NO840467L - GALVANIC OFFER ANODE ON ALUMINUM ALLOY BASE - Google Patents

GALVANIC OFFER ANODE ON ALUMINUM ALLOY BASE

Info

Publication number
NO840467L
NO840467L NO840467A NO840467A NO840467L NO 840467 L NO840467 L NO 840467L NO 840467 A NO840467 A NO 840467A NO 840467 A NO840467 A NO 840467A NO 840467 L NO840467 L NO 840467L
Authority
NO
Norway
Prior art keywords
galvanic
aluminum alloy
anode
aluminum
alloy base
Prior art date
Application number
NO840467A
Other languages
Norwegian (no)
Inventor
Hermann Bohnes
Gerhard Heinrich
Original Assignee
Metallgesellschaft Ag
Grillo Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft Ag, Grillo Werke Ag filed Critical Metallgesellschaft Ag
Publication of NO840467L publication Critical patent/NO840467L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

Oppfinnelsen vedrører en offeranode for den katodiske korrosjonsbeskyttelse på bais av en zink—og indiumholdig aluminiumlegering. The invention relates to a sacrificial anode for cathodic corrosion protection based on a zinc- and indium-containing aluminum alloy.

Galvaniske offeranoder av aluminiumlegeringer anvendes i økende grad for den katodiske korrosjonsbeskyttelse av bygningsdeler av jernmaterialer som er utsatt for korrosjon på grunn av vandige, spesielt vandige saltholdige medier. Med slike anoder beskyttes eksempelvis rørledninger, skipsskrog, ballast-tanker, borestativer eller stålbygninger, spesielt offshore-anlegg. Galvanic sacrificial anodes of aluminum alloys are increasingly used for the cathodic corrosion protection of building parts made of iron materials which are exposed to corrosion due to aqueous, especially aqueous saline media. With such anodes, for example, pipelines, ship hulls, ballast tanks, drilling rigs or steel buildings, especially offshore facilities, are protected.

Offeranoden må tilpasses seg bygningsdelen som skal beskyttesThe sacrificial anode must adapt to the part of the building to be protected

i enhver form og størrelse og forholde, seg ovenfor denne anodisk. De foreligger fortrinnsvis som støpedel og forbindes eksempelvis ved hjelp av en innleiret metallkjerne elektrisk ledende med jernmaterialet som skal beskyttes. Da erstatningen av forbrukte anoder bare kan foretas med høye omkostninger i beskyttelsessystemet, er det ønskelig med en lang levetid ved tilmålt strømavgivning for den katodiske beskyttelse. Strøminnholdet uttrykkes ved ampéretimene som objektet som in any shape and size and condition, above this anodic. They are preferably available as a cast part and are connected, for example, by means of an embedded electrically conductive metal core to the iron material to be protected. As the replacement of spent anodes can only be carried out at high costs in the protection system, it is desirable for the cathodic protection to have a long service life with measured current output. The current content is expressed by the ampere-hours as the object which

skal beskyttes pr. kilo tilføres forbrukt anodematerial, idet for opprettholdelse av en strøm mellom anode og katode, må drivspenningen være tilstrekkelig stor. Er den imidlertid for stor, beskadiges betraktelig en eventuelt belegning uten forbedring av.den katodiske beskyttelse ;.under tiden blir sågar materialet som skal beskyttes delaktig. must be protected per kilos of spent anode material are added, since to maintain a current between anode and cathode, the drive voltage must be sufficiently large. However, if it is too large, any coating is considerably damaged without improving the cathodic protection; in the meantime, even the material to be protected is affected.

