EP0122839B1 - Method and apparatus for conducting logging and/or work-over operations in a borehole - Google Patents

Method and apparatus for conducting logging and/or work-over operations in a borehole Download PDF

Info

Publication number
EP0122839B1
EP0122839B1 EP84400619A EP84400619A EP0122839B1 EP 0122839 B1 EP0122839 B1 EP 0122839B1 EP 84400619 A EP84400619 A EP 84400619A EP 84400619 A EP84400619 A EP 84400619A EP 0122839 B1 EP0122839 B1 EP 0122839B1
Authority
EP
European Patent Office
Prior art keywords
instrument
base
tubing
well
sensor support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400619A
Other languages
German (de)
French (fr)
Other versions
EP0122839A1 (en
Inventor
Christian Wittrisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0122839A1 publication Critical patent/EP0122839A1/en
Application granted granted Critical
Publication of EP0122839B1 publication Critical patent/EP0122839B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/004Indexing systems for guiding relative movement between telescoping parts of downhole tools
    • E21B23/006"J-slot" systems, i.e. lug and slot indexing mechanisms
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for displacing a cable or a cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction

Definitions

  • the present invention relates to a method and a device making it possible to carry out measurements or / and interventions in a well at the level of the surrounding formations, and more particularly of formations subjected to hydraulic compression.
  • the invention is particularly applicable when it is a question of carrying out measurements and / or interventions at the level of geological formations located in an area to be isolated from the rest of the well in which a hydraulic fluid under pressure is injected in order to fracture the training at this level (hydraulic fracturing process).
  • the measurements carried out by applying the present invention may for example include the triaxial recording of the noises produced by the rocks thus placed under stress.
  • the analysis of the detected vibrations makes it possible to define the orientation of the noise source and consequently the direction of propagation of the fracture. This analysis technique is well known to geophysicists and will not be described here in more detail.
  • the measurements carried out may also include recording the pressure and the background temperature, the measurement (focused or not) of the electrical resistivity of the formations, etc.
  • One of the objects of the invention is to provide a device making it possible in particular to move a measuring or intervention instrument in a well zone possibly subjected to hydraulic compression, both during and at the end of the fracturing. hydraulic formations surrounding this area.
  • the device according to the present invention makes it possible to carry out measurements or / and interventions in a well. It comprises a casing with a diameter smaller than that of the well, at least one measuring or intervention instrument, a base or probe support, and is characterized in that it comprises at least one sealing member surrounding said casing, a flexible connecting member connecting the base to the measuring instrument, said flexible connecting member comprising at least one electrical connection, and in that the base or probe support is normally arranged, in operation, at the inside the casing in the lower part thereof.
  • the devices according to the prior art are not suitable for carrying out measurements or interventions at the level of formations subjected to hydraulic compression.
  • the prior devices also have the drawback of transmitting vibrations from the casing to the probe via the extension member which connects them, which risks greatly disturbing the measurements made by the probe, in particular when these are acoustic measurements.
  • FIGS. 1 and 2 correspond respectively to the initial position of the device according to the invention, lowered into a partially cased well 1 and to the working position of this device in which the probe 2 has come out of its protective casing 3.
  • the well 1 is fitted over a certain length with a casing 4 terminated by the shoe 5 at its lower part.
  • the device shown comprises at its lower part the protective casing 3 in which is housed at least partially the measuring or intervention instrument 2 and which is supernatant from a casing 6 to which this casing is connected.
  • the instrument 2 is a logging probe, but it could also consist of a television camera, or an intervention instrument such as, for example , a perforation tool, etc ...
  • annular sealing member 7, radially expandable, which may be of a conventional type (packer) is interposed between the casing 3 and the casing 6.
  • This member is for example obtained by axial displacement of the casing 6, causing the spacing of the packer anchoring corners.
  • a packer with hydraulic anchoring of a known type for example the AD1 model from the company BAKER OIL TOOLS.
  • this member 7 In its expansion position, this member 7 is pressed against the wall of the casing 4.
  • the casing 3 and the casing 6 are both open at their ends.
  • a tubular support element 8 is housed in the casing 6, this tubular element being open at its upper part and comprising at its lower part a support piece or base 9 equipped with an anchoring system.
  • the probe 2 is connected to the base 9 by a flexible connection, that is to say of negligible stiffness which, in the illustrated embodiment, is formed by a support cable 13 passing through an axial passage 7a of the member 7 and of a length such that, in the upper position of the base 9 (FIG. 1), the probe 2 is housed, at least partially, inside its protective casing 3, while in the position bottom of the base 9, the probe 2 is removed from the casing 3 (working position shown in FIG. 2).
  • a flexible connection that is to say of negligible stiffness which, in the illustrated embodiment, is formed by a support cable 13 passing through an axial passage 7a of the member 7 and of a length such that, in the upper position of the base 9 (FIG. 1), the probe 2 is housed, at least partially, inside its protective casing 3, while in the position bottom of the base 9, the probe 2 is removed from the casing 3 (working position shown in FIG. 2).
  • the cable 13 contains electrical conductors for supplying and transmitting the measurements which electrically connect the probe 2 to a male electrical plug 14, multi-contact, disposed on the base 9.
  • This male plug is suitable for receiving a complementary female socket 15 surmounted by a load or ballast bar 16.
  • An anchoring system either mechanical (for example shearable washers adapted to the socket 15 and cooperating with retaining members integral with the tube 8)) or electro-hydraulic (anchoring corners actuated by remote-controlled motor), provides a mechanical connection between the bar 16 and the base 9 when the electrical contact is made between the male plug 14 and the female socket 15.
  • the assembly formed by the socket 15 and the load bar 16 is fixed to the lower end of a cable 17 containing electrical conductors for supplying and transmitting the measurements made by the probe 2.
  • the probe 2 could, for example be of a known type and include articulated anchoring arms 18, 19 folded along the probe body when this probe is housed in the protective casing (Fig. 1), these arms being deployed hydraulically by electric remote control from the surface, via cables 17 and 13, when the probe 2 came out of the casing 3, in the working position shown in FIG. 2, the arms 18 and 19 then anchoring in the wall of the well and pressing the probe 2 against this wall on the diametrically opposite side (Fig. 2) .
  • These arms may be connected to one or more pads applying against the wall of the well.
  • this probe could notably include triaxial dynamic accelerometers 20, recording the components A x , Ay and A z of the noise along three axes perpendicular to each other.
  • This noise includes compression waves and shear waves.
  • This probe may also include a hydrophone recording the compression waves of the fluid contained in the hole and pressure sensors 21 and 22 measuring respectively the hydrostatic pressure prevailing in the well outside the probe and the pressure of application of the arms 18 and 19 against the wall.
  • the base 9 of the tubular support element 8 is provided with a fully mechanical anchoring system including a groove 10 cooperating with retaining lugs 10a.
  • This system makes it possible to hold the tubular element in a first position, represented on FIG. 1, where the lower part of the base 9 is below the upper stop which can be formed by a first internal shoulder 11 of the casing 6 (FIG. .3C) at a sufficient distance from it so that the anchoring system can be unlocked by lifting the base 9 (see below).
  • the tubular support element 8 When the groove 10 is released from the retaining lugs 10a the tubular support element 8 is placed in the low position under the effect of gravity, its base 9 then resting on a low stop formed by a second internal shoulder 12 of the casing 6 .
  • the base 9 as well as the internal shoulders 11 and 12 have recesses or bores allowing a hydraulic fluid to flow throughout the casing 6, around the tubular support 8, in the two positions of the probe 2.
  • the anchoring system 10 may include a W-shaped groove formed in the outer wall of the base 9 of the tubular support element 8, this base 9 can rotate around d a vertical axis with respect to the casing 6. In the high position shown in FIGS. 3A and 3C, the upper edge of the top of this groove is supported by a lug 10a secured to the internal wall of the casing 6.
  • the base 9 could include an electro-hydraulic anchoring system remotely controlled from the area.
  • FIG. 4 illustrates the first step in which the fastening of the packer 7 to the lower end of the casing 6 is first carried out on the surface.
  • the tubular support element 8 is then introduced into the latter, arranged vertically. 'we place in the high position (Fig. 1), the base 9 resting on the lugs 10a via the anchoring groove 10, by passing through the pacher 7 the electrical cable 13 previously connected to the base 9 .
  • the probe (or intervention tool) 2 is then fixed under the packer 7 at the lower end of the cable 13 and is thus suspended from the lugs 10a in its high position in FIG. 1.
  • the assembly is then gradually lowered into the well 1 (Fig. 4) from the drilling tower 23, by adding successive casing elements 6 until the probe 2 reaches the desired depth, substantially at the level of the shoe 5 , the number of casing elements 6 connected end to end making it possible to know at all times the depth reached.
  • the packer 7 is anchored to the lower end of the casing 4 (Fig. 5).
  • the casing 6 is connected at its upper part to a pipe 24 for supplying pressurized hydraulic fluid and is provided at its top with a safety shutter or cable gland 25 in which the cable 17 supporting the assembly is made to slide formed by the load bar 16 and the female socket 15, until the latter comes to be connected to the male plug 14 fixed on the base 9 of the tubular element 8 which supports the probe, the tubular support element 8 ensuring guidance of the assembly 15-16 to facilitate this connection.
  • Interlocking or mechanical connection members 15a and 8a are respectively adapted to the socket 15 and to the internal wall of the tube 8, these members being adapted to be released from one another by a sufficient tration exerted on the cable 17 from the surface.
  • the members 15a and 8a consist respectively of a shearable washer carried by the socket 15 or the load bar 16 and of arms or knives retaining this washer, carried by the tubular support element 8.
  • the cable 17 is unwound from the surface from a winch 26. Between the winch 26 and the shutter 25, the cable 17 passes over the return pulleys 27 and 28 (Fig. 6).
  • the support tube 8 of the probe 2 is then slightly raised and consequently this probe itself from a height h (insufficient to make it enter its casing 3) by a traction exerted on the cable 17 and, in this position of the probe (Fig. 8), the opening of the articulated arms 18 and 19 is remote controlled from the station 29, via the cables 17 and 13, the ends of these arms being anchored in the wall of the well 1 , by pressing the probe 2 against the portion of wall diametrically opposite to these arms.
  • the device according to the invention therefore comprises means making it possible to remove said instrument 2 from the vibrations of said casing 6 during measurement or intervention.
  • These means are constituted by the combination of anchoring members 18, 19 of said instrument 2 at a fixed level of the well 1, the latter being actuated by remote control, and of a flexible connection 13 between said instrument 2 and a support part. 9 movable in the casing 6 between a position close to the upper stop 11 and a lower stop position 12 which respectively define a first and a second position of said instrument 2.
  • the remote control signals of the probe 2 from the surface are respectively transmitted from and to the surface station 29 via the incorporated conductors to cables 13 and 17, the electrical connection between these conductors and the station 29 being produced in a known manner by a set of brushes rubbing on slip rings integral with the winch shaft 26.
  • the hydraulic fracturing of the formations located under the packer 7 can be carried out by pumping hydraulic fluid under pressure through the pipe 24 located on the surface.
  • the probe 2 is returned to its protective casing by pulling on the cable 17 replacing the base 9 of the support tube 8 in the position high of Figure 1 where this base 9 is supported by the lug 10a. We can then slowly decompress the geological formations by reducing the pressure in line 24.
  • the assembly 8, 9, 13, 12 remains suspended from the retaining lugs 10a integral with the casing 6, by means of the anchoring system in W designated by the reference 10.
  • the casing 6 can then in turn be gradually withdrawn from the well, the elements of this casing being successively disconnected at the surface.
  • annular sealing member 7 is disposed under the base 9.
  • This embodiment has the advantage of having the member 7 in the immediate vicinity of shoe 5 and to limit the length of the overhang between the base of this shoe and the bottom.
  • sealing member 7 in a non-cased area of the well which will be isolated from the rest of the well by the use of a sealing member completely sealing the well at a level below that of the instrument or probe in its low position.
  • the casing 4 descends under the total sealing member defined above.
  • the casing 4 is perforated in a conventional manner, in order to allow the injected hydraulic fluid to flow through the formations located at this level.
  • the instrument or probe 2 can be removed from the casing 3 by pumping hydraulic fluid followed possibly by a displacement of the casing 6 from the surface, in order to release the tension in the cable 13 before performing the measurement or intervention using the probe or instrument 2.
  • the probe 31 is located in an area 32 of the well in which the fracturing will not be carried out.
  • the fracturing is carried out in a zone 33 delimited by two sealing members 34 and 35 which, in the example of FIG. 9, are supported by the casing 36.
  • This tubing 36 carries a probe support 37, or base, comprising a possibly male connector 38 which will cooperate with a complementary connector like that shown in FIGS. 1, 2 or 3.
  • the probe support 37 is connected to the probe 31 by means of a flexible mechanical connection member 39 comprising at least one electrical connection.
  • the casing 36 has at least one opening 40 located between the two sealing members 34 and 35. It is through this opening that the fluid will be introduced to fraturate the area of the well designated by the reference 33.
  • the opening 40 may be closed off firstly by a jacket 41 to allow the establishment of the sealing members, then this jacket will be moved using a cable technique. ("Wireline” in Anglo-Saxon terms) to free the opening 40 and allow the fracturing of the zone to be fractured 33.
  • the probe support 37 is sealed and prevents any flow of the fracturing fluid towards the zone 32 where the measurements or interventions are carried out.
  • FIG. 10 also represents an embodiment for which the measurements are carried out in an area of the well 44 which will not be fractured.
  • the fracturing will take place in a fracturing zone 45 delimited by at least two sealing members 46 and 47.
  • This embodiment differs from that shown in FIG. 9 in that the flexible connecting member 48 is fixed to a probe support, or base, 49 movable in the casing 50.
  • the movement of the base 49 is limited by at least one lower stop 51. In this position, the base 49 prevents any flow of the fracturing fluid towards the zone of the well 44 where the measurements are made.
  • This embodiment allows the probe 52 to be moved even after the organs have been anchored sealing 46 and 47.
  • the probe it is also possible to move the probe during fracturing.
  • the latching or mechanical connection members it will be necessary for the latching or mechanical connection members to allow the transmission of a sufficient tensile force to overcome the action of the pressure forces on the base 49.
  • the base 49 must remain watertight during of this displacement.
  • the passage opening 53 of the fracturing fluid may be placed closer to the upper sealing member 47, just as the lower stop 51 may be placed in a lower position relative to the sealing member 46.
  • Step b) can be carried out before step c) or after step d).

