EP0115447A1 - Vergaser mit von einem elektromagnetischen Ventil gesteuerter Anreicherungsvorrichtung - Google Patents

Vergaser mit von einem elektromagnetischen Ventil gesteuerter Anreicherungsvorrichtung Download PDF

Info

Publication number
EP0115447A1
EP0115447A1 EP84400005A EP84400005A EP0115447A1 EP 0115447 A1 EP0115447 A1 EP 0115447A1 EP 84400005 A EP84400005 A EP 84400005A EP 84400005 A EP84400005 A EP 84400005A EP 0115447 A1 EP0115447 A1 EP 0115447A1
Authority
EP
European Patent Office
Prior art keywords
circuit
engine
carburetor
pump
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84400005A
Other languages
English (en)
French (fr)
Other versions
EP0115447B1 (de
Inventor
Philippe Bauer
Henri Mazet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solex SA
Original Assignee
Solex SA
Societe Industrielle de Brevets et dEtudes SIBE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solex SA, Societe Industrielle de Brevets et dEtudes SIBE filed Critical Solex SA
Publication of EP0115447A1 publication Critical patent/EP0115447A1/de
Application granted granted Critical
Publication of EP0115447B1 publication Critical patent/EP0115447B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/08Other details of idling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/06Means for enriching charge on sudden air throttle opening, i.e. at acceleration, e.g. storage means in passage way system
    • F02M7/08Means for enriching charge on sudden air throttle opening, i.e. at acceleration, e.g. storage means in passage way system using pumps
    • F02M7/093Means for enriching charge on sudden air throttle opening, i.e. at acceleration, e.g. storage means in passage way system using pumps changing output according to intake vacuum

