EP0127042A2 - Optical cable - Google Patents
Optical cable Download PDFInfo
- Publication number
- EP0127042A2 EP0127042A2 EP84105414A EP84105414A EP0127042A2 EP 0127042 A2 EP0127042 A2 EP 0127042A2 EP 84105414 A EP84105414 A EP 84105414A EP 84105414 A EP84105414 A EP 84105414A EP 0127042 A2 EP0127042 A2 EP 0127042A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- optical cable
- foil
- cable according
- optical
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 39
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 239000011888 foil Substances 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 8
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 8
- -1 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 3
- 239000013039 cover film Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims description 2
- 239000012783 reinforcing fiber Substances 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/01—Control of flow without auxiliary power
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/4436—Heat resistant
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
Definitions
- the invention relates to an optical cable according to the preamble of claim 1.
- a communication cable with several optical waveguides is known, each having a primary and a secondary coating and which are stranded together to form a central element to form a composite.
- a holding turn is placed around the stranded composite, which is intended to hold the composite together. Since the helix is firmly seated on the optical fibers, there is a risk that these forces are exerted and mechanically stressed.
- the communication cable is filled with a filling compound which softens the material of the holding spiral or causes it to disintegrate, so that the holding spiral exerts forces on the optical waveguide only during the production of the communication cable.
- every dielectric waveguide radiates as soon as its axis deviates from a straight line.
- the radiation depends very much on the radius of curvature and rises quickly from negligibly small values to unacceptable losses.
- monomode light betting tubes there is also the disadvantageous influence on the cutoff wavelength of modes of different orders.
- the invention is based on the object of specifying an optical cable in which not only the forces coming from the cable structure are eliminated, but also forces acting from outside are kept away from the optical fibers.
- the radially effective forces coming from outside are intercepted by the support tube which is at a distance from the optical waveguides. Such forces either arise during the manufac- ture of the cable or they also occur when the cable is rewound or relocated. Since the composite of the optical waveguide located inside the support tube is not provided with a strap, winding or a helix, the optical waveguide (s) can expand freely and thus form a force-free composite.
- an optical transmission element to arrange a fiber of an optical waveguide loosely in the interior of a sheath composed of an inner and outer shell. This to order is also known as HohLader.
- the inner shell consists of one or more foils wrapped with impact, onto which the outer shell is sprayed.
- the optical cable shown in FIG. 1 has a central element 1, which can be designed as a tensile element and then consists of glass fiber yarn for this purpose.
- Six lightwave conductors 3 and two blind elements 2 are stranded on the element 1.
- the number of light waveguides 3 and the dummy elements 2 is only to be seen as an example; any other number of light waveguides 3 without or with the corresponding blind elements 2 is also possible.
- the optical waveguide 3 are primary and secondary coated optical waveguide.
- the blind elements 2, which act as fillers, have the same diameter as the optical waveguide 3 and consist, for example, of polyamide. This combination of the central element 1 and the optical waveguides 3 and dummy elements 2 is freely movable in a flexible support tube.
- the flexible support tube consists of a temperature-resistant FoLie 4 and a temperature-resistant cover foil 5.
- the inner FoLie 4 is non-coiled, about 75 ⁇ m thick and made of polyethylene terephthalate (PETP). In contrast to the composite, it is overlapped and thus forms the flexible support tube.
- the lay length is smaller than ten times the diameter of the composite. The lay length can equal twice the width of the film 4. There is sufficient overlap.
- a cable cover can already be arranged on this inner film 4. In order to prevent the support tube wound from the film 4 from springing open due to the inherently rigid film, the cover film 5 is wound over it.
- the cover sheet 5 consists of a 0.4 mm thick foam laminate made of polyethylene terephthalate (PETP). It is wrapped on FoLie 4 in 6-fold. The length of the pile is selected in such a way that there is winding on the joint or a slight overlap.
- the FoLie 5 simultaneously covers the columns of the FoLie 4, so that when a plastic or liquid cable sheath is applied during the application, no material from it gets into the support tube and possibly to the fiber optic cable.