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Fats And Perfumes (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

La présente invention concerne une méthode et un dispositif permettant d'effectuer des mesures ou/et interventions dans un puits au niveau des formations environnantes, et plus particulièrement de formations soumises à une compression hydraulique. L'invention est notamment applicable lorsqu'il s'agit d'effectuer des mesures et/ou interventions au niveau de formations géologiques situées dans une zone devant être isolée du reste du puits dans laquelle on injecte un fluide hydraulique sous pression afin de fracturer les formations à ce niveau (procédé de fracturation hydraulique).The present invention relates to a method and a device making it possible to carry out measurements or / and interventions in a well at the level of the surrounding formations, and more particularly of formations subjected to hydraulic compression. The invention is particularly applicable when it is a question of carrying out measurements and / or interventions at the level of geological formations located in an area to be isolated from the rest of the well in which a hydraulic fluid under pressure is injected in order to fracture the training at this level (hydraulic fracturing process).

Des techniques antérieures de fracturation hydrauliques sont, par exemple, décrites dans le brevet US-3 427 652.Prior hydraulic fracturing techniques are, for example, described in US Patent 3,427,652.

Les mesures effectuées en appliquant la présente invention peuvent par exemple comprendre l'enregistrement triaxial des bruits produits par les roches ainsi mise sous contrainte. L'analyse des vibrations décelées permet de définir l'orientation de la source de bruit et par suite la direction de propagation de la fracture. Cette technique d'analyse est bien connue des géophysiciens et ne sera pas décrite ici plus en détail.The measurements carried out by applying the present invention may for example include the triaxial recording of the noises produced by the rocks thus placed under stress. The analysis of the detected vibrations makes it possible to define the orientation of the noise source and consequently the direction of propagation of the fracture. This analysis technique is well known to geophysicists and will not be described here in more detail.

Des techniques selon l'art antérieur pour déterminer la propagation des fractures dans le sol sont décrites, par exemple, dans les brevets US-3 739 871 et 3 775 739.Techniques according to the prior art for determining the propagation of fractures in the soil are described, for example, in US Pat. Nos. 3,739,871 and 3,775,739.

Les mesures effectuées pourront également comporter l'enregistrement de la pression et de la température de fond, la mesure (focalisée ou non) de la résistivité électrique des formations, etc...The measurements carried out may also include recording the pressure and the background temperature, the measurement (focused or not) of the electrical resistivity of the formations, etc.

Ces mesures pourront être complétées par la visualisation des parois du puits par caméra de télévision, par exemple.These measurements may be supplemented by viewing the walls of the well by television camera, for example.

L'un des objets de l'invention est de fournir un dispositif permettant notamment de déplacer un instrument de mesure ou d'intervention dans une zone de puits éventuellement soumise à une compression hydraulique, aussi bien en cours qu'à la fin de la fracturation hydraulique des formations entourant cette zone.One of the objects of the invention is to provide a device making it possible in particular to move a measuring or intervention instrument in a well zone possibly subjected to hydraulic compression, both during and at the end of the fracturing. hydraulic formations surrounding this area.

On connait déjà par le brevet US-4 349 072 un dispositif permettant d'effectuer des mesures ou/et interventions dans un puits, ce dispositif comportant un tubage ouvert à son extrémité inférieure et d'un diamètre inférieur à celui du puits, un instrument de mesure ou d'intervention (sonde), déplaçable par télécommande depuis la surface entre une première position où ledit instrument est logé dans la partie inférieure du tubage formant carter de protection et une seconde position où ledit instrument sort au moins partiellement dudit tubage à l'extrémité inférieure de celui-ci, pour permettre la mesure ou l'intervention et un câble de transmission électrique équipé d'un premier organe de connexion électrique adapté à être déplacé dans le tubage pour venir se raccorder à un second organe de connexion électrique relié audit instrument.Already known from US-4 349 072 a device for performing measurements or / and interventions in a well, this device comprising a casing open at its lower end and with a diameter less than that of the well, an instrument measurement or intervention (probe), movable by remote control from the surface between a first position where said instrument is housed in the lower part of the casing forming a protective casing and a second position where said instrument leaves at least partially from said casing 'lower end thereof, to allow measurement or intervention and an electrical transmission cable equipped with a first electrical connection member adapted to be moved in the casing to be connected to a second connected electrical connection member audit instrument.

On connaît également par le brevet US-2 153 254 une technique pour effectuer des tests de production de fluides à partir de formations géologiques traversées par un puits, en utilisant un tubage muni à sa partie inférieure d'un organe d'étanchéité, ou packer, venant prendre appui contre une zone de la paroi du puits ayant une forme conique.Also known from US Pat. No. 2,153,254 is a technique for carrying out tests for the production of fluids from geological formations traversed by a well, using casing provided at its lower part with a sealing member, or packer. , coming to bear against an area of the wall of the well having a conical shape.

Ces tests de production comportent l'écoute et l'enregistrement en surface des bruits créés par l'écoulement des fluides produits par les formations géologiques.These production tests include listening and recording on the surface of the noises created by the flow of fluids produced by geological formations.

Le dispositif selon la présente invention permet d'effectuer des mesures ou/et interventions dans un puits. Il comporte un tubage d'un diamètre inférieur à celui du puits, au moins un instrument de mesure ou d'intervention, une base ou support de sonde, et est caractérisé en ce qu'il comporte au moins un organe d'étanchéité entourant ledit tubage, un organe de liaison souple reliant la base à l'instrument de mesure, ledit organe de liaison souple comportant au moins une liaison électrique, et en ce que la base ou support de sonde est normalement disposée, en phase de fonctionnement, à l'intérieur du tubage dans la partie inférieure de celui-ci.The device according to the present invention makes it possible to carry out measurements or / and interventions in a well. It comprises a casing with a diameter smaller than that of the well, at least one measuring or intervention instrument, a base or probe support, and is characterized in that it comprises at least one sealing member surrounding said casing, a flexible connecting member connecting the base to the measuring instrument, said flexible connecting member comprising at least one electrical connection, and in that the base or probe support is normally arranged, in operation, at the inside the casing in the lower part thereof.

La présente invention concerne également une méthode pour effectuer des mesures ou des interventions dans un puits dans laquelle on introduit dans le puits un ensemble comportant un tubage, au moins un organe d'étanchéité, un support de sonde ou base, et un organe de liaison reliant ladite sonde à ladite base. Cette méthode se caractérise en ce qu'elle comporte les étapes suivantes:

  • a) on descend ledit ensemble dans le puits,
  • b) on met en place ledit organe d'étanchéité,
  • c) on ancre la sonde, l'ordre de mise en oeuvre de ces deux dernières étapes pouvant être inversé,
  • d) on détend l'organe de liaison, et
  • e) on effectue la fracturation.
The present invention also relates to a method for carrying out measurements or interventions in a well in which an assembly comprising a casing, at least one sealing member, a probe support or base, and a connecting member is introduced into the well. connecting said probe to said base. This method is characterized in that it comprises the following stages:
  • a) the said assembly is lowered into the well,
  • b) said sealing member is put in place,
  • c) the probe is anchored, the order of implementation of these last two steps can be reversed,
  • d) the link member is relaxed, and
  • e) fracturing is carried out.

