24, possède une inertie beacoup plus faible que la bobine et son support, le moteurz permet d'effectuer des corrections rapides de l'angle r. Toutefois, après tout écart anormal, le programme incorporé au circuit MP tendra à rétablir l'angle r optimum en agissant sur le moteur z et en même temps sur le moteur x afin que l'ensemble de la bobine défile progressivement devant l'objectif 29 de la caméra 28.
  • Un programme de commande d'inversion est enclenché automatiquement lorsqu'une couche formée par les spires A, B, C et D est pratiquement complète. La terminaison d'une couche de spires est détectée par le fait que le flasque opposé au flasque de départ, ou plus exactement la face interne de ce flasque apparaît sur l'image projetée sur la grille 34. On se rend compte facilement que cette circonstance peut être détectée par le fait que l'ensemble des photo-diodes de l'une ou de plusieurs des colonnes extrêmes de la grille sont masquées au moment où ce flasque apparaît dans l'image. Cette situation commande la mise en oeuvre du programme d'inversion qui comporte les opérations suivantes:
    • déplacement du chariot de trancanage afin d'amener l'angle r à la valeur zéro,
    • détection de l'apparition d'une première spire d'une nouvelle couche au voisinage du flasque et commande du moteur y afin d'élever le socle 21 et ramener ainsi l'ordonnée Y à la valeur C1, détection d'une rotation d'environ 3/4 de tours de la bobine 1,
    • commande du chariot de trancanage 23 afin de déplacer latéralement le câble d'une distance z = D/2.
    • commande des moteurs z et/ou x afin d'amener le flanc libre de la spire en cours de dépôt à l'abscisse C2,
    • rétablissement de l'angle de retard r, toutefois avec une orientation inverse de celle de la couche précédente.
  • Lorsque le programme d'inversion a été exécuté et contrôlé, le dispositif de commande réen- clenche automatiquement le programme de contrôle d'enroulement qui se déroule jusqu'à ce que la nouvelle couche soit pratiquement complète et que la surface interne du flasque opposé apparaisse à nouveau dans l'image.
  • Le dépôt de spires successives d'un câble sur le fût d'une bobine ou sur des couches d'enroulement déjà formées peut présenter de nombreuses irrégularités, de sorte que la détection de la situation réelle et la discrimination entre une situation normale et une situation anormale qu'il convient de corriger exigent une grande précision dans l'analyse de l'image de la silhouette de l'enroulement. On a constaté toutefois que grâce à l'utilisation d'une caméra qui forme l'image de cette silhouette sur une grille d'éléments photo- détecteurs, tels que des photo-diodes, des dispositifs connus permettaient de donner au problème posé une solution fiable. En limitant l'image de la silhouette à une zone de dimensions prédéterminées de l'enroulement et en choisissant une caméra ayant une résolution relativement petite, il était possible de prévoir une grille ayant un nombre non excessif d'éléments photo-détecteurs et d'observer avec suffisamment de précision l'image du profil des spires. Ainsi, le dispositif décrit permet d'agir immédiatement et de corriger les écarts anormaux sans que par exemple, le nombre de connections à établir et la complication des circuits de balayage n'atteignent des valeurs incontrôlables. C'est ainsi qu'une grille de 32 éléments en longueur et 32 éléments en largeur, donc 1024 éléments au total, s'est révelée être une grille suffisamment fine pour pouvoir piloter et commander les paramètres variables qu'il convient de maîtriser dans des conditions satisfaisantes.
  • Un autre élément important du dispositif décrit est le fait que, grâce à l'utilisation d'un objectif à distance focale variable (zoom) le champ de l'image portée sur la grille peut être réglé à volonté en fonction du diamètre du câble. Autrement dit, quelque soit le diamètre du câble, on peut obtenir sur la grille 34 une ligne G enveloppant un nombre constant de spires formées ou en cours de formation. Ceci permet d'utiliser le même dispositif de commande pour bobiner des câbles de différents diamètres, et représente un avantage considérable lors de l'utilisation pratique du dispositif.