- the KabeLmanteL (6) contains tensile elements, which consist, for example, of threads running in parallel, a braid 7 or a grid belt.
- the cable is attached directly to the support tube made of foils 4 and 5.
- FIG. 2 shows one end of the optical cable shown in FIG. 1, in which the cable part 6 and the parts of the cable underneath are partially removed. It can be seen that the film 5 is wound in an abutting manner and the film 4 is overlapped and the light waveguide 3 and the films are each wound in a counter-lay.
- optical cable 3 shows a further embodiment of an optical cable in cross section.
- the micro-curvature sensitivity of optical cables depends not only on their structure, but also on the thermal expansion coefficient of the entire cable structure. Since optical cables essentially consist of plastic with a relatively high coefficient of expansion, a special design should be chosen to improve the low-temperature properties.
- a metal-free, light cable is described below, which cannot be influenced by electrical fields and which has high lightning protection.
- Its composite consists of two optical waveguides 3, which are stranded together with two blind elements 2 around a central element 1 with one lay. The central element 1 only serves as the basis for stranding.
- the support tube attached above it at a distance again consists of the two foils 4 and 5. In this case, the cover foil 5 is also overlapped.
- the KabeLmanteL 8 consists of a hardened resin system as a matrix with oriented reinforcing fibers embedded in it and saturated with it as reinforcement.
- a protective cover 9 is arranged, the z. B. from PoLyäthyLen (PE) and may be mixed with soot.
- FIG. 4 shows one end of the cable shown in FIG. 3, in which the protective sheath 9 and the parts of the cable underneath are partially removed. It can be seen that the light betting ladder 3 and the blind elements 2 are twisted with one lay, the foils 4 and 5 are wrapped overlapped and all these three parts are applied in counter-lay to one another.
- a composite of one or more non-stranded optical waveguides can also be selected, in which longitudinal threads are arranged as tension elements without a side lay.
- the production of the support tube from at least one overlapped, temperature-resistant film is expediently carried out simultaneously with the production of the composite.
- one or more high-speed central spinners are used, through which a high production speed can be achieved.
- the center spinner can be provided with a tuning fork-shaped winding mandrel.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Communication Cables (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Insulated Conductors (AREA)
- Glass Compositions (AREA)
- Photoreceptors In Electrophotography (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Bei einem optischen Kabel mit einem Verbund aus mindestens einem primär und sekundär beschichteten Lichtwellenleiter (3) und einem weiteren Element (1) ist dieser von einem im Abstand dazu angebrachten flexiblen Stützrohr umgeben. Das Stützohr ist aus mindestens einer überlappt gewickelten, temperaturbeständigen Folie (4) hergestellt. Auf dem Stüllrohr ist ein Kabelmantel (6) angeordnet.In the case of an optical cable with a composite of at least one primary and secondary coated optical waveguide (3) and a further element (1), the latter is surrounded by a flexible support tube which is arranged at a distance from it. The support ear is made from at least one overlapping, heat-resistant film (4). A cable sheath (6) is arranged on the tube.
Description
Die Erfindung bezieht sich auf ein optisches KabeL gemäß dem Oberbegriff des Anspruchs 1.The invention relates to an optical cable according to the preamble of
Aus der DE-PS 30 02 498 ist ein Nachrichtenkabel mit mehreren LichtweLLenLeitern bekannt, die je eine primäre und eine sekundäre Beschichtung aufweisen und die miteinander um ein zentrales Element zu einem Verbund verseilt sind. Um den verseilten Verbund ist eine HaltewendeL gelegt, die den Verbund zusammenhalten soll. Da die Haltewendel fest auf den Lichtwellenleitern aufsitzt, besteht die Gefahr, daß auf diese Kräfte ausgeübt und sie mechanisch beansprucht werden. Um eine Deformation der LichtweLLenLeiter zu vermeiaen, ist das Nachrichtenkabel mit einer FüLLmasse gefüllt, die den Stoff der Haltewendel erweicht oder ihn zerfallen Läßt, so daß nur während der HersteLLung des Nachrichtenkabels die Haltewendel Kräfte auf die LichtweLLenLeiter ausübt.From DE-PS 30 02 498 a communication cable with several optical waveguides is known, each having a primary and a secondary coating and which are stranded together to form a central element to form a composite. A holding turn is placed around the stranded composite, which is intended to hold the composite together. Since the helix is firmly seated on the optical fibers, there is a risk that these forces are exerted and mechanically stressed. In order to avoid deformation of the optical waveguide, the communication cable is filled with a filling compound which softens the material of the holding spiral or causes it to disintegrate, so that the holding spiral exerts forces on the optical waveguide only during the production of the communication cable.