De plus, les dispositifs selon l'art antérieur ne sont pas adaptés à la réalisaticn de mesures ou d'interventions au niveau de formations soumises à une compression hydraulique.In addition, the devices according to the prior art are not suitable for carrying out measurements or interventions at the level of formations subjected to hydraulic compression.

Ce problème peut être résolu, selon l'invention, en utilisant un dispositif du type défini ci-dessus dans lequel ledit tubage est entouré d'au moins un organe annulaire d'étanchéité expansible situé à un niveau supérieur audit instrument de mesure ou d'intervention, lorsque le tubage est disposé verticalement et ledit instrument placé dans sa première position, ledit organe annulaire d'étanchéité présentant un passage axial traversé par un organe de liaison souple comportant un câble électrique relié audit instrument.This problem can be solved, according to the invention, by using a device of the type defined above in which said casing is surrounded by at least one expandable annular sealing member located at a level higher than said measuring or measuring instrument. intervention, when the casing is arranged vertically and said instrument placed in its first position, said annular sealing member having an axial passage traversed by a flexible connecting member comprising an electric cable connected to said instrument.

Les dispositifs antérieurs présentent par ailleurs l'inconvénient d'une transmission des vibrations du tubage à la sonde par l'intermédiaire de l'organe d'extension qui les relie, ce qui risque de perturber grandement les mesures effectuées par la sonde, notamment lorsque celles-ci sont des mesures acoustiques.The prior devices also have the drawback of transmitting vibrations from the casing to the probe via the extension member which connects them, which risks greatly disturbing the measurements made by the probe, in particular when these are acoustic measurements.

Cet inconvénient est supprimé selon l'invention, en appliquant une méthode pour effectuer des mesures ou/et interventions dans un puits, dans laquelle on introduit dans le puits au moins un instrument de mesure ou/et d'intervention logé dans un tubage, à la partie inférieure de celui-ci, et relié à un organe de connexion électrique par un câble de liaison, puis on introduit dans le tubage un câble de transmission équipé d'un organe de connexion électrique adapté à venir se raccorder au précédent et on fait sortir, au moins partiellement, ledit instrument du tubage, caractérisé en ce que l'on fait sortir ledit instrument en position d'extension dudit câble de liaison, puis on relâche la tension dudit câble de liaison par un déplacement relatif limité dudit instrument et dudit tubage, avant d'effectuer la mesure ou/et l'intervention.This drawback is eliminated according to the invention, by applying a method for carrying out measurements or / and interventions in a well, in which at least one measuring or intervention instrument housed in a casing is introduced into the well, the lower part of the latter, and connected to an electrical connection member by a connecting cable, then a transmission cable is fitted into the casing equipped with an electrical connection member adapted to be connected to the previous one and we make take out, at least partially, said instrument from the casing, characterized in that said instrument is brought out in the extended position of said connecting cable, then the tension of said connecting cable is released by a limited relative movement of said instrument and said casing, before performing the measurement and / or intervention.

Un exemple de réalisation de l'invention est illustré par les dessins annexés où:

  • - les figures 1 et 2 illustrent respectivement la position initiale et la position de travail d'un dispositif selon l'invention, descendu dans un puits traversant des formations géologiques,
  • - les figures 3A et 3B montrent schématiquement en vue développée le système d'ancrage de l'élément-support tubulaire, respectivement dans la position de verrouillage de cet élément et au cours de son déverrouillage,
  • - la figure 3C est une vue de détail du dispositif au voisinage de ce système d'ancrage,
  • - les figures 4 à 8 illustrent les différentes phases de la mise en oeuvre du dispositif selon l'invention, et
  • - les figures 9 et 10 illustrent schématiquement deux autres modes de réalisations du dispositif selon l'invention.
An exemplary embodiment of the invention is illustrated by the appended drawings where:
  • FIGS. 1 and 2 respectively illustrate the initial position and the working position of a device according to the invention, lowered into a well passing through geological formations,
  • FIGS. 3A and 3B schematically show in developed view the anchoring system of the tubular support element, respectively in the locking position of this element and during its unlocking,
  • FIG. 3C is a detailed view of the device in the vicinity of this anchoring system,
  • FIGS. 4 to 8 illustrate the different phases of the implementation of the device according to the invention, and
  • - Figures 9 and 10 schematically illustrate two other embodiments of the device according to the invention.

Les figures 1 et 2 correspondent respectivement à la position initiale du dispositif selon l'invention, descendu dans un puits 1 partiellement tubé et à la position de travail de ce dispositif dans laquelle la sonde 2 est sortie de son carter protecteur 3.FIGS. 1 and 2 correspond respectively to the initial position of the device according to the invention, lowered into a partially cased well 1 and to the working position of this device in which the probe 2 has come out of its protective casing 3.

Le puits 1 est équipé sur une certaine longueur d'un tubage 4 terminé par le sabot 5 à sa partie inférieure.The well 1 is fitted over a certain length with a casing 4 terminated by the shoe 5 at its lower part.

Le dispositif représenté comporte à sa partie inférieure le carter protecteur 3 dans lequel se loge au moins partiellement l'instrument de mesure ou d'intervention 2 et qui est surnonté d'un tubage 6 auquel ce carter est raccordé.The device shown comprises at its lower part the protective casing 3 in which is housed at least partially the measuring or intervention instrument 2 and which is supernatant from a casing 6 to which this casing is connected.

On considère dans ce qui suit, à titre d'exemple, que l'instrument 2 est une sonde de diagraphie, mais il pourrait également être constitué d'une caméra de télévision, ou d'un instrument d'intervention tel que, par exemple, un outil de perforation, etc...It is considered in what follows, by way of example, that the instrument 2 is a logging probe, but it could also consist of a television camera, or an intervention instrument such as, for example , a perforation tool, etc ...

Un organe d'étanchéité annulaire 7, expansible radialement, pouvant être d'un type classique (packer) est interposé entre le carter 3 et le tubage 6.An annular sealing member 7, radially expandable, which may be of a conventional type (packer) is interposed between the casing 3 and the casing 6.

L'expansiom radiale de cet organe est par exemple obtenue par déplacement axial du tubage 6, provoquant l'écartement de coins d'ancrage du packer. On pourra aussi utiliser un packer à ancrage hydraulique d'un type connu, par exemple le modèle AD1 de la société BAKER OIL TOOLS.The radial expansion of this member is for example obtained by axial displacement of the casing 6, causing the spacing of the packer anchoring corners. We can also use a packer with hydraulic anchoring of a known type, for example the AD1 model from the company BAKER OIL TOOLS.

Dans sa position d'expansion, cet organe 7 est pressé contre la paroi du tubage 4. Le carter 3 et le tubage 6 sont tous deux ouverts à leurs extrémités.In its expansion position, this member 7 is pressed against the wall of the casing 4. The casing 3 and the casing 6 are both open at their ends.

Un élément-support tubulaire 8 est logé dans le tubage 6, cet élément tubulaire étant ouvert à sa partie supérieure et comportant à sa partie inférieure une pièce-support ou base 9 équipée d'un système d'ancrage.A tubular support element 8 is housed in the casing 6, this tubular element being open at its upper part and comprising at its lower part a support piece or base 9 equipped with an anchoring system.

La sonde 2 est reliée à la base 9 par une liaison souple, c'est-à-dire de raideur négligeable qui, dans l'exemple de réalisation illustré, est formée d'un câble-support 13 traversant un passage axial 7a de l'organe 7 et d'une longueur telle que, dans la postition haute de la base 9 (Fig. 1), la sonde 2 est logée, au moins partiellement, à l'intérieur de son carter protecteur 3, tandis que dans la position basse de la base 9, la sonde 2 est sortie du carter 3 (position de travail représentée sur la figure 2).The probe 2 is connected to the base 9 by a flexible connection, that is to say of negligible stiffness which, in the illustrated embodiment, is formed by a support cable 13 passing through an axial passage 7a of the member 7 and of a length such that, in the upper position of the base 9 (FIG. 1), the probe 2 is housed, at least partially, inside its protective casing 3, while in the position bottom of the base 9, the probe 2 is removed from the casing 3 (working position shown in FIG. 2).

Le câble 13 contient des conducteurs électriques d'alimentation et de transmission des mesures qui relient électriquement la sonde 2 à une fiche électrique mâle 14, multi-contact, disposée sur la base 9. Cette fiche mâle est adaptée à recevoir une prise femelle complémentaire 15 surmontée d'une barre de charge ou de lestage 16.The cable 13 contains electrical conductors for supplying and transmitting the measurements which electrically connect the probe 2 to a male electrical plug 14, multi-contact, disposed on the base 9. This male plug is suitable for receiving a complementary female socket 15 surmounted by a load or ballast bar 16.

Un système d'ancrage, soit mécanique (par exemple rondelles cisaillables adaptées à la prise 15 et coopérant avec des organes de retenue solidaires du tube 8)) soit électro-hydraulique (coins d'ancrage actionnés par moteur télécommandé), assure une liaison mécanique entre la barre 16 et la base 9 lorsque le contact électrique est réalisé entre la fiche mâle 14 et la prise femelle 15.An anchoring system, either mechanical (for example shearable washers adapted to the socket 15 and cooperating with retaining members integral with the tube 8)) or electro-hydraulic (anchoring corners actuated by remote-controlled motor), provides a mechanical connection between the bar 16 and the base 9 when the electrical contact is made between the male plug 14 and the female socket 15.

L'ensemble formé par la prise femelle 15 et la barre de charge 16 est fixé à l'extrémité inférieure d'un câble 17 renfermant des conducteurs électriques d'alimentation et de transmission des mesures effectuées par la sonde 2.The assembly formed by the socket 15 and the load bar 16 is fixed to the lower end of a cable 17 containing electrical conductors for supplying and transmitting the measurements made by the probe 2.

Des exemples de comnecteurs électriques utilisables pour constituer l'ensemble de la fiche mâle 14 et de la prise femelle 15 sont décrits dans le brevet d'invention 248471 et dans la demande de brevet français publiées EN 81/05306 "Connecteur électrique enfichable dans un milieu liquide", déposée le 17 mars 1981.Examples of electrical connectors which can be used to constitute the whole of the male plug 14 and the female connector 15 are described in the invention patent 248471 and in the French patent application published EN 81/05306 "Electrical connector pluggable in a medium liquid ", filed on March 17, 1981.