Definitions

  • the present invention relates to carburetors for internal combustion engines of the type which include a main fuel spouting circuit opening at the neck of a venturi placed in the intake duct, an idling and low-load running circuit opening in the intake duct downstream of a throttle unit controlled by the driver and an enrichment device for supplying the intake duct with additional fuel during certain operating phases of an engine powered by the carburetor , device provided with an adjustment solenoid valve supplied by an electronic circuit sensitive to at least one operating parameter of the engine and capable of supplying pulses of variable duty cycle control.
  • the enrichment device designed to deliver fuel both in the venturi and in an air channel of the idling circuit, is controlled by an electronic circuit intended to bring the air / petrol mixture supplied to the engine to the stoichiometric composition.
  • This solves the problems of engine operation in steady state, both at high load and at low load. But it is not possible to make a motor work properly by supplying it, at all speeds, with a stoichiometric mixture of air and gasoline.
  • Certain operating phases such as acceleration, cold running or full load, make it necessary or at least desirable to supply the engine with a rich mixture.
  • the present invention aims to provide a carburetor which meets the requirements of practice better than those previously known, in particular in that it makes it possible to satisfactorily adjust the richness of the mixture supplied to the engine, at all speeds, using only simple means.
  • the invention proposes in particular a carburetor of the kind defined above, characterized in particular in that it comprises a recovery pump provided with an intake duct equipped with a non-return valve and with a delivery pipe supplying the intake pipe and the fuel idling circuit, on which said solenoid valve is interposed, the pump being provided so that the vacuum which prevails in the intake pipe is capable of sucking fuel through the pump.
  • the discharge pipe of the pump opens into the intake pipe, near the neck of the venturi, by means of two coaxial passages separated by a chamber communicating with the circuit of carburetor idle, which has no fuel supply other than the acceleration pump.
  • the solenoid valve is advantageously of the open type at rest.
  • This same circuit can be provided to cut off the supply of fuel to the engine during deceleration operation, that is to say when the engine rotates beyond a predetermined speed while the throttle valve is in the open position. minimal.
  • the invention makes it possible to use an acceleration pump controlled by vacuum, that is to say much simpler than a pump controlled by a mechanical linkage from the main throttling member.
  • the acceleration pumps controlled by vacuum - have been abandoned practically at present due to their serious drawback: when the engine stops, the acceleration pump injects its contents into the admission.
  • This drawback is eliminated, in a particular embodiment of the invention, by providing a narrow orifice for communication between the discharge chamber of the acceleration pump and the constant level tank which supplies it. The solenoid valve remaining closed for a determined time interval after switching off the ignition, the discharge compartment of the accelerator pump is emptied into the tank at constant level.
  • the invention is capable of being applied to very different carburetors, and in particular to so-called constant vacuum carburetors, although it seems particularly advantageous in the case of so-called variable vacuum and fixed nozzle carburetors.
  • variable vacuum carburetor which constitutes a particular embodiment given by way of non-limiting example.
  • the description refers to the single figure which accompanies it and shows those of the constituents of the carburetor which are concerned by the invention, in schematic form, partially in elevation and partially in vertical section through the axis of the intake duct.
  • the inverted carburetor shown in the Figure comprises a body (10) in several assembled parts in which is formed an intake duct 11.
  • the lower part of the duct 11 contains a main throttling member formed by a butterfly 12 carried by a rotary axis 13 and controlled by the driver by means of a linkage not shown.
  • the upper part of the duct 11 constitutes an air inlet 14 generally provided with an air filter, not shown, and containing an air flap 21 belonging to a starting system which will be described later.
  • the fuel supply circuits to the engine are supplied by a tank 15 at constant level N.
  • This tank supplies a main fuel spouting circuit which will not be described in detail since it may be of conventional constitution. It will generally comprise an emulsion well 47 supplied from the constant level tank 15 and connected to a passage 16 opening at the neck of a venturi 17.
  • a slow-motion and idling circuit at low load comprises a channel 18 which opens into downstream in the intake duct, on the one hand, by an idle orifice 19 situated downstream of the end of the butterfly valve whatever the position of the latter and, on the other hand, by progression holes 20, also called “bypass holes”, located so as to pass from upstream to downstream of the end of the butterfly 12 when the latter is ajar from its minimum open position to bring it to the position shown in 12a.
  • the air flap 21 belonging to the starting device is carried by an eccentric pin 22. It is controlled either manually from a pull tab located on the dashboard, or automatically as a function of the engine temperature, for example by a bimetallic strip. This air flap 21 causes, when it is closed while the engine is running, a high vacuum at the outlet of the main spouting circuit.
  • the carburetor further comprises an acceleration pump 23.
  • the pump shown in the Figure, of the vacuum-controlled type comprises a variable volume chamber 24 connected to the tank 15 by a suction channel 25 provided with a valve d 25a. This chamber 24 is also connected to the intake duct by a discharge channel 26.
  • the chamber 24 is delimited by a movable pumping member, constituted by a flexible membrane 29 which separates it from a chamber 30 connected by a channel 31 to the part of the intake duct 11 situated downstream of the butterfly valve.
  • a spring 32 contained in the chamber 30 tends to push the membrane in a direction tending to decrease the volume of the chamber 24.
  • a stop (not shown) can be provided to limit this movement.
  • a solenoid valve 40 intended to be controlled by pulses of variable duty cycle is interposed on the discharge conduit 26.
  • This solenoid valve is controlled by an electronic circuit 41 capable of supplying current slots variable duty cycle between 0 and 1, ratio determined by the value of the input signals it receives from various sensors sensitive to engine operating parameters.
  • the discharge channel of the pump is designed to be able to supply the intake duct either directly, near the neck of the venturi, or via channel 18 of the idling circuit.