Det er kjent at rent aluminium ikke kan anvendes som material for offeranoder i vandig medium, fordi det med en gang dekker seg med et ca. 200 Å tykt oksydisk sjikt som hindrer strøm-gjennomgangen og passiviserer anoden. For å unngå dannelsen av et slikt sammenhengende dekksjikt må det til aluminiumet settes aktiverende legeringsbestanddeler som zink eller magnesium. Dessuten tillegeres i tillegg bestemte metaller som såkalte "gitterutvidere" som i lengere tid skal opprett-holde anodens aktivitet. Tidligere har man som gitterutvidere overveiende tillegert kvikksølv og kadmium til aluminium for å kunne fremstille anoder av tilstrekkelig effektivitet. Av økologiske grunner er imidlertid disse legeringsmetaller i dag praktisk talt ikke i bruk. Man er derfor gått over til å tillegere til aluminiumet metaller fra gruppen gallium, indium, thallium som gitterutvidere, spesielt indium. Slike kjente aluminiumlegeringer for anoder inneholder zink.log indium ved siden av forurensninger som kobber, jern og silisium, hvilke forurensninger vanligvis stammer fra aluminiumets fremstill-ingsbetingelser. Det er selvsagt av inneholdet av skadelige forurensninger alt etter legering må holdes i forskjellige, men snevre ..grenser. Fra DE-AS 14 58 312 er det kjent som galvanisk anode anvendt aluminiumlegering fra 3,5-9,0% zink, 0,008-0,05% indium resten aluminium. It is known that pure aluminum cannot be used as a material for sacrificial anodes in an aqueous medium, because it immediately covers itself with an approx. 200 Å thick oxide layer that prevents the flow of current and passivates the anode. To avoid the formation of such a continuous covering layer, activating alloy components such as zinc or magnesium must be added to the aluminium. In addition, certain metals are additionally added as so-called "lattice expanders" which are supposed to maintain the anode's activity for a longer period of time. In the past, as lattice expanders, mercury and cadmium were predominantly added to aluminum in order to produce anodes of sufficient efficiency. For ecological reasons, however, these alloy metals are practically not used today. They have therefore switched to adding metals from the group of gallium, indium, thallium to the aluminum as lattice expanders, especially indium. Such known aluminum alloys for anodes contain zink.log indium alongside impurities such as copper, iron and silicon, which impurities usually originate from the aluminum's manufacturing conditions. It is of course due to the content of harmful contaminants depending on the alloy that must be kept within different, but narrow ..limits. From DE-AS 14 58 312 it is known as galvanic anode used aluminum alloy from 3.5-9.0% zinc, 0.008-0.05% indium the rest aluminum.

Alle forurensninger i denne aluminiumlegering som jern, silisium og kobberæ skal tilsammen ikke overstige 0,5%. Den fra DE-AS 25 55 876 kjente aluminiumlegering for en galvanisk offeranode inneholder 0,5-15 vekt-% zink, 0,01-0,06 vekt-% indium og 0,03-0,4 vekt-% silisium, resten aluminium med en renhetsgrad fra 99,8-99,9%. Derved inneholder aluminium som naturlig forekommende forurensninger 0,02-0,08 vekt-% silisium, 0,02-0,1 vekt-% jern og mindre enn 150 ppm kobber. Silisium som legeringselement er for så vidt en meget kritisk komponent, da ved høyere innhold (= 0,4 vekt-%) anodens elektrokjemiske egenskaper drastisk kan ødelegges. Legeringer av tidligere kjent type har teoretiske strøminnhold inntil ca. 2.995 Ah . kg I praksis nåes imidlertid disse verdier på langt nær fordi det ved aktiveringen inntrer en viss "egenfortæring" av anoden, hvorved det praktisk utnyttbare strømutbytte minskes til ca. 2.500 Ah . kg . Normalt for-langes i dag av galvaniske anoder på basis av aluminium et nyttbart strømutbytte på minst 2.400 Ah . kg All impurities in this aluminum alloy such as iron, silicon and copper must not exceed 0.5% in total. The aluminum alloy known from DE-AS 25 55 876 for a galvanic sacrificial anode contains 0.5-15 wt% zinc, 0.01-0.06 wt% indium and 0.03-0.4 wt% silicon, the rest aluminum with a degree of purity from 99.8-99.9%. Thereby, aluminum as naturally occurring impurities contains 0.02-0.08 weight-% silicon, 0.02-0.1 weight-% iron and less than 150 ppm copper. Silicon as an alloying element is therefore a very critical component, since at a higher content (= 0.4% by weight) the anode's electrochemical properties can be drastically destroyed. Alloys of a previously known type have theoretical current contents of up to approx. 2,995 Ah. kg In practice, however, these values are reached very close because a certain "self-consumption" of the anode occurs during activation, whereby the practically usable current yield is reduced to approx. 2,500Ah. kg. Today, galvanic anodes based on aluminum normally demand a usable current yield of at least 2,400 Ah. kg

Endelig er det også kjent ternære aluminium-tinn-zinklegeringer som som forurensninger bl.a. inneholder inntil 0,1% mangan og inntil 0,01%.titan (DE-AS 12 43 884, 12 84 631). Finally, there are also known ternary aluminium-tin-zinc alloys which, as contaminants, e.g. contains up to 0.1% manganese and up to 0.01% titanium (DE-AS 12 43 884, 12 84 631).

