EP0128792B1 - Procédé et dispositif de combustion propre s'appliquant notamment au brûlage des combustibles lourds - Google Patents

Procédé et dispositif de combustion propre s'appliquant notamment au brûlage des combustibles lourds Download PDF

Info

Publication number
EP0128792B1
EP0128792B1 EP84400994A EP84400994A EP0128792B1 EP 0128792 B1 EP0128792 B1 EP 0128792B1 EP 84400994 A EP84400994 A EP 84400994A EP 84400994 A EP84400994 A EP 84400994A EP 0128792 B1 EP0128792 B1 EP 0128792B1
Authority
EP
European Patent Office
Prior art keywords
zone
combustion
combustible
gases
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400994A
Other languages
German (de)
English (en)
Other versions
EP0128792A1 (fr
Inventor
Philippe Bernard
François Prudhon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Rhone Poulenc Chimie de Base SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA, Rhone Poulenc Chimie de Base SA filed Critical Rhone Poulenc Chimie SA
Priority to AT84400994T priority Critical patent/ATE28695T1/de
Publication of EP0128792A1 publication Critical patent/EP0128792A1/fr
Application granted granted Critical
Publication of EP0128792B1 publication Critical patent/EP0128792B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/32Incineration of waste; Incinerator constructions; Details, accessories or control therefor the waste being subjected to a whirling movement, e.g. cyclonic incinerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls

Definitions

  • the present invention relates to a method and a device for clean combustion and applies in particular to the burning of heavy fuels.
  • clean combustion is meant combustion without final emission of carbonaceous particles.
  • FR-A-2 257 326 a method of contacting substances having different phases according to which at least one phase is used to form a well-vortex flow with axial symmetry and at less a phase is introduced along the axis of symmetry of said well-vortex flow, up to the zone in relative depression of said well-vortex flow, the momentum of the volume elements of the well-vortex flow relative to that of the volume elements of the axial phase being such that said well-vortex flow causes both the disintegration, the dispersion and the taking over of the axial phase and its possible treatment by the well-vortex flow.
  • FR-A-2 276 086 a method and a device have been claimed for the generation of hot gases by carrying out combustion in the zone in relative depression of a symmetrical helical flow.
  • EP-A-7 846 a new arrangement of the elements which amounts to making, in situ, the generation of hot gases in a first zone by imposing on said gases the form a well-vortex flow and introduce the material to be treated into the zone in relative depression of this flow, so as to avoid subjecting the sensitive parts of the device to the prolonged action of hot gases.
  • the object of the present invention is to overcome these drawbacks.
  • the combustible substance introduced into the second zone is given a low initial speed, preferably less than 10 m / s and if possible at 5 m / s, so as not to have to increase the initial amount of movement too much.
  • hot dispersing gas phase the ratio of the momentum of said hot dispersing gas phase to that of the combustible substance being at least 100 but generally lying preferably between 1,000 and 10,000.
  • the spraying thus takes place by transfer of the momentum and an isore-distributed dispersion is obtained at the entrance to the second instantaneous zone practically instantaneous in a spectrum of fine particles which are thus in the best conditions for homogeneous and rapid vaporization.
  • This spraying will be called a spraying spray.
  • this avoids the pitfall of poor dispersion of a hardly flammable substance and incomplete combustion at high temperature.
  • the present invention thus allows a spray quality which leads to clean combustion of heavy fuels, which, as already said, has not been possible until now.
  • the second gas stream is introduced tangentially to form a helical stream which can be made well-vortex by a restricted passage delimiting the second zone.
  • a material to be treated can be introduced axially into the zone in relative depression of this second flow.
  • This substance is, for example, a mineral solution or suspension, based on synthetic or natural carbonates, silicas, silico-aluminates, but it can also be of an organic nature, it can also be a residual water to be decontaminated.
  • the first gas stream used to produce the well-vortex flow is advantageously constituted by air.
  • the first fuel introduced can be supplied either in gaseous form or in the form of a spray cloud which is obtained by any known means such as a spray nozzle of the type described in the work by K. MASTERS entitled “SPRAY DRYING and published by George Godwin Limited-London (second edition - 1972), either by a device of the well-vortex flow type.
  • This first fuel is preferably chosen for its ease of combustion.
  • the second fuel to be treated such as heavy fuel or combustible suspension, is introduced axially into the zone in relative depression of the well-vortex flow coming from the first zone, so as to promote the suction effect due to said zone in relative depression.
  • the second fuel is generally a fuel corresponding to types 4 to 6 of the ASTM standards.
  • the second symmetrical well-vortex flow is obtained using an oxidizing gas such as air.
  • the helical currents introduced into a zone are advantageously under low pressure, preferably at a pressure less than 10 5 Pa relative to the pressure prevailing directly downstream of said zone when said pressure is equal to atmospheric pressure.
  • the chamber (1) has an envelope (3) closed at its upstream part by a bottom plate (4), an annular space (6) delimited internally by a perforated wall (7), a restricted passage (10), at least a pipe (8) for tangential supply of a gaseous phase and a means for injecting fuel (5) inside the chamber (1), the casing (3) ending downstream by a convergent ( 9) in which ends, along the axis of symmetry of rotation of the chamber (1), an injection device (11), substantially at the level of the restricted passage (10), the contacting chamber (2) extending downstream the chamber (1) along the same axis of rotational symmetry and being provided with a perforated wall (12) defining an annular space (13) with its envelope (14), space in which leads to at least one tangential inlet ( 15).
  • This device can also comprise (FIG. 2) a second treatment chamber (16) of a substance introduced by a second injection device (17) disposed substantially at the level of a second restricted passage (18).
  • a hot gas is generated by combustion of a first fuel.
  • the material to be treated is introduced and the well-whirlpool effect located downstream of the restricted passage is used to disperse the fuel into very fine elements volume.
  • the cooling of the chamber 1 is ensured by a circulation of cooling liquid comprising an annular circulation space 22 around the chamber 1.
  • This annular circulation space 22 can be replaced by a tubular assembly 23 hollowed out in the thickness of the walls of the chamber 1, as illustrated in FIG. 4, in particular on a small scale.
  • the temperature of the gas phase, coming from the second zone, will largely depend on the envisaged application.
  • test 8 the gas from the system was rehomogenized in temperature in order to be able to carry out a thermal balance.
  • the temperature measured at the center of the gas outlet pipe is 850 ° C, which taking into account the experimental inaccuracies in the measurements is entirely in agreement with a temperature rise of 735 ° C for a gas that has previously been overpressed.
  • the device therefore allows the “clean” combustion of a heavy fuel (type No. 4 ASTM) with an additional fuel in the chamber (1), of the order of 1 to 10% by mass (relative to the heavy fuel )
  • This system makes it possible to generate hot gases containing little or no solid particles from the least noble fuels and we can easily imagine the economic benefits in applications such as: drying, heating, production of steam and electricity, and in general all use of heavy DC fuels ”, distillation residues, combustible suspensions, etc.
  • FIG. 5 A possible diagram of this gasification treatment is illustrated in FIG. 5 where P is a device according to the invention, suitable for this type of supply (diagram in principle in FIG. 6).
  • combustion is carried out with oxygen of a hydrocarbon Cm Hn, in the possible presence of C0 2 .
  • a solid carbonaceous material such as ground coal is introduced, either wet or put in pneumatic transport by C0 2 , or any other means.
  • zone A gasification of the solid carbonaceous material is carried out with the C0 2 introduced and the combustion gases coming from the preliminary zone P. It is optionally possible to introduce into zone A other reagents such as hydrogen for example .
  • zone B rapid quenching is carried out by a third body such as water.
  • This system makes it possible to produce a synthesis gas whose composition depends on the operating conditions of P and A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