  • the calibrated orifice 28 through which the fuel from the channel 26 escapes opens into the channel 18 of the idling circuit.
  • the passage 42 for supplying air to the channel 18 is placed in the extension of the injection orifice 28. In order for the injection into the intake duct to take place properly, the passage 42 is of larger section than that of the orifice 28: this is not a particular subjection, an air inlet orifice always having a diameter greater than the associated fuel inlet orifice.
  • an orifice 43 of small section connects the variable-volume chamber 24 of the pump 23 to the tank 15.
  • the electronic circuit 41 constitutes a calculation unit making it possible to develop the duty cycle of the pulses supplied to the solenoid valve 40 from various input signals.
  • the frequency of the pulses may be constant and fixed by an oscillator incorporated in circuit 41. More frequently, it will be fixed by the speed of the engine: it suffices for this to place, for example on the ignition distributor, a sensor providing a pulse per turn.
  • the input signals received by the sensor must make it possible to calculate the duty cycle to be given to the control pulses of the solenoid valve at idle and at full load.
  • Other parameters can be used, in particular the vacuum which reigns downstream of the butterfly 12.
  • a signal representative of the engine temperature must be supplied to the circuit 41. This signal can be obtained using a sensor 46 subjected to the temperature of l engine cooling water.
  • circuit 41 comprising a memory of the so-called "cartographic" type, providing a value of the duty cycle for each pair of values V, a. To the value provided by the memory is applied a correction coefficient, additive or multiplicative, function of the temperature e. Finally, the circuit 41 will include timing means, making it possible to supply a duty cycle signal 1 during a deter mined (usually a few seconds) after switching off the ignition.
  • the circuit 41 excites the solenoid valve 40 in direct current, which cuts off the supply of fuel to the engine.
  • the element of the circuit 41 necessary for this function can be very simple and be limited to a door indicating the presence of the two conditions.
  • a third condition very high depression in the intake manifold, gear ratio engaged, etc. can be provided. It requires the presence of an additional sensor.
  • the circuit 41 it is sufficient for the circuit 41 to be provided to supply, for a predetermined period of time after switching off the ignition, a continuous signal for closing the solenoid valve 40.
  • This time delay also makes it possible to prevent the acceleration pump 23, if it is pneumatically controlled, from sending the fuel contained in the chamber 24 to the intake duct 11. For this, it suffices that the time delay (duration of closing of the solenoid valve 40 after switching off the ignition) is sufficient for the fuel contained in the chamber 24 to be returned to the tank at constant level by the calibrated orifice 43 before reopening.
  • the circuit 41 can be provided to modulate the quantity of fuel sent by the pump 23 as a function of the engine temperature (or other parameters, for example the brutality of the acceleration). For this, the circuit 41 adjusts the opening duty cycle of the solenoid valve 40 as a function of the representative temperature signal supplied by the sensor 46 or of any other signal representative of an acceleration parameter. It should be noted that one can obtain, from the opening signal supplied by the sensor 44, an opening speed signal, by bypass.
  • the vacuum which prevails at the neck of the venturi 17 sucks fuel from the chamber 24 via the passage 42, the orifice 28 and the discharge channel 26.
  • This operating regime can be detected from the signals provided by the sensors 44 and 45.
  • the circuit 41 can be provided to then supply the solenoid valve 40 with a control signal the duty cycle of which is determined by pre-programmed values as a function of one or more parameters, for example the speed of the engine. These values are contained in a memory associated with circuit 41.
  • the carburetor shown in Figure has a starting flap 21 which when in the closed position where it is shown, provides the high enrichment necessary for starting the engine.
  • the butterfly is then held in a slightly open position (position 12a indicated in dashes in the Figure) so that the vacuum generated by the engine is transmitted to the outlet of the main spouting system 16.
  • the control of the air shutter 21 and that of the butterfly can be ensured by conventional means, which therefore need not be described here.
  • the starting flap 21 is intended to open quickly after starting the engine.
  • the richness necessary for the proper functioning of the engine is subsequently ensured, during heating, by the circuit which sends the solenoid valve 40 a signal the duty cycle of which is essentially a function of the temperature signal supplied by the probe 46.
  • the circuit 41 can be provided to then supply the solenoid valve 40 with a continuous current of permanent closure. But the circuit can also be provided to intervene then, by using the fact that the vacuum, coming from the neck of the venturi and from the idle channel 18, applied to the outlet of the orifice. 28, makes it possible to draw fuel through chamber 24.
  • This flow rate can be adjusted by modulating the duty cycle of the control signals of the solenoid valve 40 as a function of operating parameters of the engine.
  • it is then possible to perform closed loop operation by supplying the circuit 41 with a signal representative of the composition of the engine exhaust gases. This signal can be provided by a lambda probe 48 (in dashes in the Figure) plunging into the exhaust manifold 49.
  • this circuit will generally include a digital computing device, for example a microprocessor associated with a working RAM and with read only memories for storing preprogrammed values, as well as at least one analog-digital converter for converting the analog parameters supplied by the sensors in digital data usable by the computing unit.
  • a digital computing device for example a microprocessor associated with a working RAM and with read only memories for storing preprogrammed values, as well as at least one analog-digital converter for converting the analog parameters supplied by the sensors in digital data usable by the computing unit.
  • the invention is susceptible of numerous variant embodiments and, in particular, it is adaptable to a constant vacuum carburetor, in which an auxiliary throttle member movable as a function of the flow rate which traverses the intake duct gives a section of passage of fuel towards the intake duct a value depending on its position, itself representative of the air flow.
EP84400005A 1983-01-03 1984-01-03 Vergaser mit von einem elektromagnetischen Ventil gesteuerter Anreicherungsvorrichtung Expired EP0115447B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8300014A FR2538856A1 (fr) 1983-01-03 1983-01-03 Carburateur a commande d'enrichissement par electrovanne
FR8300014 1983-01-03