La sonde 2 pourra, par exemple être de type connu et comporter des bras d'ancrage articulés 18,19 repliés le long du corps de sonde lorsque cette sonde est logée dans le carter protecteur (Fig. 1), ces bras étant déployés hydrauliquement par télécommande électrique depuis la surface, par l'intermédiaire des câbles 17 et 13, lorsque la sonde 2 est sortie du carter 3, dans la position de travail représentée sur la figure 2, les bras 18 et 19 s'ancrant alors dans la paroi du puits et pressant la sonde 2 contre cette paroi du côté diamétralement opposé (Fig. 2).The probe 2 could, for example be of a known type and include articulated anchoring arms 18, 19 folded along the probe body when this probe is housed in the protective casing (Fig. 1), these arms being deployed hydraulically by electric remote control from the surface, via cables 17 and 13, when the probe 2 came out of the casing 3, in the working position shown in FIG. 2, the arms 18 and 19 then anchoring in the wall of the well and pressing the probe 2 against this wall on the diametrically opposite side (Fig. 2) .

Ces bras pourront etre reliés à un ou plusieurs patins s'appliquant contre la paroi du puits.These arms may be connected to one or more pads applying against the wall of the well.

Dans un exemple d'application où la sonde 2 est utilisée pour détecter et enregistrer des signaux acoustiques produits par des formations géologiques fissurées par fracturation hydraulique cette sonde pourra notamment comporter des accéléromètres dynamiques triaxiaux 20, enregistrant les composantes Ax, Ay et Az du bruit suivant trois axes perpendiculaires entre eux. Ce bruit comprend les ondes de compression et les ondes de cisaillement. Cette sonde pourra également comporter un hydrophone enregistrant les ondes de compression du fluide contenu dans le trou et des capteurs de pression 21 et 22 mesurant respectivement la pression hydrostatique régnant dans le puits à l'extérieur de la sonde et la pression d'application des bras 18 et 19 contre la paroi.In an example of application where the probe 2 is used to detect and record acoustic signals produced by geological formations cracked by hydraulic fracturing, this probe could notably include triaxial dynamic accelerometers 20, recording the components A x , Ay and A z of the noise along three axes perpendicular to each other. This noise includes compression waves and shear waves. This probe may also include a hydrophone recording the compression waves of the fluid contained in the hole and pressure sensors 21 and 22 measuring respectively the hydrostatic pressure prevailing in the well outside the probe and the pressure of application of the arms 18 and 19 against the wall.

Cette sonde pourra également comporter des capteurs déterminant de façon connue:

  • - son inclinaison sur la verticale ainsi que l'angle formé par une génératrice repère de cette sonde avec le plan vertical passant par l'axe de la sonde ("tool face") cela au moyen d'accéléromètres statiques triaxiaux ou des inclinomètres,
  • - l'orientation de la sonde par rapport au nord Magnétique, c'est-à-dire l'angle que fait le plan vertical passant par l'axe de la sonde avec le plan vertical contenant le nord Magnétique (au moyen de magnétomètres triaxiaux ou d'une boussole).
This probe may also include sensors determining in known manner:
  • - its inclination on the vertical as well as the angle formed by a reference generator of this probe with the vertical plane passing through the axis of the probe ("tool face"), this by means of triaxial static accelerometers or inclinometers,
  • - the orientation of the probe relative to Magnetic north, i.e. the angle made by the vertical plane passing through the axis of the probe with the vertical plane containing Magnetic north (by means of triaxial magnetometers or a compass).

Lorsque la sonde est quasiment verticale, on considère seulement l'angle compris entre le plan vertical contenant l'axe de la sonde et la génératrice repère et le plan vertical contenant le nord Magnétique utilisant des magnétomètres dynamiques triaxiaux ou une boussole.When the probe is almost vertical, we only consider the angle between the vertical plane containing the axis of the probe and the reference generator and the vertical plane containing north Magnetic using dynamic triaxial magnetometers or a compass.

Dans l'exemple précité, la base 9 de l'élément-support tubulaire 8 est munie d'un système d'ancrage entièrement mécanique corprenant une rainure 10 coopérant avec des ergots de retenue 10a. Ce système permet le maintenir l'élément tubulaire dans une première position, représentée ur la figure 1, où la partie inférieure de la base 9 est au dessous l'une butée haute pouvant être formée par un premier épaulement interne 11 du tubage 6 (Fig. 3C) à une distance suffisante de celle-ci pour que le système d'ancrage puisse être déverrouillé en soulevant la base 9 (voir ci-après).In the above example, the base 9 of the tubular support element 8 is provided with a fully mechanical anchoring system including a groove 10 cooperating with retaining lugs 10a. This system makes it possible to hold the tubular element in a first position, represented on FIG. 1, where the lower part of the base 9 is below the upper stop which can be formed by a first internal shoulder 11 of the casing 6 (FIG. .3C) at a sufficient distance from it so that the anchoring system can be unlocked by lifting the base 9 (see below).

Lorsque la rainure 10 est dégagée des ergots de retenue 10a l'élément-support tubulaire 8 se place en position basse sous l'effet de la gravité, sa base 9 reposant alors sur une butée basse formée par un second épaulement interne 12 du tubage 6.When the groove 10 is released from the retaining lugs 10a the tubular support element 8 is placed in the low position under the effect of gravity, its base 9 then resting on a low stop formed by a second internal shoulder 12 of the casing 6 .

La base 9 ainsi que les épaulement internes 11 et 12 présente des évidements ou alésages permettant à un fluide hydraulique de s'écouler tout au long du tubage 6, autour du support tubulaire 8, dans les deux positions de la sonde 2.The base 9 as well as the internal shoulders 11 and 12 have recesses or bores allowing a hydraulic fluid to flow throughout the casing 6, around the tubular support 8, in the two positions of the probe 2.

Ainsi que le montremt schématiquement les figures 3A et 3B, le système d'ancrage 10 pourra comporter une rainure en forme de W ménagée dans la paroi externe de la base 9 de l'élément-support tubulaire 8, cette base 9 pouvant tourner autour d'un axe vertical par rapport au tubage 6. Dans la position haute représentée sur les figures 3A et 3C, le bord supérieur du sommet de cette rainure est soutenu par un ergot 10a solidaire de la paroi interne du tubage 6.As shown schematically in Figures 3A and 3B, the anchoring system 10 may include a W-shaped groove formed in the outer wall of the base 9 of the tubular support element 8, this base 9 can rotate around d a vertical axis with respect to the casing 6. In the high position shown in FIGS. 3A and 3C, the upper edge of the top of this groove is supported by a lug 10a secured to the internal wall of the casing 6.

En soulevant légèrement l'ensemble 16-15-14-8-9 par une traction F, exercée sur le câble 17 à partir de la position représentée sur la figure 3A, l'encoche 10b à la partie supérieure de la rainure 10 est dégagée de l'ergot 10a. Le bord supérieur 10c de la rainure 10 s'appuie alors sur cet ergot, provoquant une rotation de la base 9 qui amène le bord supérieur 10d de la rainure 10 en regard de l'ergot. En relâchant la traction F, le bord 10d vient en appui sur l'ergot 10a, entraînant la rotation de la base 9 jusqu'à son dégagement de l'ergot 10a à travers l'ouverture 10e (Fig. 3B). L'ensemble précité descend alors par gravité jusqu'à sa position basse representée sur la figure 2. Au lieu du système d'ancrage entièrement mécanique décrit ci-dessus, la base 9 pourrait comporter un système d'ancrage électro-hydraulique télécommandé depuis la surface.By slightly lifting the assembly 16-15-14-8-9 by a pull F, exerted on the cable 17 from the position shown in FIG. 3A, the notch 10b at the upper part of the groove 10 is released of lug 10a. The upper edge 10c of the groove 10 then rests on this lug, causing a rotation of the base 9 which brings the upper edge 10d of the groove 10 opposite the lug. By releasing the traction F, the edge 10d comes to bear on the lug 10a, causing the rotation of the base 9 until its release from the lug 10a through the opening 10e (FIG. 3B). The above-mentioned assembly then descends by gravity to its low position shown in FIG. 2. Instead of the fully mechanical anchoring system described above, the base 9 could include an electro-hydraulic anchoring system remotely controlled from the area.

La mise en oeuvre de ce dispositif est indiquée ci-dessous en se réferant aux figures 4 à 8 qui montrent les étapes successives de cette technique. La figure 4 illustre la première étape dans laquelle on réalise tout d'abord en surface la fixation du packer 7 à l'extrémité inférieure du tubage 6. On introduit alors dans ce dernier, disposé verticalement, l'élément-support tubulaire 8 que l'on place en position haute (Fig. 1), la base 9 reposant sur les ergots 10a par l'intermédiaire de la rainure d'ancrage 10, en faisant passer à travers le pacher 7 le câble électrique 13 préalablement connecté à la base 9.The implementation of this device is indicated below with reference to Figures 4 to 8 which show the successive stages of this technique. FIG. 4 illustrates the first step in which the fastening of the packer 7 to the lower end of the casing 6 is first carried out on the surface. The tubular support element 8 is then introduced into the latter, arranged vertically. 'we place in the high position (Fig. 1), the base 9 resting on the lugs 10a via the anchoring groove 10, by passing through the pacher 7 the electrical cable 13 previously connected to the base 9 .

La sonde (ou outil d'intervention) 2 est alors fixée sous le packer 7 à l'extrémité inférieure du câble 13 et se trouve ainsi suspendue aux ergots 10a dans sa position haute de la figure 1. On fixe alors à l'extrémité inférieure du packer 7 le carter protectur de la sonde qui se trouve logée à l'intérieur du carter. L'ensemble est alors progressivement descendu dans le puits 1 (Fig. 4) depuis la tour de forage 23, en ajoutant des éléments de tubage successifs 6 jusqu'à ce que la sonde 2 atteigne la profondeur désirée, sensiblement au niveau du sabot 5, le nombre d'éléments de tubage 6 connectés bout à bout permettant de connaître à tout instant la profondeur atteinte. Lorsque cette postition est atteinte, le packer 7 est ancré à l'extrémité inférieure du tubage 4 (Fig. 5).The probe (or intervention tool) 2 is then fixed under the packer 7 at the lower end of the cable 13 and is thus suspended from the lugs 10a in its high position in FIG. 1. One then fixes at the lower end from packer 7 the protective housing of the probe which is housed inside the housing. The assembly is then gradually lowered into the well 1 (Fig. 4) from the drilling tower 23, by adding successive casing elements 6 until the probe 2 reaches the desired depth, substantially at the level of the shoe 5 , the number of casing elements 6 connected end to end making it possible to know at all times the depth reached. When this position is reached, the packer 7 is anchored to the lower end of the casing 4 (Fig. 5).