Bekanntlich strahlt jeder dielektrische Wellenleiter, so- .bald seine Achse von einer Geraden abweicht. Die StrahLung hängt sehr vom Krümmungsradius ab und steigt von vernachLässigbar kleinen Werten schnell auf nicht mehr vertretbare Verluste an. Bei monomodaten Lichtwettenteitern kommt noch die nachteilige Beeinflussung der Grenzwellenlänge von Moden verschiedener Ordnung hinzu.As is known, every dielectric waveguide radiates as soon as its axis deviates from a straight line. The radiation depends very much on the radius of curvature and rises quickly from negligibly small values to unacceptable losses. In the case of monomode light betting tubes, there is also the disadvantageous influence on the cutoff wavelength of modes of different orders.
Der Erfindung Liegt die Aufgabe zugrunde, ein optisches Kabel anzugeben, bei dem nicht nur die aus dem Kabelaufbau kommenden Kräfte aufgehoben, sondern auch von außen einwirkende Kräfte von den Lichtwellenleitern ferngehalten werden.The invention is based on the object of specifying an optical cable in which not only the forces coming from the cable structure are eliminated, but also forces acting from outside are kept away from the optical fibers.
Diese Aufgabe wird durch die im Anspruch 1 angegebenen Mittel gelöst. AusgestaLtungen können den Unteransprüchen entnommen werden.This object is achieved by the means specified in
Beim erfindungsgemäßen optischen KabeL werden durch das im Abstand zu den Lichtwellenleitern vorhandene Stützrohr die von außen kommenden radial wirksamen Kräfte abgefangen. SoLche Kräfte entstehen entweder bereits bei der HersteLLung des KabeLmanteLs oder sie treten zusätztich beim UmtrommeLn oder Verlegen der KabeL auf. Da der innerhatb des Stützrohrs gelegene Verbund der Lichtwellenleiter nicht mit einer Bebänderung, BewickLung oder einer Wendel versehen ist, kann/können sich der/die LichtweLLenLeiter frei expandieren und damit einen kräftefreien Verbund bilden.In the optical cable according to the invention, the radially effective forces coming from outside are intercepted by the support tube which is at a distance from the optical waveguides. Such forces either arise during the manufac- ture of the cable or they also occur when the cable is rewound or relocated. Since the composite of the optical waveguide located inside the support tube is not provided with a strap, winding or a helix, the optical waveguide (s) can expand freely and thus form a force-free composite.
Es ist anzumerken, daß es aus der DE-PS 30 10 353 für ein optisches übertragungselewent bekannt ist, eine Faser eines Lichtwellenleiters Lose im Innern einer aus Innen und AußenhüLLe zusammengesetzten UmmanteLung anzuordnen. Diese Anordnung ist auch als HohLader bekannt. Die InnenhüLLe besteht hierbei aus einer oder mehreren mit SchLag gewickelten FoLien, auf die die AußenhüLLe aufgespritzt ist.It should be noted that it is known from DE-PS 30 10 353 for an optical transmission element to arrange a fiber of an optical waveguide loosely in the interior of a sheath composed of an inner and outer shell. This to order is also known as HohLader. The inner shell consists of one or more foils wrapped with impact, onto which the outer shell is sprayed.
Die Erfindung wird nun anhand von Zeichnungen zweier Ausführungsbeispiele näher erläutert. Es zeigen:
- Fig. 1 einen Querschnitt einer ersten Ausführung eines optischen KabeLs;
- Fig. 2 ein abgesetztes Ende des KabeLs gemäß Fig. 1;
- Fig. 3 einen Querschnitt einer zweiten Ausführung eines optischen KabeLs und
- Fig. 4 ein abgesetztes Ende des KabeLs gemäß Fig. 3.