  • La présente invention a trait à un procédé et un dispositif de combustion propre et s'applique notamment au brûlage des combustibles lourds.
  • Par combustibles lourds, on entend notamment :
    • soit un combustible issu de la distillation d'un pétrole brut tel qu'un fuel 4 à 6 selon norme ASTM (Burner Fuel Specification D 396 - cf Perry et Chilton Chemical Engineers Handbook - Fifth Edition 9.9) ou ce pétrole brut lui-même,
    • soit une émulsion,
    • soit une suspension partiellement ou totalement combustible d'un solide dans un liquide ou un gaz.
  • Par combustion propre, on entend une combustion sans émission finale de particules carbonées.
  • On sait que ce défaut représente un inconvénient majeur lors de l'utilisation des combustibles lourds. Il se traduit par le fait que l'on observe la formation de résidus solides s'ajoutant aux cendres éventuelles.
  • Car, jusqu'à ce jour, ce problème n'a pu être résolu de manière satisfaisante à la connaissance de la demanderesse.
  • Or, la demanderesse a revendiqué, dans le FR-A-2 257 326, un procédé de mise en contact de substances se présentant sous des phases différentes selon lequel au moins une phase sert à former un écoulement puits-tourbillon à symétrie axiale et au moins une phase est introduite selon l'axe de symétrie dudit écoulement puits-tourbillon, jusque dans la zone en dépression relative dudit écoulement puits-tourbillon, la quantité de mouvement des éléments de volume de l'écoulement puits-tourbillon par rapport à celle des éléments de volume de la phase axiale étant telle que ledit écoulement puits-tourbillon provoque à la fois la désintégration, la dispersion et la prise en charge de la phase axiale et son traitement éventuel par l'écoulement puits-tourbillon.
  • Dans le FR-A-2 276 086, on a revendiqué un procédé et un dispositif pour la génération de gaz chauds en réalisant une combustion dans la zone en dépression relative d'un écoulement hélicoïdal symétrique.
  • On a donc naturellement pensé à alimenter le dispositif selon le premier brevet avec un gaz chaud obtenu selon le procédé du second.
  • Mais l'on conçoit que l'on se soit heurté à des problèmes technologiques, en particulier dans le domaine des températures élevées.
  • C'est ce qui a amené la demanderesse à revendiquer, dans l'EP-A-7 846, une nouvelle disposition des éléments qui revient à faire, in situ, la génération des gaz chauds dans une première zone en imposant aux dits gaz la forme d'un écoulement puits-tourbillon et à introduire la matière à traiter dans la zone en dépression relative de cet écoulement, de manière à éviter de soumettre les parties sensibles du dispositif à l'action prolongée des gaz chauds.
  • Cette solution a permis l'utilisation de températures supérieures à celles de résistance des aciers classiques, conduisant à des résultats remarquables en ce qui concerne la distribution de taille des gouttes obtenues et par suite la vitesse de vaporisation de ces gouttes.
  • Or, il est connu que la mise en oeuvre des combustibles lourds se heurte à des problèmes dus à l'inhomogénéité de la pulvérisation, ce qui se traduit en particulier par la formation de particules noires (suie, cénosphères...).
  • L'objet de la présente invention est de pallier ces inconvénients.
  • Selon le procédé de l'invention :
    • a) on introduit, dans une première zone, un courant gazeux comburant selon des trajectoires hélicoïdales symétriques par rapport à leur axe commun et on introduit un courant de fluide combustible, de manière à réaliser une première phase de combustion dispersante ;
    • b) on force l'écoulement résultant à travers un passage restreint, dans une seconde zone, de manière à lui donner la forme d'un écoulement puits-tourbillon symétrique ;
    • c) on introduit la substance combustible à traiter dans la zone en dépression relative dudit écoulement puits-tourbillon et l'on provoque une seconde combustion grâce à un second courant gazeux comburant hélicoïdal dans la seconde zone, les quantités de gaz comburant et combustible introduits dans la première zone étant suffisantes pour provoquer la pulvérisation obtenue par transfert de la quantité de mouvement de la première phase de combustion dispersante, puis la vaporisation de la substance à traiter à l'entrée de la seconde zone.