Le tubage 6 est relié à sa partie supérieure à une canalisation 24 d'alimentation en fluide hydraulique sous pression et est muni à son sommet d'un obturateur de sécurité ou presse- étoupe 25 dans lequel on fait coulisser le câble 17 soutenant l'ensemble formé par la barre de charge 16 et la prise femelle 15, jusqu'à ce que cette dernière vienne se raccorder à la fiche mâle 14 fixée sur la base 9 de l'élément tubulaire 8 qui supporte la sonde, l'élément-support tubulaire 8 assurant un guidage de l'ensemble 15-16 pour faciliter ce raccordement.The casing 6 is connected at its upper part to a pipe 24 for supplying pressurized hydraulic fluid and is provided at its top with a safety shutter or cable gland 25 in which the cable 17 supporting the assembly is made to slide formed by the load bar 16 and the female socket 15, until the latter comes to be connected to the male plug 14 fixed on the base 9 of the tubular element 8 which supports the probe, the tubular support element 8 ensuring guidance of the assembly 15-16 to facilitate this connection.

Des organes d'enclenchement ou de liaison mécanique 15a et 8a sont respectivement adaptés à la prise 15 et à la paroi interne du tube 8, ces organes étant adaptés à être dégagés l'un de l'autre par une tration suffisante exercée sur le câble 17 depuis la surface.Interlocking or mechanical connection members 15a and 8a are respectively adapted to the socket 15 and to the internal wall of the tube 8, these members being adapted to be released from one another by a sufficient tration exerted on the cable 17 from the surface.

Dans l'exemple considéré les organes 15a et 8a sont constitués respectivement d'une rondelle cisaillable portée par la prise 15 ou la barre de charge 16 et de bras ou couteaux de retenue de cette rondelle, portés par l'élément-support tubulaire 8.In the example considered, the members 15a and 8a consist respectively of a shearable washer carried by the socket 15 or the load bar 16 and of arms or knives retaining this washer, carried by the tubular support element 8.

Le câble 17 est déroulé depuis la surface à partir d'un treuil 26. Entre le treuil 26 et l'obturaeur 25, le câble 17 passe sur les poulies de renvoi 27 et 28 (Fig. 6).The cable 17 is unwound from the surface from a winch 26. Between the winch 26 and the shutter 25, the cable 17 passes over the return pulleys 27 and 28 (Fig. 6).

Lorsque l'opération de connexion électrique de la prise 15 à la fiche 14 ainsi que la liaison mécanique entre la barre 16 et la base 9 sont réalisées, une légère traction F exercée sur le câble 17 (Fig. 3B) permet de désolidariser de l'ergot 10a la base 9 de l'élément tubulaire 8 qui passe alors en position basse correspondant à la figure 2, la sonde 2 étant sortie de son carter protecteur 3 et se trouvant alors dans la partie inférieure non tubée, ou découverte, du puits 1 (Fig.7).When the electrical connection operation of the socket 15 to the plug 14 as well as the mechanical connection between the bar 16 and the base 9 are carried out, a slight traction F exerted on the cable 17 (FIG. 3B) makes it possible to dissociate from the lug 10a the base 9 of the tubular element 8 which then passes into the low position corresponding to FIG. 2, the probe 2 having come out of its protective casing 3 and being then in the uncovered or uncovered lower part of the well 1 (Fig. 7).

On soulève alors légèrement le tube support 8 de la sonde 2 et par suite cette sonde elle-même d'une hauteur h (insuffisante pour la faire rentrer dans son carter 3) par une traction exercée sur le câble 17 et, dans cette position de la sonde (Fig. 8), on télécommande depuis la station 29, par l'intermédiaire des câbles 17 et 13, l'ouverture des bras articulés 18 et 19. Les extrémités de ces bras viennent s'ancrer dans la paroi du puits 1, en pressant la sonde 2 contre la portion de paroi diamétralement opposée à ces bras.The support tube 8 of the probe 2 is then slightly raised and consequently this probe itself from a height h (insufficient to make it enter its casing 3) by a traction exerted on the cable 17 and, in this position of the probe (Fig. 8), the opening of the articulated arms 18 and 19 is remote controlled from the station 29, via the cables 17 and 13, the ends of these arms being anchored in the wall of the well 1 , by pressing the probe 2 against the portion of wall diametrically opposite to these arms.

On relâche la traction exercée sur le câble 17 en surface et le tube-support 8 retombe alors dans sa position basse sous l'effet de la gravité. Ceci a pour effet de donner un certain mou au câble 13 ainsi détendu (Fig. 8).The traction exerted on the cable 17 at the surface is released and the support tube 8 then falls back into its low position under the effect of gravity. This has the effect of giving some slack to the cable 13 thus relaxed (FIG. 8).

Dans ces conditions on peut désormais effectuer des mesures ou opérations au moyen de la sonde ou de l'instrument 2 sans transmettre à cette sonde ou instrument les vibrations du tubage 6.Under these conditions, measurements or operations can now be carried out using the probe or the instrument 2 without transmitting the vibrations of the casing 6 to this probe or instrument.

Le dispositif selon l'invention comporte donc des moyens permettant de soustraire ledit instrument 2 aux vibrations dudit tubage 6 lors de la mesure ou de l'intervention. Ces moyens sont constitués par la combinaison d'organes d'ancrage 18,19 dudit instrumemt 2 à un niveau fixe du puits 1, ces derniers étant actionnés par télécommande, et d'une liaison souple 13 entre ledit instrument 2 et une pièce-support 9 déplaçable dans le tubage 6 entre une position voisine de la butée haute 11 et une position en butée basse 12 qui définissent respectivement une première et une seconde positions dudit instrument 2.The device according to the invention therefore comprises means making it possible to remove said instrument 2 from the vibrations of said casing 6 during measurement or intervention. These means are constituted by the combination of anchoring members 18, 19 of said instrument 2 at a fixed level of the well 1, the latter being actuated by remote control, and of a flexible connection 13 between said instrument 2 and a support part. 9 movable in the casing 6 between a position close to the upper stop 11 and a lower stop position 12 which respectively define a first and a second position of said instrument 2.

Les signaux de télécommande de la sonde 2 depuis la surface, ainsi que les signaux de mesure provenant de la sonde 2 et le courant électrique alimentant celle-ci, sont respectivement transmis de et à la station de surface 29 par l'intermédiaire des conducteurs incorporés aux câbles 13 et 17, la liaison électrique entre ces conducteurs et la station 29 étant réalisée de façon connue par un ensemble de balais frottant sur des bagues collectrices solidaires de l'arbre du treuil 26.The remote control signals of the probe 2 from the surface, as well as the measurement signals coming from the probe 2 and the electric current supplying it, are respectively transmitted from and to the surface station 29 via the incorporated conductors to cables 13 and 17, the electrical connection between these conductors and the station 29 being produced in a known manner by a set of brushes rubbing on slip rings integral with the winch shaft 26.

La fracturation hydraulique des formations situées sous le packer 7 peut être réalisée par pompage de fluide hydraulique sous pression à travers la canalisation 24 située en surface.The hydraulic fracturing of the formations located under the packer 7 can be carried out by pumping hydraulic fluid under pressure through the pipe 24 located on the surface.

Lorsque les diverses opérations ou mesures sont terminées, on télécommande de la surface la fermeture des bras articulés 18 et 19, on rentre la sonde 2 dans son carter protecteur par une traction sur le câble 17 replaçant la base 9 du tube support 8 dans la position haute de la figure 1 où cette base 9 est soutenue par l'ergot 10a. On peut alors décomprimer lentement les formations géologiques en réduisant la pression dans la canalisation 24.When the various operations or measurements are completed, the closing of the articulated arms 18 and 19 is remote controlled from the surface, the probe 2 is returned to its protective casing by pulling on the cable 17 replacing the base 9 of the support tube 8 in the position high of Figure 1 where this base 9 is supported by the lug 10a. We can then slowly decompress the geological formations by reducing the pressure in line 24.

L'engagement de la rainure 10 et des ergots 10a s'effectue d'une manière analogue au dégagement décrit ci-dessus en se référant aux figures 3A et 3B.The engagement of the groove 10 and the lugs 10a takes place in a manner analogous to the clearance described above with reference to FIGS. 3A and 3B.

Une traction suffisante sur le câble 17 cisaille la rondelle 15a et déconnecte alors la prise électrique femelle 15 de la fiche mâle 14, la base 9 venant en appui contre la butée haute 11, et l'on peut remonter au moyen du câble 17 l'ensemble constitué par la prise femelle 15 et la barre de charge 16 surmontant cette prise.Sufficient traction on the cable 17 shears the washer 15a and then disconnects the female electrical socket 15 from the male plug 14, the base 9 coming to bear against the high stop 11, and it is possible to go up by means of the cable 17 '. assembly constituted by the socket 15 and the load bar 16 surmounting this socket.

L'ensemble 8, 9,13,12 reste suspendu aux ergots de retenue 10a solidaires du tubage 6, par l'intermédiaire du système d'ancrage en W désigné par la référence 10.The assembly 8, 9, 13, 12 remains suspended from the retaining lugs 10a integral with the casing 6, by means of the anchoring system in W designated by the reference 10.

Le tubage 6 peut alors être à son tour progressivement retiré du puits, les éléments de ce tubage étant successivement déconnectés en surface.The casing 6 can then in turn be gradually withdrawn from the well, the elements of this casing being successively disconnected at the surface.

On a décrit ci-dessus à titre d'exemple, un mode de réalisation selon lequel l'organe d'étanchéité annulaire 7 est disposé sous la base 9. Ce mode de réalisation présente l'avantage de disposer l'organe 7 à proximité immédate du sabot 5 et de limiter la longueur du découvert entre la base de ce sabot et le fond.We have described above by way of example, an embodiment according to which the annular sealing member 7 is disposed under the base 9. This embodiment has the advantage of having the member 7 in the immediate vicinity of shoe 5 and to limit the length of the overhang between the base of this shoe and the bottom.