- 1 shows a cross section of a first embodiment of an optical cable;
- FIG. 2 shows a stepped end of the cable according to FIG. 1;
- Fig. 3 shows a cross section of a second embodiment of an optical cable and
- 4 shows a stepped end of the cable according to FIG. 3.
Das in Fig. 1 dargestellte optische KabeL weist ein zentraLes ELement 1 auf, das aLs zugfestes ELement ausgebildet sein kann und dann hierzu aus GLasfasergarn besteht. Auf das ELement 1 sind sechs LichtweLLenLeiter 3 und zwei Blindelemente 2 verseilt. Die Anzahl der LichtweLLenLeiter 3 und der Blindelemente 2 ist nur als Beispiel anzusehen, es ist auch jede andere AnzahL von LichtweLLenLeitern 3 ohne oder mit den entsprechenden BLindeLementen 2 möglich. Die LichtweLLenLeiter 3 sind primär und sekundär beschichtete LichtweLLenLeiter. Die als FüLLer wirkenden BLindeLemente 2 weisen den gleichen Durchmesser wie die LichtweLLenLeiter 3 auf und bestehen beispielsweise aus Polyamid. Dieser so gebildete Verbund aus dem zentralen ELement 1 und den LichtweLLenLeitern 3 und Blindelementen 2 ist frei beweglich in einem flexiblen Stützrohr angeordnet.The optical cable shown in FIG. 1 has a
Das flexible Stützrohr besteht aus einer temperaturbeständigen FoLie 4 und einer temperaturbeständigen DeckfoLie 5. Die innere FoLie 4 ist im nicht gewickelten Zustand biegesteif, etwa 75 µm dick und besteht aus Polyäthytenterephthalat (PETP). Sie ist im Gegenschlag zum Verbund überlappt gewickelt und bildet so das flexible Stützrohr. Die SchLagLänge ist dabei kleiner aLs der zehnfache Durchmesser des Verbundes. Die Schlaglänge kann gleich der zweifachen Breite der Folie 4 entsprechen. Dabei stellt sich eine ausreichende überlappung ein. Auf diese innere Folie 4 kann bereits ein KabeLmanteL angeordnet werden. Um zu verhindern, daß das aus der Folie 4 gewickelte Stützrohr aufgrund der an sich biegesteifen FoLie aufspringt, ist darüber die Deckfolie 5 gewickelt.The flexible support tube consists of a temperature-resistant FoLie 4 and a temperature-
Die DeckfoLie 5 besteht aus einem 0,4 mm dicken SchaumLaminat aus Polyäthylenterephthatat (PETP). Sie ist im 6e-genschLag zur FoLie 4 auf diese gewickelt. Die Schtaglänge ist dabei so gewählt, daß eine BewickLung auf Stoß oder eine geringfügige uberlappung entsteht. Die FoLie 5 deckt gleichzeitig die SpaLten der FoLie 4 ab, so daß bei der Aufbringung eines während des Aufbringens plastischen oder flüssigen Kabelmantels kein Material von diesem in das Stützrohr und eventueLL an die LichtweLLenLeiter gelangt.The
Der KabeLmanteL (6) enthält zugfeste ELemente, die beispielsweise aus parallel Laufenden Fäden, einem Geflecht 7 oder einem Gitternetzband bestehen. Der KabeLmanteL ist direkt auf dem Stützrohr aus den FoLien 4 und 5 aufgebracht.The KabeLmanteL (6) contains tensile elements, which consist, for example, of threads running in parallel, a