  • Pratiquement, on donne à la substance combustible introduite dans la seconde zone une vitesse initiale faible, de préférence inférieure à 10 m/s et si possible à 5 m/s, de manière à ne pas devoir trop augmenter la quantité de mouvement initiale de la phase gazeuse chaude dispersante, le rapport de la quantité de mouvement de ladite phase gazeuse chaude dispersante à celle de la substance combustible étant au moins égal à 100 mais se situant généralement, de préférence, entre 1 000 et 10 000.
  • La pulvérisation a ainsi lieu par transfert de la quantité de mouvement et on obtient une dispersion isorépartie à l'entrée de la seconde zone pratiquement instantanée en un spectre de fines particules qui se trouvent ainsi dans les meilleures conditions de vaporisation homogène et rapide. L'on qualifiera cette pulvérisation de pulvérisation vaporisante.
  • Selon l'invention, on évite ainsi l'écueil d'une mauvaise dispersion d'une substance difficilement inflammable et une combustion incomplète à haute température.
  • La présente invention permet ainsi une qualité de pulvérisation qui conduit à une combustion propre des combustibles lourds, ce qui, comme déjà dit, n'était pas possible jusqu'à ce jour.
  • Eventuellement, le second courant gazeux est introduit tangentiellement pour former un courant hélicoïdal que l'on peut rendre puits-tourbillon par un passage restreint délimitant la deuxième zone. Dans ce cas, une matière à traiter peut être introduite axialement dans la zone en dépression relative de ce second écoulement. Cette substance est, par exemple, une solution ou suspension minérale, à base de carbonates synthétiques ou naturels, de silices, de silico-aluminates, mais elle peut aussi être de nature organique, ce peut aussi être une eau résiduelle à dépolluer.
  • Le premier courant gazeux servant à réaliser l'écoulement puits-tourbillon est avantageusement constitué par de l'air.
  • Le premier combustible introduit peut être amené soit sous forme gazeuse, soit sous forme d'un nuage de pulvérisation qui est obtenu par tout moyen connu tel que buse de pulvérisation du type de celle décrite dans l'ouvrage de K. MASTERS intitulé « SPRAY DRYING et édité chez George Godwin Limited-London (seconde édition - 1972), soit par un dispositif du type à écoulement puits-tourbillon.
  • Ce premier combustible est choisi de préférence pour sa facilité de combustion.
  • Il est donc situé dans la gamme des combustibles coûteux, eu égard aux combustibles lourds, et on aura donc intérêt à en réduire la proportion par rapport au dit combustible lourd.
  • Le deuxième combustible qui est à traiter, tel que fuel lourd ou suspension combustible, est introduit axialement dans la zone en dépression relative de l'écoulement puits-tourbillon issu de la première zone, de manière à favoriser l'effet de succion dû à ladite zone en dépression relative.
  • Le second combustible est généralement un combustible correspondant aux types 4 à 6 des normes ASTM.
  • Le second écoulement puits-tourbillon symétrique est obtenu à l'aide d'un gaz comburant tel que l'air.
  • Les courants hélicoïdaux introduits dans une zone le sont avantageusement sous faible pression, de préférence à une pression inférieure à 105 Pa par rapport à la pression régnant directement en aval de ladite zone lorsque ladite pression est égale à la pression atmosphérique.
  • Le procédé selon l'invention peut être mis en ceuvre par un dispositif selon l'EP 7846 qui comprend (Fig. 1)
    • une première chambre (1) de combustion correspondant à la zone 1
    • une chambre de mise en contact et de combustion (2) correspondant à la zone 2.
  • La chambre (1) présente une enveloppe (3) fermée à sa partie amont par une plaque de fond (4), un espace annulaire (6) délimité intérieurement par une paroi perforée (7), un passage restreint (10), au moins un conduit (8) d'amenée tangentielle d'une phase gazeuse et un moyen d'injection du carburant (5) à l'intérieur de la chambre (1), l'enveloppe (3) se terminant en aval par un convergent (9) dans lequel aboutit, selon l'axe de symétrie de rotation de la chambre (1), un dispositif d'injection (11), sensiblement au niveau du passage restreint (10), la chambre de mise en contact (2) prolongeant en aval la chambre (1) selon le même axe de symétrie de rotation et étant pourvue d'une paroi perforée (12) définissant un espace annulaire (13) avec son enveloppe (14), espace dans lequel aboutit au moins une entrée tangentielle (15).