On ne sortirait cependant pas du cadre de l'invention en plaçant l'ensemble de l'équipement 8, 9 à un niveau inférieur à celui de l'organe d'étanchéité 7 dont le passage axial la serait alors traversé par le câble de transmission 17. Ce dernier mode de réalisation présente les avantages suivants:

  • - l'ensemble mécanique situé sous le packer 7 est en équipression avec le fluide hydraulique comprimé au-dessous de ce packer,
  • - il est possible de ménager dans le tubage 6 des ouvertures d'écoulement du fluide, au-dessous du niveau de l'organe 7, entre celui-ci et le niveau de la butée haute 11.
It would not, however, depart from the scope of the invention to place all of the equipment 8, 9 at a level lower than that of the sealing member 7, the axial passage of which would then be crossed by the transmission cable. 17. This last embodiment has the following advantages:
  • the mechanical assembly located under the packer 7 is under pressure with the hydraulic fluid compressed below this packer,
  • - It is possible to provide in the casing 6 fluid flow openings, below the level of the member 7, between the latter and the level of the upper stop 11.

Par ailleurs, d'autres modes de mise en oeuvre des équipements définis ci-dessus sont également envisageables.Furthermore, other modes of implementing the equipment defined above can also be envisaged.

Il sera, par exemple, possible de placer l'organe d'étanchéité 7 dans une zone non tubée du puits qui sera isolée du reste du puits par l'utilisation d'un organe d'étanchéité obturant totalement le puits à un niveau inférieur à celui de l'instrument ou sonde dans sa position basse.It will, for example, be possible to place the sealing member 7 in a non-cased area of the well which will be isolated from the rest of the well by the use of a sealing member completely sealing the well at a level below that of the instrument or probe in its low position.

Selon une variante de ce dernier mode de réalisation, le tubage 4 descend sous l'organe d'étanchéité totale défini ci-dessus. Dans la zone délimitée par les deux organes d'étanchéité on perfore le tubage 4 de manière classique, afin de permettre au fluide hydraulique injecté de s'écouler à travers les formations situées à ce niveau.According to a variant of this latter embodiment, the casing 4 descends under the total sealing member defined above. In the zone delimited by the two sealing members, the casing 4 is perforated in a conventional manner, in order to allow the injected hydraulic fluid to flow through the formations located at this level.

Lorsque l'ensemble du dispositif est sous pression hydraulique, il est possible de déplacer l'instrument ou sonde 2 par simple traction sur le câble 17 depuis la surface, après avoir téléconmandé la fermeture des bras 18 et 19.When the entire device is under hydraulic pressure, it is possible to move the instrument or probe 2 by simply pulling the cable 17 from the surface, after having remote-controlled the closure of the arms 18 and 19.

Lorsque la technique décrite ci-dessus est appliquce aux puits très déviés ou horizontaux, on peut faire sortir du carter 3 l'instrument ou sonde 2 par pompage de fluide hydraulique suivi éventuellement d'un déplacement du tubage 6 depuis la surface, afin de relâcher la tension dans le câble 13 avant d'effectuer la mesure ou l'intervention au moyen de la sonde ou instrument 2.When the technique described above is applied to very deviated or horizontal wells, the instrument or probe 2 can be removed from the casing 3 by pumping hydraulic fluid followed possibly by a displacement of the casing 6 from the surface, in order to release the tension in the cable 13 before performing the measurement or intervention using the probe or instrument 2.

On ne sortirait pas du cadre de l'invention en ayant plusieurs sondes ou instruments de mesures ou d'intervention suspendues les unes aux autres sous la pièce-support 9.It would not go beyond the scope of the invention to have several probes or measurement or intervention instruments suspended from one another under the support piece 9.

Selon un autre mode de réalisation de l'invention, représenté à la figure 9, la sonde 31 est située dans une zone 32 du puits dans laquelle on n'effectuera pas la fracturation. La fracturation est effectuée dans une zone 33 délimitée par deux organes d'étanchéité 34 et 35 qui, dans l'exemple de la figure 9, sont supportés par le tubage 36.According to another embodiment of the invention, shown in FIG. 9, the probe 31 is located in an area 32 of the well in which the fracturing will not be carried out. The fracturing is carried out in a zone 33 delimited by two sealing members 34 and 35 which, in the example of FIG. 9, are supported by the casing 36.

Ce tubage 36 porte un support de sonde 37, ou base, comportant un connecteur éventuellement mâle 38 qui coopérera avec un connecteur complémentaire comme cels est représenté aux figures 1, 2 ou 3.This tubing 36 carries a probe support 37, or base, comprising a possibly male connector 38 which will cooperate with a complementary connector like that shown in FIGS. 1, 2 or 3.

Le support de sonde 37 est relié à la sonde 31 par l'intermédiaire d'un organe souple de liaison mécanique 39 comportant au moins une liaison électrique.The probe support 37 is connected to the probe 31 by means of a flexible mechanical connection member 39 comprising at least one electrical connection.

Le tubage 36 comporte au moins une ouverture 40 localisée entre les deux organes d'étanchéité 34 et 35. C'est par cette ouverture que sera introduit le fluide pour fraturer la zone du puits désignée par la référence 33.The casing 36 has at least one opening 40 located between the two sealing members 34 and 35. It is through this opening that the fluid will be introduced to fraturate the area of the well designated by the reference 33.

Si les organes d'étanchéité sons du type à ancrage hydraulique, l'ouverture 40 pourra être obturée dans un premier temps par une chemise 41 pour permettre la mise en place des organes d'étanchéité, puis cette chemise sera déplacée suivant une technique au câble ("Wireline" en termes anglosaxons) pour libérer l'ouverture 40 et permettre la fracturation de la zone à fracturer 33.If the sealing members are of the type with hydraulic anchoring, the opening 40 may be closed off firstly by a jacket 41 to allow the establishment of the sealing members, then this jacket will be moved using a cable technique. ("Wireline" in Anglo-Saxon terms) to free the opening 40 and allow the fracturing of the zone to be fractured 33.

Il est bien évident, qu'au moins pendant le temps de la fracturation, le support de sonde 37 est étanche et empêche tout écoulement du fluide de fracturation vers la zone 32 où sont effectuées les mesures ou interventions.It is obvious that at least during the fracturing time, the probe support 37 is sealed and prevents any flow of the fracturing fluid towards the zone 32 where the measurements or interventions are carried out.

La mise en oeuvre du dispositif décrit précédemment s'effectue de la manière suivante:

  • - l'ensemble constitué par le tubage 36, les organes d'étanchéité 34 et 35, le support de sonde 37, l'organe de liaison souple 39 et la sonde 31, est descendu dans un puits. L'inclinaison du puits est telle que, lorsque la sonde 31 est soumise aux forces de gravité, elle maintient l'organe de liaison souple tendu.
  • - la sonde est ancrée dans le puits à l'aide de bras 42 et 43.
  • - le tubage est descendu dans le puits d'une hauteur, qualifiée de hauteur de détente, suffisante pour détendre l'organe de liaison 39 sans pour autant rencontrer la sonde 31. Bien entendu, la sonde peut être ancrée dans le puits à une position telle, et la hauteur de détente peut être telle que la fracturation ait lieu dans une zone prédéterminée du puits.
  • - les organes d'étanchéité sont mis en place, et
  • - l'opération de fracturation peut commencer.
The implementation of the device described above is carried out as follows:
  • - The assembly constituted by the casing 36, the sealing members 34 and 35, the probe support 37, the flexible connecting member 39 and the probe 31, is lowered into a well. The inclination of the well is such that, when the probe 31 is subjected to the forces of gravity, it keeps the flexible connecting member taut.
  • - the probe is anchored in the well using arms 42 and 43.
  • - The casing is lowered into the well by a height, qualified as a relaxation height, sufficient to relax the connecting member 39 without however meeting the probe 31. Of course, the probe can be anchored in the well at a position such, and the expansion height can be such that the fracturing takes place in a predetermined area of the well.
  • - the sealing members are put in place, and
  • - the fracturing operation can begin.

Selon ce mode de réalisation de l'invention, on a un système sensiblement équilibré en pression, puisque les forces de pression du fluide de fracturation s'exercent sur les deux organes d'étanchéité dans des directions opposées et de ce fait, le tubage n'est pas soumis à une force verticale dûe aux forces de pression du fluide de fracturation.According to this embodiment of the invention, there is a system substantially balanced in pressure, since the pressure forces of the fracturing fluid are exerted on the two sealing members in opposite directions and therefore, the casing n is not subjected to a vertical force due to the pressure forces of the fracturing fluid.

La figure 10 représente également un mode de réalisation pour lequel les mesures sont effectuées dans une zone du puits 44 qui ne sera pas fracturée.FIG. 10 also represents an embodiment for which the measurements are carried out in an area of the well 44 which will not be fractured.

La fracturation aura lieu dans une zone de fracturation 45 délimitée par au moins deux organes d'étanchéité 46 et 47.The fracturing will take place in a fracturing zone 45 delimited by at least two sealing members 46 and 47.

Ce mode de réalisation se différencie de celui représenté à la figure 9 en ce que l'organe de liaison souple 48 est fixé à un support de sonde, ou base, 49 mobile dans le tubage 50. Le mouvement de la base 49 est limité par au moins une butée basse 51. Dans cette position, la base 49 empêche tout écoulement du fluide fracturateur vers la zone du puits 44 où sont effectuées les mesures.This embodiment differs from that shown in FIG. 9 in that the flexible connecting member 48 is fixed to a probe support, or base, 49 movable in the casing 50. The movement of the base 49 is limited by at least one lower stop 51. In this position, the base 49 prevents any flow of the fracturing fluid towards the zone of the well 44 where the measurements are made.

Ce mode de réalisation permet de déplacer la sonde 52 même après ancrage des organes d'étanchéité 46 et 47.This embodiment allows the probe 52 to be moved even after the organs have been anchored sealing 46 and 47.

Selon ce mode de réalisation, il est également possible de déplacer la sonde en cours de fracturation. Dans ce cas, il faudra que les organes d'enclenchement ou de liaison mécanique permettent la transmission d'un effort de traction suffisant pour vaincre l'action des forces de pression sur la base 49. De même que la base 49 devra rester étanche lors de ce déplacement.According to this embodiment, it is also possible to move the probe during fracturing. In this case, it will be necessary for the latching or mechanical connection members to allow the transmission of a sufficient tensile force to overcome the action of the pressure forces on the base 49. Similarly, the base 49 must remain watertight during of this displacement.

Bien entendu, dans ce cas, l'ouverture de passage 53 du fluide de fracturation pourra être placée plus près de l'organe d'étanchéité supérieure 47, de même que la butée basse 51 pourra être placée dans une position plus basse par rapport à l'organe d'étanchéité 46.Of course, in this case, the passage opening 53 of the fracturing fluid may be placed closer to the upper sealing member 47, just as the lower stop 51 may be placed in a lower position relative to the sealing member 46.