In Fig. 2 ist ein Ende des in Fig. 1 dargestellten optischen KabeLs gezeigt, bei dem der KabeLmanteL 6 und die darunter Liegenden TeiLe des KabeLs teilweise entfernt sind. Es ist zu erkennen, daß die FoLie 5 auf Stoß und die FoLie 4 überlappt gewickeLt ist und die LichtweLLenLeiter 3 und die Folien jeweils im GegenschLag gewickelt sind.FIG. 2 shows one end of the optical cable shown in FIG. 1, in which the cable part 6 and the parts of the cable underneath are partially removed. It can be seen that the
In Fig. 3 ist eine weitere Ausführung eines optischen KabeLs im Querschnitt dargestellt. Die Mikrokrümmungsempfindlichkeit optischer KabeL hängt neben ihrem Aufbau entscheidend vom thermischen Ausdehnungskoeffizienten des gesamten KabeLaufbaus ab. Da optische KabeL im wesentlichen aus Kunststoff mit einem relativ hohen Ausdehnungskoeffizienten bestehen, ist zur Verbesserung der Tieftemperatureigenschaften ein besonderer Aufbau zu wählen. NachfoLgend wird ein metallfreies, Leichtes KabeL beschrieben, das nicht durch elektrische FeLder beeinflußt werden kann und das eine hohe Blitzsicherheit.aufweist. Dessen Verbund besteht aus zwei LichtweLLenLeitern 3, die zusammen mit zwei BLindeLementen 2 um ein zentraLes ELement 1 mit einem SchLag verseilt sind. Das zentrale ELement 1 dient hierbei LedigLich aLs GrundLage zum Verseilen. Das darüber im Abstand angebrachte Stützrohr besteht wieder aus den beiden FoLien 4 und 5. In diesem FaLLe ist auch die Deckfolie 5 überlappt gewickeLt. Der KabeLmanteL 8 besteht bei dieser Ausführung aus einem gehärteten Harzsystem als Matrix mit darin eingebetteten und davon durchtränkten, orientierten Verstärkungsfasern als Armierung. Darüber ist eine Schutz hülle 9 angeordnet, die z. B. aus PoLyäthyLen (PE) bestehen und mit Ruß versetzt sein kann.3 shows a further embodiment of an optical cable in cross section. The micro-curvature sensitivity of optical cables depends not only on their structure, but also on the thermal expansion coefficient of the entire cable structure. Since optical cables essentially consist of plastic with a relatively high coefficient of expansion, a special design should be chosen to improve the low-temperature properties. A metal-free, light cable is described below, which cannot be influenced by electrical fields and which has high lightning protection. Its composite consists of two
In Fig. 4 ist ein Ende des in Fig. 3 dargestellten KabeLs gezeigte bei dem die SchutzhüLLe 9 und die darunterliegenden TeiLe des KabeLs teilweise entfernt sind. Es ist ersichtlich, daß die Lichtwettenteiter 3 und die BLindeLemente 2 mit einem SchLag verseilt, die FoLien 4 und 5 überLappt gewickelt und alle diese drei Teile im Gegenschlag zueinander aufgebracht sind.FIG. 4 shows one end of the cable shown in FIG. 3, in which the protective sheath 9 and the parts of the cable underneath are partially removed. It can be seen that the
Es kann auch ein Verbund aus einem oder mehreren nicht verseilten LichtweLLenLeitern gewähtt werden, in dem LängsLaufende Fäden ohne Verseitschlag als ZugeLemente angeordnet sind.A composite of one or more non-stranded optical waveguides can also be selected, in which longitudinal threads are arranged as tension elements without a side lay.