Til grunn for oppfinnelsen ligger den oppgave å tilveiebringe en offeranode som ved gode mekaniske egenskaper har en lang levetid ved høy elektrokjemisk virkningsgrad. Gående ut fra en galvanisk offeranode for den katodiske korrosjonsbeskyttelse på basis av en aluminiumlegering av den innledningsvis nevnte type, løses oppgaven ifølge oppfinnelsen med en aluminiumlegering av sammensetning: The invention is based on the task of providing a sacrificial anode which, with good mechanical properties, has a long service life with a high degree of electrochemical efficiency. Starting from a galvanic sacrificial anode for the cathodic corrosion protection based on an aluminum alloy of the type mentioned at the outset, the task according to the invention is solved with an aluminum alloy of composition:

Ved hjelp av tilsetningene ifølge oppfinnelsen av mangan By means of the additions according to the invention of manganese

og titan forbedres offeranodens egenskaper tydelig, dvs. strømutbyttet økes betraktelig. and titanium, the characteristics of the sacrificial anode are clearly improved, i.e. the current yield is increased considerably.

En foretrukket utførelsesform for den galvaniske anode ifølge oppfinnelsen har følgende sammensetning av aluminiumlegering : A preferred embodiment of the galvanic anode according to the invention has the following composition of aluminum alloy:

I de som offeranoder anvendte, ifølge oppfinnelsen sammen-satte aluminiumlegeringer utgjør hensiktsmessig de uønskede forurensninger av kobber ikke mer enn 0,02 vekt-% og av jern og silisium sammen ikke mer enn 0,1 vekt-%. En forurens-ningsmengde på 0,12 vekt-% skal derfor på ingen måte over-skrides . In the aluminum alloys used as sacrificial anodes, composed according to the invention, the unwanted impurities of copper suitably amount to no more than 0.02% by weight and of iron and silicon combined to no more than 0.1% by weight. A contamination amount of 0.12% by weight must therefore not be exceeded in any way.

Fordelene ved offeranoden ifølge oppfinnelsen er å se deriThe advantages of the sacrificial anode according to the invention can be seen therein

at det oppnås et forbedret strømutbytte ved jevnt, arrfattig bortføring av anoden og videre frembringes en anodelegering that an improved current yield is achieved by uniform, scar-free removal of the anode and further an anode alloy is produced

uten økologisk farlige legeringsbestanddeler.without ecologically hazardous alloy components.

Oppfinnelsen skal forklares nærmere ved hjelp av noen eksempler. The invention will be explained in more detail with the help of some examples.

Det ble benyttet anoder av aluminiumlegeringer av følgende sammensetning: Aluminiumlegering 1 (teknikkens stand) Aluminiumlegering 2 (ifølge oppfinnelsen) Anodes of aluminum alloys of the following composition were used: Aluminum alloy 1 (state of the art) Aluminum alloy 2 (according to the invention)

Det ble anvendt en måleanordning som i det vesentlige til-svarer den av Robinson omtalte og fra Det Norske Veritas forbedrede. I følgende tabell er legeringenes arbeidspoten-sial angitt mot den mettede kalomel-referanseelektrode det nyttbare strømutbytte i ampéretimer/kg anodevekt. A measuring device was used which essentially corresponds to the one mentioned by Robinson and improved by Det Norske Veritas. In the following table, the working potential of the alloys is indicated against the saturated calomel reference electrode, the usable current yield in ampere-hours/kg anode weight.