Un exemple de mise en oeuvre de ce mode de réalisation est donné ci-après:

  • a) on descend l'ensemble comportant le tubage 50, la base 49, l'organe de liaison souple 48, la sonde 52 et les organes d'étanchéité 46 et 47,
  • b) les organes d'étanchéité sont mis en place éventuellement lorsque la base 49 est en position basse,
  • c) on descend depuis la surface un connecteur 55 relié à un câble 54, ledit connecteur venant coopérer avec la base 49 de manière à assurer une liaison électrique et mécanique,
  • d) on ancre la sonde 52 alors que la base 49 n'est pas en contact avec la butée 51,
  • e) on descend la base 49 grâce au câble 54 relié à la surface jusqu'à ce qu'elle rencontre la butée 51, de manière à détendre l'organe de liaison souple 48, et
  • f) on effectue la fracturation.
An example of implementation of this embodiment is given below:
  • a) the assembly comprising the casing 50, the base 49, the flexible connection member 48, the probe 52 and the sealing members 46 and 47 are lowered,
  • b) the sealing members are optionally put in place when the base 49 is in the low position,
  • c) a connector 55 is lowered from the surface connected to a cable 54, said connector coming to cooperate with the base 49 so as to provide an electrical and mechanical connection,
  • d) the probe 52 is anchored while the base 49 is not in contact with the stop 51,
  • e) the base 49 is lowered by the cable 54 connected to the surface until it meets the stop 51, so as to relax the flexible connecting member 48, and
  • f) fracturing is carried out.

L'étape b) peut ête réalisée avant l'étape c) ou après l'étape d).Step b) can be carried out before step c) or after step d).

Claims (10)

1. A device making it possible to carry out measurements and/or interventions in a well comprising a tubing (6, 36) of a diameter less than that of the well, at least one measuring or intervention instrument (2, 31), a sensor support or base (9, 37), characterised in that it comprises at least one sealing element (7, 34) surrounding said tubing, a flexible connecting element (13, 39) connecting the sensor support or base (9, 37) to the measuring or intervention instrument (2, 31), said flexible connecting element (13, 39) comprising at least one electrical connection, and in that the sensor support or base (9, 37) is normally disposed inside the tubing (6, 36) in the lower part of the latter during the working phase.
2. A device as in claim 1, making it possible to carry out measurements and/or interventions in a well in a zone of this well subject to hydraulic compression, comprising a tubing (6) open at its lower end and of a diameter less than that of the well, at least one measuring or intervention instrument (2), displaceable from the surface between a first position in which said instrument . is housed in the lower part of the tubing forming a protective casing (3) and a second position in which said instrument (2) emerges at least partially from said tubing (6) at the lower end (3) of the latter to permit the measurement or the intervention, and an electrical transmission cable (17) fitted with a first electrical connecting element (15) adapted to be displaced in the tubing (6) to connect to a second electrical connecting element (14) connected to said instrument (2), characterised in that said sealing element surrounds the tubing (6) in its lower part and comprises at least one annular sealing element (7) exhibiting an axial passage (7a) through which a flexible connecting element (13) passes comprising an electrical connecting element connected to said measuring instrument (2).
3. A device as in claim 2, in which the sensor support or base (9) is connected to said instrument (2) by an electrical connecting cable (13), this sensor support or base (9) being displaceable in the tubing (6) between two positions corresponding respectively to said first and to said second position of said instrument (2) and means for holding said sensor support or base (9) in its first position, these means being unlockable by simply pulling on said electrical transmission cable (17), characterised in that said sensor support or base (9) and said instrument (2) are disposed on either side of said annular sealing element (7), said electrical connecting cable (13) passing through said axial passage (7a) of this element (7).
4. A device as in claim 2, in which the sensor support or base (9) is connected to said instrument (2) by an electrical connecting cable (13), this sensor support or base (9) being displaceable in the tubing (6) between two positions corrosponding respectively to said first and to said second position of said instrument (2) and means for holding said sensor support or base (9) in its first position, these means being unlockable by simply pulling on said electrical transmission cable (17), characterised in that said sensor support or base (9) and said instrument (2) are both disposed below said annular sealing element (7) the axial passage (7a) of which has said electrical transmission cable (17) passing through it.
5. A device as in any one of the preceding claims, characterised in that it comprises means making it possible to protect said instrument (2) from the vibration of said tubing (6) during the measurement or intervention, these means being constituted by elements (18, 19) for anchoring said instrument (2) at a fixed level in the well (1), these elements being operated by remote control, and a flexible connection (13) between said instrument (2) and a sensor support or base (9) displaceable in the tubing (6) between said first and said second position of said instrument (2).
6. A device as in claim 5, characterised in that said connection is constituted by a flexible electrical cable (13).
7. A device as in claim 5, characterised in that said instrument (2) is a sensor adapted to detect acoustic signals produced by the cracked formations.
8. A device as in claim 1, characterised in that it comprises at least two sealing elements (34, 35 or 46, 47) delimiting the zone of the well to be fractured.
9. A method for carrying out measurements or interventions in a well in which an assembly comprising a tubing, at least one sealing element, a sensor support or base and a connecting element connecting said sensor to said base is introduced into the well, characterised in that it comprises the following stages:
a) said assembly is lowered into the well,
b) said sealing element is put in position,
c) the sensor is anchored - the order of these last two stages can be reversed,
d) the connecting element is extended and
e) the fracturing is carried out.
10. A method as in claim 9 for carrying out measurements and/or interventions in a well in which a measuring and/or intervention instrument housed in a tubing in the lower part of the latter and connected to an electrical connecting element by a connecting cable is introduced into the well, then a transmission cable fitted with an electrical connecting element adapted to connect to the preceding connecting element is introduced into the tubing and said instrument is moved at least partially out of the tubing, characterised in that said instrument is moved out in the extended position of said connecting cable, then the tension of said connecting cable is relaxed by a limited relative movement of said instrument and said tubing before carrying out the measurement and/or the intervention.
EP84400619A 1983-04-07 1984-03-28 Method and apparatus for conducting logging and/or work-over operations in a borehole Expired EP0122839B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8305823A FR2544013B1 (en) 1983-04-07 1983-04-07 METHOD AND DEVICE FOR PERFORMING MEASUREMENTS OR / AND INTERVENTIONS IN A WELL
FR8305823 1983-04-07

Publications (2)

Publication Number Publication Date
EP0122839A1 EP0122839A1 (en) 1984-10-24
EP0122839B1 true EP0122839B1 (en) 1989-02-15

Family

ID=9287681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400619A Expired EP0122839B1 (en) 1983-04-07 1984-03-28 Method and apparatus for conducting logging and/or work-over operations in a borehole

Country Status (9)