Die Herstettung des Stützrohrs aus mindestens einer überLappt gewickelten temperaturbeständigen FoLie geschieht zweckmäßigerweise gleichzeitig mit dem Herstellen des Verbundes . Hierzu werden ein oder mehrere schnellaufende Zentralspinner eingesetzt, durch welche eine hohe Fertigungsgeschwindigkeit erzielt werden kann. Zum Aufbringen des Stützrohrs können die tentratspinner mit einem stimmgabelförmigen Wickeldorn versehen sein.The production of the support tube from at least one overlapped, temperature-resistant film is expediently carried out simultaneously with the production of the composite. For this purpose, one or more high-speed central spinners are used, through which a high production speed can be achieved. To attach the support tube, the center spinner can be provided with a tuning fork-shaped winding mandrel.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84105414T ATE66305T1 (en) | 1983-05-28 | 1984-05-12 | OPTICAL CABLE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3319433 | 1983-05-28 | ||
DE19833319433 DE3319433A1 (en) | 1983-05-28 | 1983-05-28 | OPTICAL CABLE |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0127042A2 true EP0127042A2 (en) | 1984-12-05 |
EP0127042A3 EP0127042A3 (en) | 1987-09-02 |
EP0127042B1 EP0127042B1 (en) | 1991-08-14 |
Family
ID=6200138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84105414A Expired - Lifetime EP0127042B1 (en) | 1983-05-28 | 1984-05-12 | Optical cable |
Country Status (10)
Country | Link |
---|---|
US (1) | US4688888A (en) |
EP (1) | EP0127042B1 (en) |
JP (1) | JPS6035705A (en) |
KR (1) | KR910006732B1 (en) |
AT (1) | ATE66305T1 (en) |
AU (1) | AU564795B2 (en) |
DE (2) | DE3319433A1 (en) |
ES (1) | ES279484Y (en) |
NO (1) | NO841981L (en) |
ZA (1) | ZA843660B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4084017A4 (en) * | 2019-12-23 | 2024-01-24 | Fujikura Ltd. | Cable and cable reinforcing sheet |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6045212A (en) * | 1983-08-23 | 1985-03-11 | Sumitomo Electric Ind Ltd | Optical fiber cable |
AU579168B2 (en) * | 1984-08-09 | 1988-11-17 | Alcatel N.V. | Improved optical communications cable |
DE3642881C2 (en) * | 1986-12-16 | 1994-12-22 | Kabelmetal Electro Gmbh | Optical cable |
ATE71766T1 (en) * | 1987-04-13 | 1992-02-15 | Schweizerische Isolawerke | COMMUNICATION OR CONTROL CABLE WITH SUPPORTING ELEMENT. |
DE3878791T2 (en) * | 1987-08-27 | 1993-06-09 | American Telephone & Telegraph | FIBER OPTICAL CABLE FOR HIGH TEMPERATURE APPLICATION. |
FR2764709B1 (en) * | 1997-06-16 | 1999-07-23 | Alsthom Cge Alcatel | THERMOPLASTIC OPTICAL FIBER CABLE |
US5905834A (en) * | 1997-07-21 | 1999-05-18 | Pirelli Cable Corporation | Combination loose tube optical fiber cable with reverse oscillating lay |
KR100434464B1 (en) * | 2000-08-22 | 2004-06-05 | 삼성전자주식회사 | Premise optic cable with single jacket and fabrication device thereof |
KR100391091B1 (en) * | 2000-12-26 | 2003-07-12 | 엘지전선 주식회사 | Optical multi jumper cord cable |
US7421169B2 (en) * | 2003-06-20 | 2008-09-02 | Fujikura Ltd. | Optical fiber cable |
GB2477946A (en) * | 2010-02-18 | 2011-08-24 | Paradigm B V | Transfer member assembly with settable material and shroud |
KR101395400B1 (en) | 2012-07-25 | 2014-05-14 | 삼성전자주식회사 | Optical fiber cable |
KR101395474B1 (en) * | 2012-07-25 | 2014-05-14 | 삼성전자주식회사 | Optical fiber cable |
US9081162B2 (en) * | 2013-12-16 | 2015-07-14 | Corning Cable Systems Llc | Rugged micromodule cable |
US10971284B2 (en) * | 2017-06-27 | 2021-04-06 | Halliburton Energy Services, Inc. | Power and communications cable for coiled tubing operations |
WO2019217399A1 (en) * | 2018-05-10 | 2019-11-14 | Commscope Technologies Llc | Devices and methods for bundling cables |
RU204491U1 (en) * | 2021-02-10 | 2021-05-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Waveguide Impulse Pressure Transmitter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2556861A1 (en) * | 1974-12-27 | 1976-07-08 | Int Standard Electric Corp | FLEXIBLE, HEAVY DUTY LIGHT GUIDE CABLE |