  • Les essais ont montré que le déroulement du programme répétitif résumé par le diagramme de la fig. 7 permettait de contrôler et de commander automatiquement le dépôt d'un câble sur des bobines pesant plusieurs tonnes et atteignant plusieurs mètres de diamètre, ce qui simplifie considérablement le déroulement de ces opérations.
  • L'élément de base du programme consiste dans le fait qu'au moment de la formation d'une nouvelle spire, le point S se déplace par rapport au point de coordonnées C1, C2. Cet écart de réglage exprimé par un certain nombre de cellules 35 obscurcies est détecté par le microprocesseur et un signal est transmis à l'un des moteurs de réglage afin de rattraper l'écart détecté.
  • Des algorithmes spéciaux commandent automatiquement les trois opérations essentielles qu'il y a lieu d'effectuer au cours du dépôt du câble:
    • 1. Mettre le point S aux coordonnées C1 C2.
    • 2. Elever le socle 21, renverser le sens du trancanage et modifier l'angle r au moment du changement de couche.
    • 3. Détecter que les spires de la dernière couche se trouvent à la périphérie des flasques de la bobine et arrêter l'enroulement à la fin de cette couche.
  • On notera que toutes les opérations normales décrites ci-dessus peuvent se faire presqu'uniquement sur la base des données détectées lors de l'analyse de la ligne G. La seule donnée extérieure intervenant au cours de ces opérations est la mesure d'une rotation de 3/4 de tour depuis le début de chaque spire, pour la préparation au décalage de spire. Les détecteurs de fin de course décrits plus haut fonctionnent comme des éléments de sécurité.
  • Bien que l'on ait décrit ci-dessus une caméra à système optique qui peut comporter une grille 34 ayant 3 x 3 mm de surface, il est évident que les moyens de projection aptes à former sur la surface de réception l'image d'une zone prédéterminée de l'enroulement pourraient être des moyens d'un autre type, utilisant d'autres rayonnements que les rayons lumineux visibles, par exemple des rayonnements infrarouges ou le cas échéant des ultra-sons.
  • D'une façon générale, on entend par l'expression "moyens de projection" tout agencement ayant pour effet qu'un rayonnement subit une occultation partielle par le profil de l'enroulement au voisinage du point d'enroulement et utilisant cette occultation pour délimiter sur la surface de réception deux régions dont l'une représente le profil de l'enroulement et l'autre l'environnement extérieur de ce profil.
  • On a trouvé qu'un moyen de projection particulièrement avantageux consistait en une lampe fixée immédiatement sous l'objectif de la caméra, et dirigeant un faisceau lumineux selon un axe parallèle à celui de cet objectif et en un panneau plan qui présente des propriétés réfléchissantes pour la lumière de la lampe et qui est disposé verticalement et parallèlement à l'axe de la bobine, à l'emplacement de la rampe 30, en lieu et place de celle-ci. Comme panneau réflechissant on peut utiliser n'importe quelle surface plane revêtue d'une feuille de matière présentant des propriétés catadioptiques, comme les feuilles connues sous le nom de "Scotchlight". Dans certains cas, par exemple si la bobine se trouve devant un mur de couleur claire ou devant une baie vitrée, on peut même se passer de la lampe et du panneau réfléchissant, les "moyens de projection" étant alors constitués par le mur ou la baie et la lumière ambiante. Dans d'autres cas, par exemple si l'environnement de la bobine est sombre, la lampe placée sous l'objectif de la caméra peut avoir un contraste suffisant en éclairant la bobine pour que le profil de celle-ci apparaisse en ton clair par rapport à l'environnement sombre, sur la surface de réception garnie de la grille de photodétecteurs.

Claims (11)

1. Dispositif de commande automatique d'une opération de trancanage, capable de commander la formation d'un enroulement à spires et couches successives par un câble provenant d'une ligne de production ou de traitement, sur le fût d'une bobine auquel le câble est accroché, la bobine (1) étant entraînée en rotation autour de son axe sur un support (10, 12), et le câble (2) traversant un guide-câble (23, 24) qui est mobile par rapport au support de bobine (10, 12) dans le sens dudit axe et qui guide le câble avec un angle de retard prédéterminé vers un emplacement de dépôt d'une spire, caractérisé en ce qu'il comporte un détecteur de formation de spire (28, 29), comprenant des moyens de projection (28, 29, 31), une surface de réception (33) et des moyens détecteurs (34) placés sur ladite surface de réception et agencés pour émettre un signal électrique représentatif d'une image de la silhouette d'une zone prédéterminée de l'enroulement comprenant ledit emplacement de dépôt du câble, image formée sur la surface de réception (33) par les moyens de projection, en ce qu'il comporte en outre des moyens d'entraînement distincts (x, y, z) capables de provoquer des déplacements relatifs au moins dans le sens de l'axe du support de bobine entre le guide-câble (23, 24) et le détecteur de formation de spire (28, 29), et entre le support de bobine (10, 12) et le détecteur de formation de spire (28, 29), et en ce qu'il comporte enfin des moyens d'analyse (MP) dudit signal électrique, agencés pour élaborer des signaux de commande agissant sur lesdits moyens d'entraînement (x, y, z), de façon à maintenir, à un emplacement donné sur ladite surface de réception (33), ladite image de la silhouette de l'emplacement du dépôt du câble.
2. Dispositif selon la revendication 1, caractérisé en ce que les moyens d'analyse (MP) sont agencés de manière que lesdits déplacements relatifs entre le guide-câble (23, 24) et le support de bobine (10, 12) ont pour effet de maintenir l'angle de retard constant.
3. Dispositif selon la revendication 1 ou la revendication 2, caractérisé en ce que le guide-câble (23, 24) et le support de bobine (10,12) sont mobiles indépendamment l'un de l'autre dans le sens de l'axe de la bobine par rapport au detecteur de formation de seire (28, 29), et en que les moyens d'analyse (MP) sont agencés de façon à élaborer des signaux de commande de déplacement du guide-câble et/ou des signaux de commande de déplacement du support de bobine en fonction des résultats de l'analyse.
4. Dispositif selon la revendication 3, caractérisé en ce qu'il comporte des moyens de détection (42, 45, 46) des positions relatives du guide-câble (23, 24) et du support de bobine (10, 12) par rapport au detecteur de formation de spire (28, 29) et en ce que les moyens d'analyse (MP) sont agencés de manière que l'élaboration des signaux de commande utilise des signaux de détection donnant les dites positions relatives.
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les dits moyens de projection (28, 29, 31) et les moyens détecteurs (34) comportent les premiers un système optique et les seconds une grille d'éléments photodétecteurs placés sur la surface de réception (33), et en ce que le système optique (29) est agencé de manière que la dite zone prédéterminée dont l'image est formée sur la dite grille comporte la silhouette d'un nombre prédéterminé de spires et d'un nombre prédéterminé de couches, ce nombre étant indépendant du diamètre du câble.
6. Dispositif selon la revendication 5, caractérisé en ce que la dite image est de forme rectangulaire et comporte la silhouette d'une zone de l'enroulement comprenant environ quatre spires en longueur et environ deux couches en hauteur.
7. Dispositif selon la revendication 5, caractérisé en ce que les dits moyens détecteurs comportent des moyens de balayage qui sont actionnés périodiquement et forment à chaque actionnement une suite d'impulsions représentant en code binaire l'état des éléments photodétecteurs (34).
8. Dispositif selon la revendication 5, caractérisé en ce que le système optique (29) et la grille d'éléments photodétecteurs (34) sont mobiles conjointement en hauteur par rapport au support de bobine (10, 12) et sont liés à des moyens d'entraînement (y) les déplaçant selon un axe vertical, et en ce que les moyens d'analyse (MP) sont agencés de manière à élaborer des signaux de commande capables d'agir sur les dits moyens d'entraînement dans le sens vertical afin de maintenir au milieu de la hauteur de la grille la ligne formée dans la dite image par le bord supérieur de la dernière couche complète de l'enroulement.
9. Dispositif suivant la revendication 8, caractérisé en ce que les moyens d'analyse (MP) sont agencés de manière que les signaux de commande agissent sur les dits moyens d'entraînement (x, z) du guide-câble (23, 24) et du support de bobine (10, 12) par rapport aux moyens de projection (28, 29), afin de maintenir au centre de la grille un point de l'image de la silhouette de l'enroulement correspondant au sommet d'un angle rentrant déterminé par le bord libre de la dernière spire de la couche supérieure en cours de formation et le bord supérieur de la dernière couche complète de l'enroulement.
10. Dispositif selon une ou plusieurs des revendications 5-9, caractérisé en ce que les dits moyens d'analyse (MP) sont agencés de manière à élaborer des signaux de commande d'une inversion du trancanage quand l'image de la silhouette de la dite zone prédéterminée de l'enroulement comporte une extrémité du fût de la bobine.
11. Dispositif suivant la revendication 10, caractérisé en ce qu'il comporte un détecteur (49, 50) de l'orientation de la bobine par rapport à un plan de référence contenant l'axe de rotation de cette dernière et en ce que les signaux d'orientation émis par le dit détecteur sont utilisés dans la commande de l'inversion du trancanage.
EP84200844A 1983-06-24 1984-06-13 Dispositif de commande automatique d'une opération de trancanage Expired - Lifetime EP0129926B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84200844T ATE56682T1 (de) 1983-06-24 1984-06-13 Vorrichtung zum steuern einer verlegeoperation.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3466/83 1983-06-24
CH3466/83A CH653654A5 (fr) 1983-06-24 1983-06-24 Dispositif de commande automatique d'une operation de trancanage.

Publications (3)

Publication Number Publication Date
EP0129926A2 EP0129926A2 (fr) 1985-01-02
EP0129926A3 EP0129926A3 (en) 1986-11-26
EP0129926B1 true EP0129926B1 (fr) 1990-09-19

Family

ID=4256560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84200844A Expired - Lifetime EP0129926B1 (fr) 1983-06-24 1984-06-13 Dispositif de commande automatique d'une opération de trancanage

Country Status (7)

Country Link
US (1) US4570875A (fr)
EP (1) EP0129926B1 (fr)
JP (1) JPS6097168A (fr)
AT (1) ATE56682T1 (fr)
CH (1) CH653654A5 (fr)
DE (1) DE3483221D1 (fr)
FI (1) FI76048C (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726285A1 (de) * 1997-06-20 1998-12-24 Siemens Ag Verfahren und Einrichtung zum Aufwickeln von strangförmigen Wickelgut auf eine Spule
CN109031562A (zh) * 2018-09-14 2018-12-18 长飞光纤光缆股份有限公司 一种智能型光缆缆线收排线辅助装置及排线方法
CN109323764A (zh) * 2018-10-22 2019-02-12 江苏盛久变压器有限公司 一种线圈的测验装置
DE102018117687A1 (de) 2018-07-21 2020-01-23 Dr. Brandt Gmbh Vorrichtung und Verfahren zum optischen Überwachen der Anordnung wenigstens eines Zugmittels sowie Verwendung

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655410A (en) * 1985-12-23 1987-04-07 The United States Of America As Represented By The Secretary Of The Army Device for controlling optical fiber lag angle for fiber wound on a bobbin
US4920738A (en) * 1987-03-31 1990-05-01 The Boeing Company Apparatus for winding optical fiber on a bobbin
US4838500A (en) * 1987-06-18 1989-06-13 United States Of America As Represented By The Secretary Of The Army Process and apparatus for controlling winding angle
JPH01203174A (ja) * 1987-10-20 1989-08-15 Furukawa Electric Co Ltd:The 線状体の巻取方法
US4928904A (en) * 1988-10-05 1990-05-29 The Boeing Company Gap, overwind, and lead angle sensor for fiber optic bobbins
US4951889A (en) * 1989-06-12 1990-08-28 Epm Corporation Programmable perfect layer winding system
SE466702B (sv) * 1990-02-23 1992-03-23 Maillefer Nokia Holding Styranordning foer en spolmaskin foer straengformat gods
US5110065A (en) * 1991-03-14 1992-05-05 Hughes Aircraft Company Bobbin winding control
US5297748A (en) * 1991-08-02 1994-03-29 Hughes Aircraft Company Filament autowinder with fault detection
US5590846A (en) * 1992-07-20 1997-01-07 State Of Israel, Ministry Of Defence, Armament Development Authority System and method for monitoring progress of winding a fiber
IT1257931B (it) * 1992-12-14 1996-02-19 Ceat Cavi Ind Srl Sistema di controllo per una macchina bobinatrice per cavi elettrici e simili, comprendente un sistema di visione artificiale per il controllo della stratificazione delle spire, e procedimento di controllo di tale macchina
DE4243595A1 (de) * 1992-12-22 1994-06-23 Mag Masch App Verfahren und Vorrichtung zum Aufwickeln von Rundmaterial auf eine mit Endflanschen versehene Spule
DE19508051A1 (de) * 1995-02-23 1996-08-29 Hermann Jockisch Vorrichtung zur Erfassung des Zeitpunktes für die Umkehr des Wickelsinnes
JP2001063966A (ja) * 1999-08-23 2001-03-13 Aramaki Technica:Kk 巻取装置
DE19954072A1 (de) * 1999-11-10 2001-05-17 Siemens Ag Verfahren und Vorrichtung zum Aufwickeln von Kabeln auf eine Kabeltrommel
US6442897B1 (en) 2000-07-27 2002-09-03 Wayne-Dalton Corp. Counterbalance system cable drum for sectional doors
CA2756232C (fr) 2005-05-27 2012-08-07 Great Stuff, Inc. Devidoir pour tuyaux souples
CN104555622B (zh) * 2014-12-29 2017-01-11 大连理工大学 一种适用于不同直径光纤线圈制作的光纤缠绕机
ITUB20154968A1 (it) * 2015-10-16 2017-04-16 Danieli Automation Spa Dispositivo di gestione per apparato bobinatore e relativo metodo
CN105645179A (zh) * 2016-01-18 2016-06-08 国家电网公司 一种智能化电力卷线装置
JP6747747B2 (ja) * 2017-01-18 2020-08-26 三菱電機株式会社 巻線検査方法および巻線検査装置
CN109775443B (zh) * 2017-11-10 2022-01-04 苏州凌犀物联网技术有限公司 一种机头初始定位装置和初始定位方法
CN108689240B (zh) * 2018-04-10 2020-06-16 烟台大学 一种能够有效减少滑动摩擦的高精度张力可调控的走线装置
BE1026139B1 (de) * 2018-07-25 2019-10-18 Dr Brandt Gmbh Vorrichtung und Verfahren zum optischen Überwachen der Anordnung wenigstens eines Zugmittels sowie Verwendung
CN109230831A (zh) * 2018-08-24 2019-01-18 郝永范 一种线缆收卷装置
DE102019126699A1 (de) * 2019-08-02 2021-02-04 Liebherr-Components Biberach Gmbh Seilwinde sowie Hubvorrichtung mit einer solchen Seilwinde
DE102022132168B4 (de) 2021-12-07 2024-01-11 Oerlikon Textile Gmbh & Co. Kg Vorrichtung und Verfahren zum Aufwickeln eines Schmelzspinnfadens
CN116835471B (zh) * 2023-08-29 2023-12-05 河南科技学院 一种大起升高度永磁驱动起重机防乱绳装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH576392A5 (fr) * 1974-05-02 1976-06-15 Maillefer Sa
AU495293B2 (en) * 1974-08-27 1976-03-04 Sumitomo Electric Industries, Ltd. Automatic cable winding apparatus
US4150801A (en) * 1975-10-30 1979-04-24 Kobe Steel, Ltd. Automatic winding machine for wire-like object
DE3024094A1 (de) * 1980-06-27 1982-01-21 Rosendahl Industrie-Handels AG, Schönenwerd Wickelmaschine zum aufwickeln von strangfoermigem wickelgut auf eine spule
DE3024095A1 (de) * 1980-06-27 1982-01-21 Rosendahl Industrie-Handels AG, Schönenwerd Wickelmaschine zum aufwickeln von strangfoermigem wickelgut auf eine spule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fernseh & kino-Technik, Heft 4, 37. Jahrgang *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726285A1 (de) * 1997-06-20 1998-12-24 Siemens Ag Verfahren und Einrichtung zum Aufwickeln von strangförmigen Wickelgut auf eine Spule
DE102018117687A1 (de) 2018-07-21 2020-01-23 Dr. Brandt Gmbh Vorrichtung und Verfahren zum optischen Überwachen der Anordnung wenigstens eines Zugmittels sowie Verwendung
CN109031562A (zh) * 2018-09-14 2018-12-18 长飞光纤光缆股份有限公司 一种智能型光缆缆线收排线辅助装置及排线方法
CN109323764A (zh) * 2018-10-22 2019-02-12 江苏盛久变压器有限公司 一种线圈的测验装置

Also Published As

Publication number Publication date
JPH0229580B2 (fr) 1990-06-29
FI76048B (fi) 1988-05-31
FI842501A (fi) 1984-12-27
EP0129926A2 (fr) 1985-01-02
US4570875A (en) 1986-02-18
FI842501A0 (fi) 1984-06-20
EP0129926A3 (en) 1986-11-26
ATE56682T1 (de) 1990-10-15
FI76048C (fi) 1988-09-09
CH653654A5 (fr) 1986-01-15
JPS6097168A (ja) 1985-05-30
DE3483221D1 (de) 1990-10-25

Similar Documents

Publication Publication Date Title
EP0129926B1 (fr) Dispositif de commande automatique d'une opération de trancanage
FR2664043A1 (fr) Lentille a grandissement variable pour un appareil de prise de vues a profondeur de champ variable.
FR2514100A1 (fr) Procede de montage automatique d'un rouleau d'une feuille continue sur un support
FR2664042A1 (fr) Controleur de dimension de spot pour un appareil de prise de vues a profondeur de champ variable.
EP0216644B1 (fr) Ensemble de guidage de feuilles de matériau souple destinées à former un assemblage tridimensionnel
FR2531941A1 (fr) Machine pour la decoupe de pieces dans une matiere en bande
EP0216695B1 (fr) Procédé et machine pour la fabrication de pièces creuses de revolution formées de fils s'étendant selon trois directions différentes
FR2618769A1 (fr) Machine a derouler des bandes comportant des tours porte-bobines
FR2478147A1 (fr) Systeme de programmation pour machine a coudre
CA1284293C (fr) Dispositif de tronconnage d'un tube fabrique en continu
EP2013125B1 (fr) Procede et installation d'inspection d'une bande enroulee
FR2634472A1 (fr) Dispositif de trancanage automatique d'un cable ou fil sur un touret
FR2515161A1 (fr) Dispositif de mesure de course, notamment dispositif de mesure de hauteur pour des appareils elevateurs
FR2626642A1 (fr) Dispositif d'entrainement d'une piece dans un mouvement alternatif de translation
EP0110821B1 (fr) Procédé et dispositif de trancannage automatique à asservissement
EP0036374B1 (fr) Procédé et appareil de soudage avec suivi automatique du joint à souder
EP0226547A2 (fr) Dispositif de commande d'une opération de trancannage
EP1380327B1 (fr) Système de levage de décors pour salle de spectacle et notamment theâtre
EP0140801A1 (fr) Dispositif de commande de monte et baisse des porte-anneaux de machines textiles tels que métiers à retordre
EP0329918B1 (fr) Procédé de réfection d'une voie de chemin de fer
FR2470077A1 (fr) Procede et dispositif de reglage de cylindres enrouleurs de bandes
FR2712273A1 (fr) Procédé et dispositif pour contrôler l'opération de bobinage d'une bobineuse.
EP0190531A1 (fr) Procédé et dispositif pour le stockage, le transfert et la distribution d'objets
JP3516355B2 (ja) 扁平容器上にスライバー端部を載置するための方法およびこれを実施するための装置
JPH02221069A (ja) 線条体の整列巻き方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870429

17Q First examination report despatched

Effective date: 19880225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 56682

Country of ref document: AT

Date of ref document: 19901015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3483221

Country of ref document: DE

Date of ref document: 19901025

ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910515

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910528

Year of fee payment: 8

Ref country code: BE

Payment date: 19910528

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910627

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920613

Ref country code: AT

Effective date: 19920613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: S.A. MAILLEFER

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920613

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84200844.3

Effective date: 19930109