Publications (2)

Publication Number Publication Date
EP0115447A1 true EP0115447A1 (de) 1984-08-08
EP0115447B1 EP0115447B1 (de) 1987-10-28

Family

ID=9284638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400005A Expired EP0115447B1 (de) 1983-01-03 1984-01-03 Vergaser mit von einem elektromagnetischen Ventil gesteuerter Anreicherungsvorrichtung

Country Status (5)

Country Link
EP (1) EP0115447B1 (de)
BR (1) BR8307327A (de)
DE (1) DE3467023D1 (de)
ES (1) ES528503A0 (de)
FR (1) FR2538856A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209073A2 (de) * 1985-07-17 1987-01-21 Kwik Europe London Limited Korrekturvorrichtung für das Brennstoff-Luft-Verhältnis für einen Vergaser der Rotorbauart für Brennkraftmaschinen
FR2619163A1 (fr) * 1987-08-03 1989-02-10 Campos Jean Louis Dispositif electronique de gestion de carburant pour moteurs essence et diesel
US10054081B2 (en) 2014-10-17 2018-08-21 Kohler Co. Automatic starting system
US10240543B2 (en) 2013-08-15 2019-03-26 Kohler Co. Integrated ignition and electronic auto-choke module for an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2098174B1 (es) * 1993-02-09 1998-01-01 Sanchez Velasco Clemente Jesus Carburador de inyeccion adicional variable de aire y combustible, controlado mediante eje de oscilacion central emulsor fijado a placa con movimiento axial por palanca directa.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1797165A (en) * 1926-09-18 1931-03-17 Percival S Tice Carburetor
US2207456A (en) * 1938-06-28 1940-07-09 Carter Carburetor Corp Carburetor structure
US2563096A (en) * 1946-01-28 1951-08-07 Carter Carburetor Corp Carburetor
US2919908A (en) * 1956-12-27 1960-01-05 Acf Ind Inc Insulated accelerating pump
FR2303162A1 (fr) * 1975-03-03 1976-10-01 Yamaha Motor Co Ltd Dispositif pour ameliorer le fonctionnement des moteurs a combustion interne
FR2419403A1 (fr) * 1978-03-08 1979-10-05 Sibe Perfectionnements aux dispositifs de carburation pour moteurs a combustion interne
EP0057022A2 (de) * 1981-01-27 1982-08-04 WEBER S.r.l. Vorrichtung, geeignet zum Anreichern des Gemisches, geliefert vom Vergaser für Brennkraftmaschinen mit innerer Verbrennung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1797165A (en) * 1926-09-18 1931-03-17 Percival S Tice Carburetor
US2207456A (en) * 1938-06-28 1940-07-09 Carter Carburetor Corp Carburetor structure
US2563096A (en) * 1946-01-28 1951-08-07 Carter Carburetor Corp Carburetor
US2919908A (en) * 1956-12-27 1960-01-05 Acf Ind Inc Insulated accelerating pump
FR2303162A1 (fr) * 1975-03-03 1976-10-01 Yamaha Motor Co Ltd Dispositif pour ameliorer le fonctionnement des moteurs a combustion interne
FR2419403A1 (fr) * 1978-03-08 1979-10-05 Sibe Perfectionnements aux dispositifs de carburation pour moteurs a combustion interne
EP0057022A2 (de) * 1981-01-27 1982-08-04 WEBER S.r.l. Vorrichtung, geeignet zum Anreichern des Gemisches, geliefert vom Vergaser für Brennkraftmaschinen mit innerer Verbrennung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209073A2 (de) * 1985-07-17 1987-01-21 Kwik Europe London Limited Korrekturvorrichtung für das Brennstoff-Luft-Verhältnis für einen Vergaser der Rotorbauart für Brennkraftmaschinen
EP0208802A1 (de) * 1985-07-17 1987-01-21 Kwik Europe London Limited Lambda-Korrekturvorrichtung an einem Rotorvergaser für Brennkraftmaschinen
EP0209073A3 (de) * 1985-07-17 1989-03-22 Kwik Europe London Limited Korrekturvorrichtung für das Brennstoff-Luft-Verhältnis für einen Vergaser der Rotorbauart für Brennkraftmaschinen
FR2619163A1 (fr) * 1987-08-03 1989-02-10 Campos Jean Louis Dispositif electronique de gestion de carburant pour moteurs essence et diesel
US10240543B2 (en) 2013-08-15 2019-03-26 Kohler Co. Integrated ignition and electronic auto-choke module for an internal combustion engine
US10794313B2 (en) 2013-08-15 2020-10-06 Kohler Co. Integrated ignition and electronic auto-choke module for an internal combustion engine
US10054081B2 (en) 2014-10-17 2018-08-21 Kohler Co. Automatic starting system