DE2513722A1 (en) * | 1975-03-25 | 1976-09-30 | Siemens Ag | CORES FOR OPTICAL CABLES |
GB1461151A (en) * | 1974-08-22 | 1977-01-13 | Standard Telephones Cables Ltd | Optical fibre cables |
DE3010353C1 (en) * | 1980-03-18 | 1981-10-15 | Siemens AG, 1000 Berlin und 8000 München | Optical transmission element and process for its manufacture |
EP0042996A2 (en) * | 1980-06-25 | 1982-01-06 | Philips Kommunikations Industrie AG | Integral optical communication cable |
DE3112422A1 (en) * | 1981-03-28 | 1982-10-14 | Bayer Ag, 5090 Leverkusen | Optical telecommunications cable |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS587106B2 (en) * | 1974-09-13 | 1983-02-08 | キヤノン株式会社 | Optical information recording method and device |
GB1601005A (en) * | 1978-05-31 | 1981-10-21 | Bicc Ltd | Optical cable |
US4241979A (en) * | 1979-01-18 | 1980-12-30 | Bell Telephone Laboratories, Incorporated | Optical communication cable with means for controlling coupling between cable jacket and strength members |
US4342500A (en) * | 1979-08-10 | 1982-08-03 | Siemens Aktiengesellschaft | High voltage stabile optical cable structures |
DE3020622C2 (en) * | 1980-05-30 | 1985-05-15 | W.L. Gore & Associates, Inc., Newark, Del. | Ribbon cable and process for its manufacture |
GB2103822B (en) * | 1981-07-23 | 1985-08-21 | Standard Telephones Cables Ltd | Flame retardant plastics sheathed optical and/or electrical cables |
US4534618A (en) * | 1982-04-21 | 1985-08-13 | U.S. Philips Corporation | Optical communication cable |
DE3216233A1 (en) * | 1982-04-30 | 1983-11-03 | Siemens AG, 1000 Berlin und 8000 München | LIGHTWAVE LEAD CABLE WITH A LAYER COVER |
US4515435A (en) * | 1982-08-10 | 1985-05-07 | Cooper Industries, Inc. | Thermally stabilized fiber optic cable |
-
1983
- 1983-05-28 DE DE19833319433 patent/DE3319433A1/en not_active Withdrawn
-
1984
- 1984-05-12 AT AT84105414T patent/ATE66305T1/en not_active IP Right Cessation
- 1984-05-12 DE DE8484105414T patent/DE3484911D1/en not_active Expired - Lifetime
- 1984-05-12 EP EP84105414A patent/EP0127042B1/en not_active Expired - Lifetime
- 1984-05-15 ZA ZA843660A patent/ZA843660B/en unknown
- 1984-05-18 US US06/612,098 patent/US4688888A/en not_active Expired - Fee Related
- 1984-05-18 NO NO841981A patent/NO841981L/en unknown
- 1984-05-22 AU AU28463/84A patent/AU564795B2/en not_active Ceased
- 1984-05-25 ES ES1984279484U patent/ES279484Y/en not_active Expired
- 1984-05-25 KR KR1019840002864A patent/KR910006732B1/en not_active IP Right Cessation
- 1984-05-28 JP JP59106693A patent/JPS6035705A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1461151A (en) * | 1974-08-22 | 1977-01-13 | Standard Telephones Cables Ltd | Optical fibre cables |
DE2556861A1 (en) * | 1974-12-27 | 1976-07-08 | Int Standard Electric Corp | FLEXIBLE, HEAVY DUTY LIGHT GUIDE CABLE |
DE2513722A1 (en) * | 1975-03-25 | 1976-09-30 | Siemens Ag | CORES FOR OPTICAL CABLES |
DE3010353C1 (en) * | 1980-03-18 | 1981-10-15 | Siemens AG, 1000 Berlin und 8000 München | Optical transmission element and process for its manufacture |
EP0042996A2 (en) * | 1980-06-25 | 1982-01-06 | Philips Kommunikations Industrie AG | Integral optical communication cable |
DE3112422A1 (en) * | 1981-03-28 | 1982-10-14 | Bayer Ag, 5090 Leverkusen | Optical telecommunications cable |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4084017A4 (en) * | 2019-12-23 | 2024-01-24 | Fujikura Ltd. | Cable and cable reinforcing sheet |
US11899259B2 (en) | 2019-12-23 | 2024-02-13 | Fujikura Ltd. | Cable and cable reinforcement sheet |
Also Published As
Publication number | Publication date |
---|---|
ATE66305T1 (en) | 1991-08-15 |
DE3319433A1 (en) | 1984-11-29 |
US4688888A (en) | 1987-08-25 |
AU2846384A (en) | 1984-11-29 |
DE3484911D1 (en) | 1991-09-19 |