  • Ce dispositif peut également comprendre (Fig.2) une seconde chambre de traitement (16) d'une substance introduite par un second dispositif d'injection (17) disposé sensiblement au niveau d'un second passage restreint (18).
  • Dans la chambre (1), on génère un gaz chaud par combustion d'un premier combustible.
  • Au niveau du passage restreint (10) séparant la chambre (1) de la chambre (2), on introduit la matière à traiter et on utilise l'effet puits-tourbillon localisé en aval du passage restreint pour disperser le combustible en très fins éléments de volume.
  • Dans un cas simple où les gaz comburants sont constitués par de l'air et où le premier combustible est un hydrocarbure gazeux, les conditions normales de marche pour ce dispositif sont les suivantes :
    • la température minimale de pulvérisation vaporisante du combustible lourd est compris entre 150 et 300 °C, à l'issue de la zone d'isorépartition,
    • la température de la phase gazeuse issue de la zone 1 est compris entre 400 et 1 000 °C.
    • le rapport massique de la quantité d'air introduit dans la zone 2, par rapport à celle de l'air introduit dans la zone 1, est compris entre 1 et 100, cette dernière valeur étant fonction de la température finale visée en zone 2
    • le rapport massique de la quantité de combustible introduit dans la zone 1, par rapport à celle introduite dans la zone 2, est compris entre 0,01 et 0,1.
  • Bien entendu, ces conditions de marche pourront être modifiées en fonction :
    • de la nature du courant gazeux comburant introduit dans la zone 1 : par exemple oxygène au lieu d'air,
    • de la nature du combustible introduit dans la zone 1 : par exemple hydrogène. Dans le cas où on vise une température dans la zone 1 plus élevée, de l'ordre de 1 000 à 2 500 °C notamment lorsqu'on utilise l'oxygène comme comburant, on met en oeuvre préférentiellement le dispositif illustré à la Fig. qui présente une chambre 1, dans laquelle débouchent tangentiellement les entrées 19 reliant la chambre 1 à des tores de distribution 20 alimentés par des tubulures 21.
  • Le refroidissement de la chambre 1 est assuré par une circulation de liquide de refroidissement comprenant un espace annulaire de circulation 22 autour de la chambre 1.
  • Cet espace annulaire de circulation 22 peut être remplacé par un ensemble tubulaire 23 creusé dans l'épaisseur des parois de la chambre 1, comme illustré à la Fig.4, en particulier à petite échelle.
  • La température de la phase gazeuse, issue de la seconde zone, va dépendre largement de l'application envisagée.
  • Enfin, toutes ces conditions dépendront également de la nature du combustible à vaporiser.
  • Exemple 1
  • A l'aide du dispositif illustre Fig. 1, on a réalisé les essais résumés dans le tableau suivant :
    Figure imgb0001
  • Lors de l'essai 8, on a réhomogénéisé en température le gaz issu du système afin de pouvoir faire un bilan thermique.
  • Données expérimentales
  • Figure imgb0002
  • Calcul de la température de sortie par bilan sur la zone 2
    • Entrée : 54,4 kg/h x 1,096 kJ/kg °C x 950 °C = 56 848 kJ/h
    • Génération : 19,9 kg/h x 41 840 kJ/kg = 832 616 kJ/h
    • Sortie : 1123 kg/h x 1,075 kJ/kg °C x t °C d'où t °C = 735 °C
  • La température mesurée au centre de la canalisation de sortie des gaz est de 850 °C, ce qui compte tenu des imprécisions expérimentales sur les mesures est tout à fait en accord avec une élévation de température de 735 °C pour un gaz préalablement surpressé.
  • L'intérêt de la présente invention peut être facilement appréhendé de la manière suivante :
    • lorsque la combustion dans la chambre (1) a lieu, la paroi interne de la chambre (2) est toujours froide et très propre et le reste durant toute l'expérience ;
    • lorsque l'on coupe l'alimentation du combustible dans la zone (1), on observe :
      • que les parois de la chambre (2) se salissent très rapidement (chemisage de fuel liquide fondu noir), à mesure que la température des gaz de pulvérisation décroît,
      • que la flamme change d'aspect (devient plus éclairante) et que les gaz de combustion se chargent d'imbrûlés,
      • que l'on atteint facilement l'extinction dans la chambre (2).
  • Il est important de noter que, pour environ 20 kg/h de combustible totalement brûlés, la chambre (2) a pour dimensions :
    • diamètre : 180 mm
    • longueur : 500 mm