Also Published As

Publication number Publication date
ES8501487A1 (es) 1984-12-01
BR8307327A (pt) 1984-08-14
FR2538856B1 (de) 1985-04-26
ES528503A0 (es) 1984-12-01
EP0115447B1 (de) 1987-10-28
DE3467023D1 (en) 1987-12-03
FR2538856A1 (fr) 1984-07-06

Similar Documents

Publication Publication Date Title
FR2488336A1 (fr) Systeme d'alimentation en carburant pour un moteur a combustion interne du type a injection
FR2551798A1 (fr) Procede de commande d'alimentation en combustible d'un moteur a combustion interne immediatement apres le demarrage
FR2599786A1 (fr) Appareillage de pompage de carburant
EP0115447B1 (de) Vergaser mit von einem elektromagnetischen Ventil gesteuerter Anreicherungsvorrichtung
EP0262027B1 (de) Vergaser mit Startautomatik
FR2463287A1 (fr) Dispositif et procede de commande du rapport air-combustible pour un carburateur de moteur a combustion interne
EP0980472B1 (de) Entlastungs-bypass für hochdruckpumpe mit direkteinspritzung
FR2462565A1 (fr) Dispositif de commande electronique pour carburateur de moteur a combustion interne
EP1039116A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
FR2773593A1 (fr) Systeme d'injection de carburant pour moteurs a combustion interne
US6679211B2 (en) Manually guided implement
FR2507686A1 (fr) Procede de commande de recyclage du gaz d'echappement pour moteurs a combustion interne
FR2526492A1 (fr) Systeme de commande de papillon pour moteurs a combustion interne
FR2605049A1 (fr) Dispositif d'admission d'air dans un moteur diesel et procedes de commande de ce dispositif.
EP0180522B1 (de) Vergaser mit Brennstoffabschaltung im Schubbetrieb
FR2475124A1 (fr) Dispositif de commande du melange combustible pour moteur de vehicule
EP0218515B1 (de) Vergaser für Brennkraftmaschine
FR2616849A1 (fr) Dispositif, destine a empecher les battements inconfortables d'inversion de charge, equipant un moteur a combustion interne pour automobiles
FR2519086A1 (fr) Dispositif d'alimentation de moteur a combustion interne comprenant un carburateur
FR2617908A1 (fr) Systeme d'injection de carburant pour moteurs a combustion interne
FR3090046A1 (fr) PROCEDE DE contrôle D’UN MOTEUR A COMBUSTION ITERNE SURALIMENTE AVEC RECIRCULATION PARTIELLE DES GAZ D’ECHAPPEMENT A L’ADMISSION, ET DISPOSITIF DE MOTORISATION ASSOCIE
JPS61275552A (ja) 気化器
FR2610995A1 (fr) Dispositif de carburation a venturi elastique variable et gestion electronique pour moteurs a explosions
FR2739142A1 (fr) Procede de controle de la richesse d'un melange air / carburant alimentant un moteur a combustion interne et dispositif correspondant
FR2864160A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19841006

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLEX

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3467023

Country of ref document: DE

Date of ref document: 19871203

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901227

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910315

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920103

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001