NO841981L (en) | 1984-11-29 |
KR910006732B1 (en) | 1991-09-02 |
ES279484U (en) | 1985-08-01 |
KR850000076A (en) | 1985-02-25 |
ZA843660B (en) | 1984-12-24 |
EP0127042B1 (en) | 1991-08-14 |
JPS6035705A (en) | 1985-02-23 |
AU564795B2 (en) | 1987-08-27 |
ES279484Y (en) | 1986-04-16 |
EP0127042A3 (en) | 1987-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0127042A2 (en) | Optical cable | |
DE2701631C2 (en) | Optically conductive element | |
DE69704756T2 (en) | Reinforced fiber optic cable with a single tube structure | |
DE68914349T2 (en) | Method of manufacturing an optical branching and coupling element. | |
DE2507583C2 (en) | Communication cables with light guides or light guide bundles as transmission elements | |
DE2347408B2 (en) | Optical fiber strand | |
DE2449439A1 (en) | MESSAGE CABLES WITH OPTICAL TRANSMISSION ELEMENTS | |
DE2854746A1 (en) | OPTICAL CABLE | |
DE2641166A1 (en) | COVERED FIBER OPTIC | |
DE2755734C2 (en) | Manufacturing process for a communication cable containing a plurality of optical fibers and a cable manufactured according to this process | |
DE2742747A1 (en) | DIELECTRIC FIBER WAVE CABLE | |
DE69524001T2 (en) | Manufacturing process for a reinforced fiber optic cable, associated device and cable manufactured by this method | |
DE3643886A1 (en) | MESSAGE CABLES WITH FOCUS | |
DE2722147A1 (en) | FIBER OPTIC CABLES AND THE METHOD OF MANUFACTURING IT | |
EP1844357B1 (en) | Fibre optic ribbon with several individual optical fibres and method for production thereof | |
DE4101082C1 (en) | ||
EP0135224B1 (en) | Production method for cables and cables, in particular optical cables, manufactured by this method | |
DE3023669C2 (en) | Self-supporting optical communication cable | |
DE3309996C2 (en) | ||
DE19713063A1 (en) | Communications cable device for e.g. optical fibre ribbon | |
DE3815565C2 (en) | Optical cable with tension elements in the area of the outer jacket | |
DE3807269C1 (en) | ||
DE4121735C2 (en) | Fiber optic (FO) cable for connecting an FO cable to its station | |
DE3929215C2 (en) | Fiber optic cable | |
EP0498308B1 (en) | Optical cable and method of its fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STANDARD ELEKTRIK LORENZ AKTIENGESELLSCHAFT Owner name: ALCATEL N.V. |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19870822 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STANDARD ELEKTRIK LORENZ AKTIENGESELLSCHAFT Owner name: ALCATEL N.V. |
|
17Q | First examination report despatched |
Effective date: 19881207 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KABELMETAL ELECTRO GMBH Owner name: ALCATEL N.V. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 66305 Country of ref document: AT Date of ref document: 19910815 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3484911 Country of ref document: DE Date of ref document: 19910919 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930413 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930415 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930517 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930527 Year of fee payment: 10 Ref country code: AT Payment date: 19930527 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19930528 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19930813 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940512 Ref country code: AT Effective date: 19940512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19940531 Ref country code: CH Effective date: 19940531 Ref country code: BE Effective date: 19940531 |
|
BERE | Be: lapsed |
Owner name: ALCATEL N.V. Effective date: 19940531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940512 |
|
EUG | Se: european patent has lapsed |
Ref document number: 84105414.1 Effective date: 19941210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 84105414.1 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |