EP0119640B1 - Galvanic sacrificial anode based on an aluminium alloy - Google Patents

Galvanic sacrificial anode based on an aluminium alloy Download PDF

Info

Publication number
EP0119640B1
EP0119640B1 EP84200153A EP84200153A EP0119640B1 EP 0119640 B1 EP0119640 B1 EP 0119640B1 EP 84200153 A EP84200153 A EP 84200153A EP 84200153 A EP84200153 A EP 84200153A EP 0119640 B1 EP0119640 B1 EP 0119640B1
Authority
EP
European Patent Office
Prior art keywords
aluminum
sacrificial anode
anode
aluminium alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84200153A
Other languages
German (de)
French (fr)
Other versions
EP0119640A1 (en
Inventor
Hermann Bohnes
Gerhard Heinrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohnes Hermann
Grillo Werke AG
GEA Group AG
Original Assignee
Grillo Werke AG
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grillo Werke AG, Metallgesellschaft AG filed Critical Grillo Werke AG
Publication of EP0119640A1 publication Critical patent/EP0119640A1/en
Application granted granted Critical
Publication of EP0119640B1 publication Critical patent/EP0119640B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice

Definitions

  • the invention relates to a sacrificial anode for cathodic corrosion protection based on an aluminum alloy containing zinc and indium.
  • Galvanic sacrificial anodes made of aluminum alloys are increasingly used for the cathodic corrosion protection of components made of ferrous materials which are exposed to corrosion by aqueous, in particular aqueous, saline media.
  • Such anodes are used, for example, to protect pipelines, ship hulls, ballast tanks, drilling racks or steel structures, in particular offshore plants.
  • the sacrificial anodes must adapt to the component to be protected in every shape and size and have an anodic behavior. They are preferably in the form of a cast part and are connected in an electrically conductive manner to the iron material to be protected, for example by means of an embedded metal core. Since the replacement of used anodes can only be carried out in the protective systems at high cost, a long service life with adequate current output is desirable for the cathodic protection.
  • the current content is expressed by the ampere hours which are supplied to the object to be protected per kg of anode metal consumed, the driving voltage having to be sufficiently high to maintain a current flow between the anode and cathode. However, if it is too large, a possible coating is considerably damaged without improving the cathodic protection, and possibly even the material to be protected is affected.
  • the aluminum alloy for a galvanic sacrificial anode known from DE-AS 2 555 876 contains 0.5 to 15% by weight of zinc, 0.01 to 0.06% by weight of indium and 0.03 to 0.4% by weight. % Silicon, balance aluminum with a degree of purity of 99.8 to 99.9%.
  • the aluminum contains 0.02 to 0.08% by weight of silicon, 0.02 to 0.1% by weight of iron and less than 150 ppm of copper as naturally occurring impurities. Silicon as an alloying element is a very critical component insofar as the electrochemical properties of the anode can be drastically deteriorated at higher contents (0,4 0.4% by weight).
  • ternary aluminum-tin-zinc alloys are also known, which are used as impurities, among other things. contain up to 0.1% manganese and up to 0.01% titanium (DE-AS 1 284 631).
  • the object of the invention is to provide a sacrificial anode which, with good mechanical properties, has a long service life with high electrochemical efficiency.
  • a galvanic sacrificial anode for cathodic corrosion protection based on an aluminum alloy of the type mentioned at the outset the object is achieved according to the invention with an aluminum alloy of the composition: Remainder aluminum of 99.85 to 99.9% Al purity.
  • the properties of the sacrificial anode are significantly improved by means of the additions of manganese and titanium according to the invention, i.e. the current efficiency is increased considerably.
  • a preferred embodiment for the galvanic anode according to the invention has the following composition of the aluminum alloy: Remainder aluminum of 99.85 to 99.9% Al purity.
  • the undesirable impurities in copper are advantageously not more than 0.02% by weight and in iron and silicon together they are not more than 0.1% by weight.
  • An impurity level of 0.12 % By weight should therefore never be exceeded.
  • a measuring arrangement was used which essentially corresponds to that described by Robinson and improved by Det Norske Veritas.
  • the table below shows the working potential of the alloy against the saturated calomel reference electrode and the usable current yield in ampere hours / kg anode weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

Die Erfindung betrifft eine Opferanode für den kathodischen Korrosionsschutz auf Basis einer Zink und Indium enthaltenden Aluminiumlegierung.The invention relates to a sacrificial anode for cathodic corrosion protection based on an aluminum alloy containing zinc and indium.