Claims (3)

1. Offeranode for den katodiske korrosjonsbeskyttelse på basis av en zink- og indium- samt vanlige fremstillingsbetingede forurensningsholdige aluminiumlegering,. karakterisert ved sammensetningen: 1. Sacrificial anode for the cathodic corrosion protection on the basis of an aluminum alloy containing zinc and indium, as well as the usual production-related contaminants. characterized by the composition: :. Galvanisk offeranode ifølge krav 1, :arakterisert ved sammensetningen: :. Galvanic sacrificial anode according to claim 1, characterized by the composition: 3. Galvanisk offeranode ifølge krav 1-2, karakterisert ved at forurensningen av kobber ikke utgjør mer enn 0,02 vekt-% og av jern og 'silisium sammen ikke mer enn 0,1 vekt-%. 3. Galvanic sacrificial anode according to claims 1-2, characterized in that the contamination of copper does not amount to more than 0.02% by weight and of iron and silicon together no more than 0.1% by weight.
NO840467A 1983-02-18 1984-02-08 GALVANIC OFFER ANODE ON ALUMINUM ALLOY BASE NO840467L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3305612A DE3305612A1 (en) 1983-02-18 1983-02-18 ALVINUM ALLOY GALVANIC SACRED ANODE

Publications (1)

Publication Number Publication Date
NO840467L true NO840467L (en) 1984-08-20

Family

ID=6191171

Family Applications (1)

Application Number Title Priority Date Filing Date
NO840467A NO840467L (en) 1983-02-18 1984-02-08 GALVANIC OFFER ANODE ON ALUMINUM ALLOY BASE

Country Status (3)

Country Link
EP (1) EP0119640B1 (en)
DE (2) DE3305612A1 (en)
NO (1) NO840467L (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980195A (en) * 1989-05-08 1990-12-25 Mcdonnen-Douglas Corporation Method for inhibiting inland corrosion of steel
DE19530004C2 (en) * 1994-09-10 1998-07-02 Mw Medizintechnik Gmbh Medical surgical and / or treatment instrument
DE102022118794A1 (en) 2022-07-27 2024-02-01 Baumer Hhs Gmbh Device for preparing a hot glue and system for applying a hot glue with such a device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1458508A1 (en) * 1963-09-25 1968-12-19 Ver Deutsche Metallwerke Ag Use of AIZnMgSi alloys
GB1221659A (en) * 1967-11-24 1971-02-03 British Aluminium Co Ltd Aluminium base alloys and anodes
US4238233A (en) * 1979-04-19 1980-12-09 Mitsubishi Aluminum Kabushiki Kaisha Aluminum alloy for cladding excellent in sacrificial anode property and erosion-corrosion resistance

Also Published As

Publication number Publication date
DE3305612A1 (en) 1984-08-23
DE3460906D1 (en) 1986-11-13
EP0119640B1 (en) 1986-10-08
EP0119640A1 (en) 1984-09-26

Similar Documents

Publication Publication Date Title
Lunder et al. The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91
US3240688A (en) Aluminum alloy electrode
NO159054B (en) N-ARYLBENZAMIDE DERIVATIVES, HERBICID PREPARATIONS CONTAINING SUCH, AND THEIR USE TO FIGHT UNWanted Undesirable Vegetation.
NO772608L (en) CATODIC SHIPHOOD PROTECTION SYSTEM, AND SACRIFICE ANOD
JP2892449B2 (en) Magnesium alloy for galvanic anode
US3368952A (en) Alloy for cathodic protection galvanic anode
JPH0127140B2 (en)
Muazu et al. Effects of zinc addition on the performance of aluminium as sacrificial anode in seawater
NO840467L (en) GALVANIC OFFER ANODE ON ALUMINUM ALLOY BASE
JPS5941430A (en) Antifouling metallic material
US3383297A (en) Zinc-rare earth alloy anode for cathodic protection
US2913384A (en) Aluminum anodes
US3418230A (en) Galvanic anode and aluminum alloy therefor
US3033775A (en) Anode for cathodic protection
JP2924609B2 (en) Aluminum alloy for corrosion protection of steel structures
US5547560A (en) Consumable anode for cathodic protection, made of aluminum-based alloy
US2805198A (en) Cathodic protection system and anode therefor
WO2000026426A1 (en) Zinc-based alloy, its use as a sacrificial anode, a sacrificial anode, and a method for cathodic protection of corrosion-threatened constructions in aggressive environment
JPS6176644A (en) Magnesium alloy for galvanic anode for electric protection
JP3184516B2 (en) Magnesium alloy for galvanic anode
US3582319A (en) A1 alloy useful as anode and method of making same
US3464909A (en) Aluminum alloy galvanic anodes
JPS6319584B2 (en)
Orozco-Cruz et al. Electrochemical behavior of new ternary aluminum alloys as sacrificial anodes
EP3647465A1 (en) Zink-based sacrificial anode alloy, use of a zink-based alloy, and a sacrificial anode