Country Link
US (1) US4690214A (en)
EP (1) EP0122839B1 (en)
CA (1) CA1238849A (en)
DE (1) DE3476775D1 (en)
DK (1) DK160628C (en)
FR (1) FR2544013B1 (en)
IN (1) IN160484B (en)
MX (1) MX170100B (en)
NO (1) NO162580C (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004636A1 (en) * 1985-02-11 1986-08-14 Comdisco Resources, Inc. Method and apparatus for data transmission in a well bore containing a conductive fluid
FR2583815B1 (en) * 1985-06-19 1987-09-18 Inst Francais Du Petrole DEVICE AND METHOD FOR TEMPORARY PROTECTION OF AN INTERVENTION TOOL OR MEASURING INSTRUMENT ATTACHED TO THE END OF A COLUMN
EP0255513A1 (en) * 1986-02-07 1988-02-10 Comdisco Resources, Inc. Method and apparatus for data transmission in a well using a flexible line with stiffener
WO1988005110A1 (en) * 1986-12-31 1988-07-14 Institut Français Du Petrole Method and device for taking measurements and/or carrying out interventions in a well subjected to a hydraulic compression
FR2609103B1 (en) * 1986-12-31 1996-06-28 Inst Francais Du Petrole METHOD AND DEVICE FOR PERFORMING MEASUREMENTS OR / AND INTERVENTIONS IN ONE AREA OF A WELL AND CONTROLLING THE FLUID CIRCULATION TO ANOTHER AREA OF THIS WELL WHERE HYDRAULIC COMPRESSION IS CARRIED OUT
FR2609101B1 (en) * 1986-12-31 1989-12-08 Inst Francais Du Petrole SYSTEM FOR MOVING AN ASSEMBLY OF INSTRUMENTS AND METHOD FOR MEASURING OR / AND INTERVENTIONS IN A WELL
FR2609105B1 (en) * 1986-12-31 1990-10-26 Inst Francais Du Petrole METHOD AND DEVICE FOR PERFORMING MEASUREMENTS OR / AND INTERVENTIONS IN A PORTION OF A WELL-INCLINED WELL AND ITS APPLICATION TO THE PRODUCTION OF SEISMIC PROFILES
FR2609102B1 (en) * 1986-12-31 1993-12-17 Institut Francais Petrole METHOD AND DEVICE FOR PERFORMING MEASUREMENTS OR / AND INTERVENTIONS IN A ZONE OF A WELL SUBJECT TO HYDRAULIC COMPRESSION
US4823125A (en) * 1987-06-30 1989-04-18 Develco, Inc. Method and apparatus for stabilizing a communication sensor in a borehole
FR2620821B1 (en) * 1987-09-17 1990-09-14 Inst Francais Du Petrole VOLTAGE INDICATOR DEVICE BETWEEN A MEMBER AND A CONNECTING ELEMENT
GB2214638B (en) * 1988-01-28 1991-11-13 Coal Ind Method of locating a member in a borehole
FR2626613A1 (en) * 1988-01-29 1989-08-04 Inst Francais Du Petrole DEVICE AND METHOD FOR PERFORMING OPERATIONS AND / OR INTERVENTIONS IN A WELL
US4940095A (en) * 1989-01-27 1990-07-10 Dowell Schlumberger Incorporated Deployment/retrieval method and apparatus for well tools used with coiled tubing
US4928759A (en) * 1989-02-01 1990-05-29 Atlantic Richfield Company Tubing conveyed wellbore fluid flow measurement system
FR2645583B1 (en) * 1989-04-06 1991-07-12 Inst Francais Du Petrole METHOD AND DEVICE FOR SEISMIC PROSPECTION IN WELLS, ESPECIALLY DEVIED WELLS
FR2648509B1 (en) * 1989-06-20 1991-10-04 Inst Francais Du Petrole METHOD AND DEVICE FOR CONDUCTING PERFORATION OPERATIONS IN A WELL
DE68914283D1 (en) * 1989-09-14 1994-05-05 Schlumberger Ltd Method and device for measuring in the borehole below a pump.
US4971153A (en) * 1989-11-22 1990-11-20 Schlumberger Technology Corporation Method of performing wireline perforating and pressure measurement using a pressure measurement assembly disconnected from a perforator
FR2655373B1 (en) * 1989-12-05 1992-04-10 Inst Francais Du Petrole SYSTEM FOR DRIVING A NON-RIGID EXPLORATION DEVICE IN A WELL OR ITS DIFFICULT PROGRESS BY GRAVITY.
US5050682A (en) * 1989-12-15 1991-09-24 Schlumberger Technology Corporation Coupling apparatus for a tubing and wireline conveyed method and apparatus
US5025861A (en) * 1989-12-15 1991-06-25 Schlumberger Technology Corporation Tubing and wireline conveyed perforating method and apparatus
US5095993A (en) * 1989-12-15 1992-03-17 Schlumberger Technology Corporation Anchor apparatus for a tubing and wireline conveyed method and apparatus
FR2659454B1 (en) * 1990-03-06 1992-08-07 Inst Francais Du Petrole METHOD AND DEVICE FOR DIAGRAPHY IN WELLS USING DIRECT TRANSMISSION AND / OR RECEPTION MEANS.
US5259452A (en) * 1990-05-14 1993-11-09 Institut Francais Du Petrole System for sensing acoustic waves in wells, allowing the mechanical uncoupling of the sensors
FR2663076B1 (en) * 1990-06-11 1992-10-02 Inst Francais Du Petrole IMPROVED METHOD AND DEVICE FOR IMPROVING THE PRODUCTION DIAGRAPHS OF AN ACTIVE NON-ERUPTIVE WELL.
FR2663676B1 (en) * 1990-06-25 1995-09-01 Inst Francais Du Petrole IMPROVED METHOD AND DEVICE FOR CONDUCTING MEASUREMENT OPERATIONS OR INTERVENTIONS IN A WELL.
FR2663979B1 (en) * 1990-06-29 1993-06-11 Inst Francais Du Petrole IMPROVED ACTIVATION AND MEASURING DEVICE FOR NON-ERUPTIVE WELLS DURING PRODUCTION.
FR2669077B2 (en) * 1990-11-09 1995-02-03 Institut Francais Petrole METHOD AND DEVICE FOR PERFORMING INTERVENTIONS IN WELLS OR HIGH TEMPERATURES.
FR2679958B1 (en) * 1991-08-02 1997-06-27 Inst Francais Du Petrole SYSTEM, SUPPORT FOR PERFORMING MEASUREMENTS OR INTERVENTIONS IN A WELLBORE OR DURING DRILLING, AND USES THEREOF.
FR2679957B1 (en) * 1991-08-02 1998-12-04 Inst Francais Du Petrole METHOD AND DEVICE FOR PERFORMING MEASUREMENTS AND / OR INTERVENTIONS IN A WELL BORE OR DURING DRILLING.
US5389003A (en) * 1993-09-13 1995-02-14 Scientific Drilling International Wireline wet connection
US5477921A (en) * 1994-07-19 1995-12-26 Schlumberger Technology Corporation Method and system for logging a well while fishing for the logging tool
NO302588B1 (en) * 1996-02-12 1998-03-23 Transocean Asa Coil tube assembly comprising a rotatable drum, coil tube and injector
EP0911649A4 (en) * 1997-03-17 2001-11-28 Yamamoto Engineering Corp Underground acoustic wave transmitter, receiver, transmitting/receiving method, and underground exploration using this
US7028772B2 (en) 2000-04-26 2006-04-18 Pinnacle Technologies, Inc. Treatment well tiltmeter system
US6598675B2 (en) * 2000-05-30 2003-07-29 Baker Hughes Incorporated Downhole well-control valve reservoir monitoring and drawdown optimization system
GB2372057B (en) * 2001-02-09 2005-05-18 Reeves Wireline Tech Ltd A drillpipe assembly and a method of deploying a logging tool
FI121394B (en) * 2003-04-11 2010-10-29 Sandvik Mining & Constr Oy Borehole measuring device and a rock drilling unit
US6985816B2 (en) * 2003-09-15 2006-01-10 Pinnacle Technologies, Inc. Methods and systems for determining the orientation of natural fractures
US20060081412A1 (en) * 2004-03-16 2006-04-20 Pinnacle Technologies, Inc. System and method for combined microseismic and tiltmeter analysis
US7114563B2 (en) * 2004-04-16 2006-10-03 Rose Lawrence C Tubing or drill pipe conveyed downhole tool system with releasable wireline cable head
US20110141846A1 (en) * 2004-04-21 2011-06-16 Pinnacle Technologies, Inc. Microseismic fracture mapping using seismic source timing measurements for velocity calibration
US7532129B2 (en) * 2004-09-29 2009-05-12 Weatherford Canada Partnership Apparatus and methods for conveying and operating analytical instrumentation within a well borehole
US8636478B2 (en) * 2006-01-11 2014-01-28 Besst, Inc. Sensor assembly for determining fluid properties in a subsurface well
CN103726797A (en) * 2012-10-15 2014-04-16 陈继军 Direct-transmission type oil pumping unit bottom connector and oil pumping device using bottom connector
WO2015094317A1 (en) 2013-12-20 2015-06-25 Halliburton Energy Services, Inc. High radial expansion anchoring tool
US20160215578A1 (en) * 2015-01-27 2016-07-28 Schlumberger Technology Corporation Subsurface Deployment for Monitoring Along a Borehole
FR3049349B1 (en) * 2016-03-24 2020-03-13 Areva Np METHOD AND DEVICE FOR MAINTAINING A VERTICAL DUCT SECTION
BR112022017131A2 (en) * 2020-02-27 2022-11-08 Onesubsea Ip Uk Ltd PIPE SUSPENDER ORIENTATION SET
US12006814B2 (en) 2020-07-29 2024-06-11 Saudi Arabian Oil Company Downhole completion assembly for extended wellbore imaging
US20240076947A1 (en) * 2022-09-07 2024-03-07 Saudi Arabian Oil Company Washout mitigation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2153254A (en) * 1936-11-20 1939-04-04 Johnston Method and means of measuring fluid flow
US2844205A (en) * 1955-12-20 1958-07-22 Exxon Research Engineering Co Method for completing and servicing a well
US3208521A (en) * 1963-08-09 1965-09-28 Exxon Production Research Co Recompletion of wells
US3427652A (en) * 1965-01-29 1969-02-11 Halliburton Co Techniques for determining characteristics of subterranean formations
US3775739A (en) * 1965-12-13 1973-11-27 Shell Oil Co Method and apparatus for detecting fractures
US3739871A (en) * 1971-07-30 1973-06-19 Senturion Sciences Mapping of earth fractures induced by hydrafracturing
US4109717A (en) * 1977-11-03 1978-08-29 Exxon Production Research Company Method of determining the orientation of hydraulic fractures in the earth
US4349072A (en) * 1980-10-06 1982-09-14 Schlumberger Technology Corporation Method and apparatus for conducting logging or perforating operations in a borehole
US4488597A (en) * 1981-10-13 1984-12-18 Schlumberger Technology Corporation Pump-down stinger assembly method and apparatus

Also Published As

Publication number Publication date
FR2544013A1 (en) 1984-10-12
IN160484B (en) 1987-07-11
DK160628C (en) 1991-09-02
DK179884A (en) 1984-10-08
DK160628B (en) 1991-04-02
DK179884D0 (en) 1984-04-05
DE3476775D1 (en) 1989-03-23
NO162580B (en) 1989-10-09
MX170100B (en) 1993-08-06
US4690214A (en) 1987-09-01
EP0122839A1 (en) 1984-10-24
CA1238849A (en) 1988-07-05
NO162580C (en) 1990-01-17
FR2544013B1 (en) 1986-05-02
NO841346L (en) 1984-10-08

Similar Documents

Publication Publication Date Title
EP0122839B1 (en) Method and apparatus for conducting logging and/or work-over operations in a borehole
EP0404669B1 (en) Method and apparatus for conducting perforating operations in a well
EP0132423B1 (en) Borehole logging and work-over method and apparatus
EP0296209B1 (en) Method and device for taking measurements and/or carrying out interventions in a substantially inclined well portion and its application to the achievement of seismic profiles
EP0526294B1 (en) System for carrying out measurements or interventions in a drilled well or while drilling
CA2090294C (en) Method and device for intermittent electrical connection with a fixed position tool within a well
EP0526293A1 (en) Method and device for carrying out measurements and/or interventions in a drilled well or while drilling
FR2501777A1 (en) METHOD AND APPARATUS FOR PERFORMING, WITH SPECIALIZED TOOLS, OPERATIONS SUCH AS MEASUREMENTS, IN WELL PORTIONS HIGHLY TILTED ON THE VERTICAL, OR HORIZONTAL
EP0296207B1 (en) Method and device for taking measurements and/or carrying out interventions in a well subjected to a hydraulic compression
FR2767153A1 (en) DEVICE AND METHOD FOR CENTERING A TOOL IN A CONDUIT, IN PARTICULAR IN A DRILLING ROD
EP0773344B1 (en) Device for exploring a downhole formation traversed by a horizontal borehole with several anchorable probes
EP0295291B1 (en) System for moving a set of instruments and measurements and/or interventions method in a well
FR2522059A2 (en) Measurement system for oil well with curved shafts - uses train of hollow rods to carry electric cable, each rod having sealed electrical connector mating with connector on next rod
EP0463939B1 (en) Method and apparatus for conducting logging or work-over operations in a borehole
FR2564894A2 (en) Method and device enabling measurements and/or operations to be carried out in a well
EP0165154B1 (en) Method and device for effecting by means of specialized tools such operations as measurements in well sections highly inclined to the vertical, or the horizontals
FR2573472A2 (en) Method and device enabling measurements to be made and/or work carried out inside a well
CA2042565C (en) Acoustic waves reception system for wells, permitting mechanical decoupling of the sensors
FR2609103A1 (en) Method and device for carrying out measurements and/or work in an area of a well and monitoring the flow of fluid to another area in this well where a hydraulic compression is carried out
FR2609102A1 (en) Method and device for carrying out measurements and/or work in an area of a well subjected to a hydraulic compression
FR2632680A1 (en) DEVICE FOR MOUNTING A SPECIALIZED TOOL FOR INTERVENTION AT AN END OF A ROD TRAIN

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19850218

17Q First examination report despatched

Effective date: 19861128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3476775

Country of ref document: DE

Date of ref document: 19890323

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020227

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020329

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020402

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030328

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001