    et que, en paroi froide, il se dégage donc de l'ordre de 63 x 106 kJ/h.m3, valeur très élevée par rapport à celles qui caractérisent les brûleurs classiques. De telles dimensions sont normalement incompatibles avec une combustion de combustible lourd, surtout à de tels débits, en présence de paroi froide ce que la coupure d'alimentation du combustible en zone (1) confirme d'ailleurs systématiquement.
  • Le dispositif permet donc la combustion « propre » d'un combustible lourd (type N° 4 ASTM) avec un appoint de combustible dans la chambre (1), de l'ordre de 1 à 10 % en masse (par rapport au combustible lourd)
  • Exemple 2
  • On a déterminé les conditions opératoires :
    • Pour 1000 kg/h de nonadécane : chaleur de vaporisation = 356 kJ/kg à 25 °C, chaleur de combustion = 44 279 kJ/kg
  • Ces conditions sont rassemblées dans le tableau ci-après :
    Figure imgb0003
  • Ce système permet de générer des gaz chauds ne contenant pas ou très peu de particules solides à partir de combustibles les moins nobles et on imagine facilement les retombées économiques dans des applications telles que : séchage, chauffage, production de vapeur et électricité, et en général toute utilisation de combustibles cc lourds », résidus de distillations, suspensions combustibles, etc...
  • On observe, en effet, une « flamme de gaz beaucoup moins lumineuse (c'est-à-dire contenant moins de particules solides rayonnantes) lorsqu'on réalise la pulvérisation vaporisante du combustible par du gaz chaud que dans le cas où l'on se contente d'une simple pulvérisation dans l'air de combustion.
  • Par ailleurs, le dispositif d'introduction du combustible principal impose peu de perte de charge à son écoulement. Il permet donc l'injection d'un mélange constitué de plusieurs phases (bouillies ou transports pneumatiques denses) ou de plusieurs de ces mélanges copulvérisés (introduction coaxiale par exemple) ce qui présente les avantages suivants par rapport aux techniques actuelles
    • 1) très peu de pression motrice nécessaire (< 3 x 105Pa par exemple si la combustion a lieu aux environs de la pression atmosphérique), donc dispositifs simples de pompage non soumis à l'abrasion
    • 2) pas de système d'ajutage pulvérisant soumis à une abrasion forte
    • 3) possibilité de co-injection de produit traitant in situ, dans la flamme même, les éventuels sous- produits indésirables naissant dans la combustion (S02 par exemple).
  • Les produits co-injectés (tels que carbonates très fins) peuvent l'être :
    • séparément : solution, bouillie, transport pneumatique
    • ou en mélange : suspension stabilisée.
  • 4) possibilité de traitement, par des gaz chauds, de mélanges à base de charbon, ces gaz contenant de l'oxygène, en vue soit de la combustion totale du carbone, soit de sa combustion partielle en présence d'oxydants de ce carbone visant à sa « gazéification » (vapeur d'eau et/ou gaz carbonique par exemple).
  • Un schéma possible de ce traitement de gazéification est illustré à la figure 5 où P est un dispositif selon l'invention, adapté à ce type d'alimentation (schéma de principe figure 6).
  • Dans une zone préliminaire P, on réalise une combustion à l'oxygène d'un hydrocarbure Cm Hn, en présence éventuelle de C02.
  • Au niveau du passage restreint caractérisant le dispositif selon l'invention, on introduit une matière carbonée solide telle que charbon broyé, soit humide, soit mis en transport pneumatique par du C02, ou tout autre moyen.
  • A la figure 5 sont explicités les débits respectifs d'alimentation des zones P et A : pour 1 de carbone, on introduit W Cm Hn, X02, Y CO2, ZH2, Cm Hn désignant soit de l'hydrogène, soit un hydrocarbure.
  • Dans la zone A, on réalise la gazéification de la matière carbonée solide par le C02 introduit et les gaz de combustion issus de la zone préliminaire P. On peut éventuellement introduire dans la zone A d'autres réactifs tels que l'hydrogène par exemple.
  • Enfin, dans la zone B, on réalise une trempe rapide par un tiers corps tel que de l'eau.
  • Ce système permet de produire un gaz de synthèse dont la composition dépend des conditions opératoires de P et de A.