Galvanische Opferanoden aus Aluminiumlegierungen werden in zunehmendem Masse für den kathodischen Korrosionsschutz von Bauteilen aus Eisenwerkstoffen, die der Korrosion durch wässrige, insbesondere wässrige salzhaltige Medien ausgesetzt sind, verwendet. Mit solchen Anoden werden beispielsweise Rohrleitungen, Schiffsrümpfe, Ballasttanks, Bohrgestelle oder Stahlbauten, insbesondere Offshore-Anlagen, geschützt.Galvanic sacrificial anodes made of aluminum alloys are increasingly used for the cathodic corrosion protection of components made of ferrous materials which are exposed to corrosion by aqueous, in particular aqueous, saline media. Such anodes are used, for example, to protect pipelines, ship hulls, ballast tanks, drilling racks or steel structures, in particular offshore plants.

Die Opferanoden müssen sich dem zu schützenden Bauteil in jeder Gestalt und Grösse anpassen und diesem gegenüber anodisch verhalten. Sie liegen bevorzugt als Gussteil vor und werden beispielsweise mittels eines eingebetteten Metallkerns elektrisch leitend mit dem zu schützenden Eisenwerkstoff verbunden. Da der Ersatz verbrauchter Anoden nur mit hohem Kostenaufwand in den Schutzsystemen vorgenommen werden kann, ist eine lange Lebensdauer bei angemessener Stromabgabe für den kathodischen Schutz erwünscht. Der Strominhalt wird durch die Amperestunden ausgedrückt, die dem zu schützenden Objekt pro kg verzehrten Anodenmetalls zugeführt werden, wobeizur Aufrechterhaltung eines Stromflusses zwischen Anode und Kathode die Treibspannung genügend gross sein muss. Ist sie jedoch zu gross, so wird eine eventuelle Beschichtung ohne Verbesserung des kathodischen Schutzes erheblich geschädigt, unter Umständen sogar der zu schützende Werkstoff in Mitleidenschaft gezogen.The sacrificial anodes must adapt to the component to be protected in every shape and size and have an anodic behavior. They are preferably in the form of a cast part and are connected in an electrically conductive manner to the iron material to be protected, for example by means of an embedded metal core. Since the replacement of used anodes can only be carried out in the protective systems at high cost, a long service life with adequate current output is desirable for the cathodic protection. The current content is expressed by the ampere hours which are supplied to the object to be protected per kg of anode metal consumed, the driving voltage having to be sufficiently high to maintain a current flow between the anode and cathode. However, if it is too large, a possible coating is considerably damaged without improving the cathodic protection, and possibly even the material to be protected is affected.

Es ist bekannt, dass reines Aluminium nicht als Werkstoff für Opferanoden in wässrigem Medium eingesetzt werden kann, weil es sich alsbald mit einer etwa 200 Ä dicken oxidischen Schicht bedeckt, welche den Stromdurchgang verhindert und die Anode passiviert. Um die Ausbildung einer solchen zusammenhängenden Deckschicht zu vermeiden, müssen dem Aluminium aktivierende Legierungsbestandteile wie Zink oder Magnesium zugesetzt werden. Darüber hinaus werden zusätzlich noch bestimmte Metalle als sogenannte «Gitterdehner» zulegiert, welche die Aktivität der Anode langzeitig aufrechterhalten sollen. In der Vergangenheit hat man als Gitterdehner vorwiegend Quecksilber und Cadmium dem Aluminium zulegiert, um Anoden ausreichender Effektivität herstellen zu können. Aus Gründen des Umweltschutzes sind aber diese Legierungsmetalle heute praktisch kaum noch im Gebrauch. Man ist daher dazu übergegangen, Metalle aus der Gruppe Gallium, Indium, Thallium als Gitterdehner dem Aluminium zuzulegieren, insbesondere Indium. Derartige bekannte Aluminiumlegierungen für Anoden enthalten Zink und Indium neben Verunreinigungen wie Kupfer, Eisen und Silicium, welche Verunreinigungen im allgemeinen den Herstellungsbedingungen des Aluminiums entstammen. Es ist selbstverständlich, dass die Gehalte an schädlichen Verunreinigungen je nach Legierung in unterschiedlichen, aber engen Grenzen gehalten werden müssen. Aus der DE-AS 1 458 312 ist eine als galvanische Anode verwendete Aluminiumlegierung bekannt aus 3,5 bis 9,0% Zink, 0,008 bis 0,05% Indium, Rest Aluminium.It is known that pure aluminum cannot be used as a material for sacrificial anodes in an aqueous medium because it soon covers itself with an approximately 200 Å thick oxidic layer, which prevents the passage of current and passivates the anode. In order to avoid the formation of such a coherent covering layer, activating alloy components such as zinc or magnesium must be added to the aluminum. In addition, certain metals are added as so-called “lattice stretches”, which are intended to maintain the activity of the anode for a long time. In the past, mainly mercury and cadmium were added to the aluminum as a lattice stretcher in order to be able to produce anodes with sufficient effectiveness. For reasons of environmental protection, these alloy metals are practically no longer in use today. It has therefore started to alloy metals from the group gallium, indium, thallium as lattice strainers to aluminum, in particular indium. Such known aluminum alloys for anodes contain zinc and indium in addition to impurities such as copper, iron and silicon, which impurities generally originate from the production conditions of the aluminum. It goes without saying that the levels of harmful impurities must be kept within different but narrow limits depending on the alloy. From DE-AS 1 458 312 an aluminum alloy used as a galvanic anode is known from 3.5 to 9.0% zinc, 0.008 to 0.05% indium, the rest aluminum.

Alle Verunreinigungen in dieser Aluminiumlegierung, wie Eisen, Silicium und Kupfer, sollen insgesamt 0,5% nicht überschreiten. Die aus DE-AS 2 555 876 bekannte Aluminiumlegierung für eine galvanische Opferanode enthält 0,5 bis 15 Gew.-% Zink, 0,01 bis 0,06 Gew.-% Indium und 0,03 bis 0,4% Gew.-% Silicium, Rest Aluminium mit einem Reinheitsgrad von 99,8 bis 99,9%. Dabei enthält das Aluminium als natürlich vorkommende Verunreinigungen 0,02 bis 0,08 Gew.-% Silicium, 0,02 bis 0,1 Gew.-% Eisen und weniger als 150 ppm Kupfer. Silicium als Legierungselement ist insofern eine sehr kritische Komponente, als bei höheren Gehalten ( ä 0,4 Gew.-%) die elektrochemischen Eigenschaften der Anode drastisch verschlechtert werden können. Legierungen der vorbekannten Art haben theoretische Strominhalte bis zu etwa 2,995 Ah - kg-1. In der Praxis werden aber diese Werte bei weitem nicht erreicht, weil durch die Aktivierung ein gewisser «Eigenverzehr» der Anoden eintritt, wodurch die praktisch verwertbare Stromausbeute auf ca. 2.500 Ah - kg-1 vermindert wird. Normalerweise wird heute von galvanischen Anoden auf Basis Aluminium eine nutzbare Stromausbeute von mindestens 2.400 kg-1 verlangt.All impurities in this aluminum alloy, such as iron, silicon and copper, should not exceed 0.5% in total. The aluminum alloy for a galvanic sacrificial anode known from DE-AS 2 555 876 contains 0.5 to 15% by weight of zinc, 0.01 to 0.06% by weight of indium and 0.03 to 0.4% by weight. % Silicon, balance aluminum with a degree of purity of 99.8 to 99.9%. The aluminum contains 0.02 to 0.08% by weight of silicon, 0.02 to 0.1% by weight of iron and less than 150 ppm of copper as naturally occurring impurities. Silicon as an alloying element is a very critical component insofar as the electrochemical properties of the anode can be drastically deteriorated at higher contents (0,4 0.4% by weight). Alloys of the previously known type have theoretical current contents of up to approximately 2.995 Ah-kg- 1 . In practice, however, these values are far from being reached because the activation leads to a certain “self-consumption” of the anodes, which reduces the practically usable current yield to approx. 2,500 Ah - kg-1. Normally, galvanic anodes based on aluminum are required to have a usable current yield of at least 2,400 kg- 1 .

Schliesslich sind auch ternäre Aluminium-Zinn-Zink-Legierungen bekannt, die als Verunreinigungen u.a. bis 0,1 % Mangan und bis 0,01 % Titan enthalten (DE-AS 1 284 631).Finally, ternary aluminum-tin-zinc alloys are also known, which are used as impurities, among other things. contain up to 0.1% manganese and up to 0.01% titanium (DE-AS 1 284 631).

Der Erfindung liegt die Aufgabe zugrunde, eine Opferanode bereitzustellen, die bei guten mechanischen Eigenschaften eine lange Gebrauchsdauer bei hohem elektrochemischem Wirkungsgrad aufweist. Ausgehend von einer galvanischen Opferanode für den kathodischen Korrosionsschutz auf Basis einer Aluminiumlegierung der eingangs genannten Art, wird die Aufgabe gemäss der Erfindung gelöst mit einer Aluminiumlegierung der Zusammensetzung:

Figure imgb0001
Rest Aluminium der Reinheit 99,85 bis 99,9% Al.The object of the invention is to provide a sacrificial anode which, with good mechanical properties, has a long service life with high electrochemical efficiency. Starting from a galvanic sacrificial anode for cathodic corrosion protection based on an aluminum alloy of the type mentioned at the outset, the object is achieved according to the invention with an aluminum alloy of the composition:
Figure imgb0001
Remainder aluminum of 99.85 to 99.9% Al purity.

Mittels der erfindungsgemässen Zusätze von Mangan und Titan werden die Eigenschaften der Opferanode deutlich verbessert, d.h. es wird die Stromausbeute beträchtlich erhöht.The properties of the sacrificial anode are significantly improved by means of the additions of manganese and titanium according to the invention, i.e. the current efficiency is increased considerably.

Eine bevorzugte Ausführungsform für die erfindungsgemässe galvanische Anode besitzt folgende Zusammensetzung der Aluminiumlegierung:

Figure imgb0002
Rest Aluminium der Reinheit 99,85 bis 99,9% Al.A preferred embodiment for the galvanic anode according to the invention has the following composition of the aluminum alloy:
Figure imgb0002
Remainder aluminum of 99.85 to 99.9% Al purity.

In den als Opferanoden verwendeten erfindungsgemäss zusammengesetzten Aluminiumlegierungen betragen zweckmässig die unerwünschten Verunreinigungen an Kupfer nicht mehr als 0,02 Gew.-% und an Eisen und Silicium zusammen nicht mehr als 0,1 Gew.-%. Eine Verunreinigungsmenge von 0,12 Gew.-% sollte daher keinesfalls überschritten werden.In the aluminum alloys used as sacrificial anodes according to the invention, the undesirable impurities in copper are advantageously not more than 0.02% by weight and in iron and silicon together they are not more than 0.1% by weight. An impurity level of 0.12 % By weight should therefore never be exceeded.

Die Vorteile der erfindungsgemässen Opferanode sind darin zu sehen, dass eine verbesserte Stromausbeute bei gleichmässiger, narbenarmer Abtragung der Anode erreicht und ferner eine Anodenlegierung ohne umweltfeindliche Legierungsbestandteile bereitgestellt wird.The advantages of the sacrificial anode according to the invention can be seen in the fact that an improved current yield is achieved with uniform, scar-free erosion of the anode and an anode alloy without environmentally harmful alloy components is also provided.

Die Erfindung wird anhand der nachstehenden Beispiele näher und beispielhaft erläutert.The invention is explained in more detail and by way of example using the examples below.

Es wurden Anoden aus Aluminiumlegierungen folgender Zusammensetzungen hergestellt:

  • Aluminiumlegierung 1 (Stand der Technik)
    Figure imgb0003
    Rest Aluminium vom Reinheitsgrad 99,8 bis 99,9% AI.
  • Aluminiumlegierung 2 (gemäss Erfindung)
    Figure imgb0004
Anodes were made from aluminum alloys of the following compositions:
  • Aluminum alloy 1 (state of the art)
    Figure imgb0003
    Rest of aluminum with a purity of 99.8 to 99.9% AI.
  • Aluminum alloy 2 (according to the invention)
    Figure imgb0004

Es wurde eine Messanordnung verwendet, die im wesentlichen der von Robinson beschriebenen und von Det Norske Veritas verbesserten entspricht. In der nachfolgenden Tabelle ist das Arbeitspotential der Legierung gegen die gesättigte Kalomel-Bezugselektrode die nutzbare Stromausbeute in Amperestunden/kg Anodengewicht angegeben.

Figure imgb0005
A measuring arrangement was used which essentially corresponds to that described by Robinson and improved by Det Norske Veritas. The table below shows the working potential of the alloy against the saturated calomel reference electrode and the usable current yield in ampere hours / kg anode weight.
Figure imgb0005

Claims (3)

1. A sacrificial anode for cathodic protection, comprising an aluminium alloy, which contains zinc, indium, and usual impurities which are due to the manufacture, characterized by the composition:
Figure imgb0008
balance aluminium having a purity of 99.85 to 99.9% Al.
2. A scarificial anode according to claim 1, characterized by the composition:
Figure imgb0009
balance aluminium having a purity of 99.85 to 99.9% AI.
3. A sacrificial anode according to claim 2 or 2, characterized in that the impurities contain copper not in excess of 0.02 wt.% and iron and silicon in a total not in excess of 0.1 wt. %.
EP84200153A 1983-02-18 1984-02-03 Galvanic sacrificial anode based on an aluminium alloy Expired EP0119640B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3305612 1983-02-18
DE3305612A DE3305612A1 (en) 1983-02-18 1983-02-18 ALVINUM ALLOY GALVANIC SACRED ANODE