Claims (7)

1. Procédé de combustion propre, dans lequel :
a) on introduit, dans une première zone (1), un courant gazeux comburant (8) selon des trajectoires hélicoïdales symétriques par rapport à leur axe commun et on introduit un courant de fluide combustible (5), de sorte à réaliser une première phase de combustion dispersante,
b) on force l'écoulement résultant à travers un passage restreint (10), dans une seconde zone (2), de manière à lui donner la forme d'un écoulement puits-tourbillon symétrique,
c) on introduit la substance à traiter (11) dans la zone en dépression relative dudit écoulement puits-tourbillon, procédé caractérisé en ce que ladite substance à traiter est combustible et que l'on provoque sa combustion grâce à un second courant gazeux comburant (15), dans la seconde zone (2) et en ce que les quantités de gaz comburant et combustible introduits dans la première zone sont suffisantes pour provoquer la pulvérisation obtenue par transfert de la quantité de mouvement de la première phase de combustion dispersante puis la vaporisation de la substance à traiter à l'entrée de la seconde zone.
2. Procédé selon la revendication 1, caractérisé par le fait que la substance combustible est introduite dans la seconde zone à une vitesse initiale inférieure à 10 m/s, avantageusement à 5 m/s, le rapport de la quantité de mouvement de la phase gazeuse dispersante à celle de la substance combustible étant au moins égal à 100 et, de préférence compris entre 1 000 et 10 000.
3. Procédé selon l'une des revendications 1 et 2, caractérisé par le fait que les courants hélicoïdaux introduits dans une zone sont à une pression relative inférieure à 105 Pa, par rapport à la pression régnant directement en aval du système de ladite zone lorsque ladite pression est égale à la pression atmosphérique.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé par le fait que :
la température minimale de pulvérisation vaporisante du combustible lourd conduit à une température comprise entre 150 et 300 °C à l'issue de la zone d'isorépartition
la température de la phase gazeuse issue de la première zone est comprise entre 400 et 1 000 °C
le rapport massique de la quantité d'air introduit dans la zone 2, par rapport à celle de l'air introduit dans la zone 1, est compris entre 1 et 100
le rapport massique de la quantité de combustible introduit dans la zone 1, par rapport à celle du combustible introduit dans la zone 2, est compris entre 0,01 et 0,1.
5. Application du procédé selon l'une des revendications 1 à 3 au traitement de produits par injection d'un mélange constitué de plusieurs phases.
6. Application du procédé selon l'une des revendications 1 à 3 au traitement de produits par injection de plusieurs mélanges copulvérisés.
7. Application du procédé selon l'une des revendications 1 à 3 au traitement de mélanges à base de charbon.
EP84400994A 1983-05-20 1984-05-16 Procédé et dispositif de combustion propre s'appliquant notamment au brûlage des combustibles lourds Expired EP0128792B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84400994T ATE28695T1 (de) 1983-05-20 1984-05-16 Verbrennungsprozess und apparat besonders geeignet zur verbrennung von schweren brennstoffen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8308393A FR2551183B1 (fr) 1983-05-20 1983-05-20 Procede et dispositif de combustion propre s'appliquant notamment au brulage des combustibles lourds
FR8308393 1983-05-20

Publications (2)

Publication Number Publication Date
EP0128792A1 EP0128792A1 (fr) 1984-12-19
EP0128792B1 true EP0128792B1 (fr) 1987-07-29

Family

ID=9289035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400994A Expired EP0128792B1 (fr) 1983-05-20 1984-05-16 Procédé et dispositif de combustion propre s'appliquant notamment au brûlage des combustibles lourds

Country Status (6)

Country Link
US (1) US4526529A (fr)
EP (1) EP0128792B1 (fr)
JP (1) JPS6048407A (fr)
AT (1) ATE28695T1 (fr)
DE (1) DE3465138D1 (fr)
FR (1) FR2551183B1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2257326B1 (fr) * 1973-06-19 1976-05-28 Rhone Progil
US4676736A (en) * 1985-01-31 1987-06-30 Gas Research Institute Combustion device for combustion of a gaseous fuel
DE3503413A1 (de) * 1985-02-01 1986-08-07 Christian Dr.-Ing. 8570 Pegnitz Koch Verfahren und vorrichtung zur vierstufigen verbrennung von gasfoermigen und fluessigen brennstoffen mit stickoxidfreien abgasen
FR2592321A1 (fr) * 1986-01-02 1987-07-03 Rhone Poulenc Chim Base Procede d'obtention d'une phase gazeuse a temperature elevee, et dispositif pour mettre en oeuvre le procede. application au traitement des phases liquides ou gazeuses, chargees ou non de solides, et solides pulverisables.
US5158445A (en) * 1989-05-22 1992-10-27 Institute Of Gas Technology Ultra-low pollutant emission combustion method and apparatus
US5013236A (en) * 1989-05-22 1991-05-07 Institute Of Gas Technology Ultra-low pollutant emission combustion process and apparatus
US5359966A (en) * 1992-06-10 1994-11-01 Jensen Donald C Energy converter using imploding plasma vortex heating
FR2698156B1 (fr) * 1992-11-16 1995-01-27 Rhone Poulenc Chimie Procédé de traitement thermique d'un effluent comprenant des matières organiques polluantes ou un composé inorganique.
US5766000A (en) * 1995-06-06 1998-06-16 Beloit Technologies, Inc. Combustion chamber
US5948373A (en) * 1995-10-16 1999-09-07 Corporation De L'ecole Polytechnique Free radical oxidation installation for treating liquid effluents contaminated by organic substances
US5641412A (en) * 1995-10-16 1997-06-24 Guy; Christophe Free radical oxidation process and installation for treating liquid effluents contaminated by organic substances
US6079974A (en) * 1997-10-14 2000-06-27 Beloit Technologies, Inc. Combustion chamber to accommodate a split-stream of recycled gases
SE513303C2 (sv) * 1998-11-18 2000-08-21 Bernardini Mario Reaktor för efterförbränning av förbränningsgaser
KR100330814B1 (ko) * 2000-11-22 2002-04-03 (주)씨디에스글로벌 모든 가연성 물질을 초 고온, 고속으로 연소시키는 연소방법
CN100498059C (zh) * 2005-11-11 2009-06-10 华南理工大学 一种水煤浆燃料清洁热空气炉
KR100886190B1 (ko) * 2007-11-12 2009-02-27 한국에너지기술연구원 탈질공정을 갖는 엔진 열병합발전소 배기가스 환원분위기조성용 버너
FR2935041B1 (fr) * 2008-08-13 2010-09-10 Vichem Procede et dispositif de traitement thermique d'au moins un effluent comportant des polluants combustibles
WO2012115909A1 (fr) * 2011-02-21 2012-08-30 Lp Amina Llc Réacteur cyclone et procédé pour produire des sous-produits utilisables à l'aide d'un réacteur cyclone
JP6454860B2 (ja) * 2014-11-12 2019-01-23 株式会社イーコンセプト 燃焼促進器及び同燃焼促進器を用いた加熱装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1122054B (de) * 1960-04-16 1962-01-18 Hoechst Ag Verfahren zur Herstellung von niedermolekularen ungesaettigten Kohlenwasserstoffen
US3376098A (en) * 1966-08-29 1968-04-02 Phillips Petroleum Co Two-chamber burner and process
JPS5027210A (fr) * 1973-07-04 1975-03-20
FR2276086A1 (fr) * 1974-06-28 1976-01-23 Rhone Poulenc Ind Procede et appareil pour assurer une reaction entre des courants fluides
US4124353A (en) * 1975-06-27 1978-11-07 Rhone-Poulenc Industries Method and apparatus for carrying out a reaction between streams of fluid
JPS525021A (en) * 1975-07-01 1977-01-14 Uroko Seisakusho:Kk Combustion apparatus for powdered or pulverized materials
FR2406610A1 (fr) * 1977-10-20 1979-05-18 Rhone Poulenc Ind Procede de traitement par oxydation d'eaux residuaires contenant des matieres susceptibles par oxydation de conduire a des matieres seches et notamment des derives du soufre
FR2431321A1 (fr) * 1978-07-21 1980-02-15 Rhone Poulenc Ind Procede de traitement de substances se presentant sous des phases differentes, tel que traitement de substances sous forme liquide, semi-liquide, ou pateuse, par une autre phase notamment gazeuse
JPS55165405A (en) * 1979-06-07 1980-12-23 Mitsubishi Heavy Ind Ltd Combustion method with reduced amount of nitrogen oxide
GB2059031B (en) * 1979-09-14 1983-08-24 Univ Malaya Cyclone-type furnaces
US4382771A (en) * 1980-05-12 1983-05-10 Lola Mae Carr Gas and steam generator
US4427362A (en) * 1980-08-14 1984-01-24 Rockwell International Corporation Combustion method
FR2490619A1 (fr) * 1980-09-24 1982-03-26 Rhone Poulenc Ind Procede de traitement d'une matiere liquide conduisant a des dechets solides par action d'une phase fluide et d'au moins une phase gazeuse
EP0073265A1 (fr) * 1981-08-31 1983-03-09 Phillips Petroleum Company Procédé et dispositif pour la combustion d'un combustible

Also Published As

Publication number Publication date
DE3465138D1 (en) 1987-09-03
JPS6048407A (ja) 1985-03-16
FR2551183B1 (fr) 1988-05-13
FR2551183A1 (fr) 1985-03-01
ATE28695T1 (de) 1987-08-15
US4526529A (en) 1985-07-02
JPH0346722B2 (fr) 1991-07-17
EP0128792A1 (fr) 1984-12-19

Similar Documents

Publication Publication Date Title
EP0128792B1 (fr) Procédé et dispositif de combustion propre s&#39;appliquant notamment au brûlage des combustibles lourds
Barsic et al. Performance and emissions characteristics of a naturally aspirated diesel engine with vegetable oil fuels
EP0007846B1 (fr) Dispositif de traitement de substances se présentant sous des phases différentes, tel que traitement de substances sous forme liquide, semi-liquide ou pâteuse, par une autre phase notamment gazeuse
EP2153130A2 (fr) Procede de combustion a bas nox pour la fusion du verre et injecteur mixte
CA2831483C (fr) Methode d&#39;obtention de noir de carbone a partir de dechets de caoutchouc et son dispositif
EA013093B1 (ru) Способ получения водотопливной эмульсии и композиционного многокомпонентного топлива
Vaitilingom et al. Development of rape seed oil burners for drying and heating
FR2492392A1 (fr) Procede a rendement energetique eleve pour la production de carbon-black
BE541935A (fr) Fabrication du noir de fumee
KR20180107913A (ko) 연소기용 노즐
FR2567624A1 (fr) Generateur d&#39;air chaud a temperature elevee pour installation de sechage par exemple de briquetterie, de cimenteries ou de produits agricoles, de chauffage de locaux
EP1247046B1 (fr) Methode et dispositif d&#39;auto-combustion de dechets organiques graisseux comportant un foyer a chauffe tangentielle
EP2407716B1 (fr) Brûleur pour le traitement d&#39;un gaz acide combustible, four à réaction adapté et procédé
US2247181A (en) Carburetor for hydrocarbon fuels
FR2535334A1 (fr) Bruleur a noir de carbone
FR2664022A1 (fr) Procede et dispositif pour generer de la chaleur comportant une desulfuration des effluents avec des particules d&#39;absorbant de fine granulometrie en lit transporte.
RU2706168C1 (ru) Горелочное устройство и способ организации факела горения топлива
CA1302090C (fr) Procede d&#39;obtention d&#39;une phase gazeuse a temperature elevee, et dispositif pour mettre en oeuvre le procede. application au traitement des phases liquides ou gazeuses, chargees ou non de solides, et solides pulverisables
Noge et al. An investigation into the relationship between the formation of thermal cracked components and PM reduction during diesel combustion using water emulsified fuel
FR2935041A1 (fr) Procede et dispositif de traitement thermique d&#39;au moins un effluent comportant des polluants combustibles
FR2880408A1 (fr) Procede d&#39;oxycombustion d&#39;un combustible liquide
BE496652A (fr)
BE416499A (fr)
JPH0726107B2 (ja) 燃料・水燃焼法
Crookes et al. Factors influencing soot particulate formation and oxidation in high-pressure spray combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850109

ITF It: translation for a ep patent filed

Owner name: D. PERROTTA & C. S.A.S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 28695

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3465138

Country of ref document: DE

Date of ref document: 19870903

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: RHONE-POULENC CHIMIE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: RHONE-POULENC CHIMIE

BECN Be: change of holder's name

Effective date: 19870729

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: RHONE-POULENC CHIMIE TE COURBEVOIE, FRANKRIJK.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84400994.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030507

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030508

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030514

Year of fee payment: 20

Ref country code: AT

Payment date: 20030514

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030516

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030529

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030530

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030725

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040515

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040515

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040516

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040516

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040516

BE20 Be: patent expired

Owner name: *RHONE-POULENC CHIMIE

Effective date: 20040516

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20040516