Publications (2)

Publication Number Publication Date
EP0119640A1 EP0119640A1 (en) 1984-09-26
EP0119640B1 true EP0119640B1 (en) 1986-10-08

Family

ID=6191171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84200153A Expired EP0119640B1 (en) 1983-02-18 1984-02-03 Galvanic sacrificial anode based on an aluminium alloy

Country Status (3)

Country Link
EP (1) EP0119640B1 (en)
DE (2) DE3305612A1 (en)
NO (1) NO840467L (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980195A (en) * 1989-05-08 1990-12-25 Mcdonnen-Douglas Corporation Method for inhibiting inland corrosion of steel
DE19530004C2 (en) * 1994-09-10 1998-07-02 Mw Medizintechnik Gmbh Medical surgical and / or treatment instrument
DE102022118794A1 (en) 2022-07-27 2024-02-01 Baumer Hhs Gmbh Device for preparing a hot glue and system for applying a hot glue with such a device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1458508A1 (en) * 1963-09-25 1968-12-19 Ver Deutsche Metallwerke Ag Use of AIZnMgSi alloys
GB1221659A (en) * 1967-11-24 1971-02-03 British Aluminium Co Ltd Aluminium base alloys and anodes
US4238233A (en) * 1979-04-19 1980-12-09 Mitsubishi Aluminum Kabushiki Kaisha Aluminum alloy for cladding excellent in sacrificial anode property and erosion-corrosion resistance

Also Published As

Publication number Publication date
DE3460906D1 (en) 1986-11-13
DE3305612A1 (en) 1984-08-23
NO840467L (en) 1984-08-20
EP0119640A1 (en) 1984-09-26

Similar Documents

Publication Publication Date Title
DE3820550C2 (en)
JP2892449B2 (en) Magnesium alloy for galvanic anode
EP0119640B1 (en) Galvanic sacrificial anode based on an aluminium alloy
US4141725A (en) Aluminum alloy for galvanic anode
US3379636A (en) Indium-gallium-aluminum alloys and galvanic anodes made therefrom
US4139373A (en) Alloys of titanium
DE1294140B (en) Anode for cathodic corrosion protection
DE1231906B (en) Use of lanthanum and possibly cerium-containing zinc alloys as active anodes for cathodic corrosion protection
JP2924609B2 (en) Aluminum alloy for corrosion protection of steel structures
DE2232903C3 (en) Process for the electrolytic refining of copper using titanium electrodes
DE1167036B (en) Aluminum-zinc alloy and its use as an anode alloy for cathodic corrosion protection of technical structures made of ferrous and non-ferrous metals
DE1256037B (en) Anode for cathodic protection
US5547560A (en) Consumable anode for cathodic protection, made of aluminum-based alloy
DE1135727B (en) Anodes for cathodic protection
DE1268852B (en) Aluminum alloy and its use for galvanic sacrificial anodes
DE1275284B (en) Aluminum alloy and galvanic sacrificial anode made from it
DE3311473A1 (en) METHOD FOR ANODICALLY OXIDATING AN ALUMINUM SUPPORT MATERIAL FOR THE PRODUCTION OF LITHOGRAPHIC PRINTING PLATES
DE1257439B (en) Magnesium alloy anodes for water activated batteries
JP4126633B2 (en) Aluminum alloy galvanic anode for low temperature seawater
DE1243884B (en) Use of an external aluminum-tin-zinc alloy as a material for self-consuming anodes
JPS622021B2 (en)
JPH09157782A (en) Magnesium alloy for galvanic anode
DE1258606B (en) Aluminum alloy and its use for galvanic sacrificial anodes
JP3184516B2 (en) Magnesium alloy for galvanic anode
JP2773971B2 (en) Magnesium alloy for galvanic anode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL SE

17P Request for examination filed

Effective date: 19850212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE NL

REF Corresponds to:

Ref document number: 3460906

Country of ref document: DE

Date of ref document: 19861113

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOHNES, HERMANN

Owner name: GRILLO-WERKE AG

Owner name: METALLGESELLSCHAFT AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890228

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950317

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960110