EP0113907B1 - Couche destinée à empêcher les perturbations provoquées par l'émission d'électrons secondaires et procédé de fabrication d'une telle couche - Google Patents

Couche destinée à empêcher les perturbations provoquées par l'émission d'électrons secondaires et procédé de fabrication d'une telle couche Download PDF

Info

Publication number
EP0113907B1
EP0113907B1 EP83112926A EP83112926A EP0113907B1 EP 0113907 B1 EP0113907 B1 EP 0113907B1 EP 83112926 A EP83112926 A EP 83112926A EP 83112926 A EP83112926 A EP 83112926A EP 0113907 B1 EP0113907 B1 EP 0113907B1
Authority
EP
European Patent Office
Prior art keywords
layer
coating
rough
metals
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83112926A
Other languages
German (de)
English (en)
Other versions
EP0113907A1 (fr
Inventor
Heinrich Dr. Derfler
Jürgen Perchermeier
Hermann Spitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione derfler Heinrich - Perchermeier Jurgen -
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority to AT83112926T priority Critical patent/ATE19325T1/de
Publication of EP0113907A1 publication Critical patent/EP0113907A1/fr
Application granted granted Critical
Publication of EP0113907B1 publication Critical patent/EP0113907B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12882Cu-base component alternative to Ag-, Au-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12889Au-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a coating used to prevent interference from secondary electron emission and which contains an electrically conductive layer with a rough surface, for a surface of a base body which consists of an electrically conductive material at least in a certain area adjacent to the coated surface, and in Use of high frequency electrical fields is exposed.
  • the present invention is based on the object of further developing the known coating mentioned above in such a way that it ensures satisfactory suppression of interference by secondary electron emission even at higher high-frequency powers and in the presence of higher static magnetic fields.
  • a coating which serves to prevent interference from secondary emission and which contains an electrically conductive layer - rough layer - with a rough surface, for a surface of a base body which, at least in a certain area adjacent to the coated surface, consists of an electrically conductive layer Material consists, and the use is exposed to high-frequency electrical fields and which is characterized according to the invention in that the thickness of the rough layer is smaller than its skin effect penetration depth and that there is a layer - intermediate layer - of high conductivity, the thickness of which is substantially greater than that of the rough layer is their skin effect penetration depth at the operating frequencies of the electric fields.
  • the present coating can be produced with a surface of sufficient roughness without the risk of overheating due to ohmic losses in the rough surface. Preferred embodiments of the present coating can also be used in the presence of strong magnetic fields.
  • the present coating is also characterized by high thermal conductivity, so that, with appropriate thermal conductivity and / or cooling of the carrier body, very high thermal loads are also possible.
  • FIG. 1 shows a schematic, greatly enlarged sectional view of a coating according to one embodiment of the invention when applied to a high-frequency, in particular microwave, conductor.
  • the high-frequency conductor can be a waveguide, a resonator, an antenna, an electrode of a high-vacuum electron tube or the like, which are intended for operation at high frequencies, in particular microwave frequencies (3 ⁇ 10 8 Hz and above).
  • the base body can consist entirely of an electrically conductive material, such as iron or non-magnetic steel.
  • the carrier body can also consist of an electrically conductive material only in a thickness region adjoining the coated surface 10, but in the rest of an essentially insulating material such as ceramic or plastic.
  • the free surface of the present electrically conductive coating is formed in a known manner by a layer 12 with a rough surface (“rough layer”), which consists of a material of sufficient electrical conductivity and whose special parameters will be discussed further below.
  • An essential feature of the present coating is that an intermediate layer 16 of high electrical conductivity is arranged between the rough layer 12 and the surface 10 of the base body, preferably provided with an adhesive layer 14, the thickness D of which is significantly greater, in particular at least twice, preferably at least that Triple the Is the skin effect penetration depth at the operating frequencies.
  • the skin effect penetration depth is known to be equal to the square root of two divided by the product of the angular frequency, the electrical conductivity and the magnetic permeability of the material in question.
  • the intermediate layer 16 should have a high electrical conductivity, ie a resistivity of preferably less than 0.02 x 10 -6 ohm m. Suitable metals are e.g. As copper, silver or gold, copper is currently preferred.
  • the intermediate layer (“conductivity layer”) 16 is intended to absorb the main part of the eddy currents induced by the high-frequency field and therefore has a thickness which is substantially greater than the skin effect penetration depth of the material in question.
  • a thin adhesive layer 14 is expediently provided between the base body surface 10 and the conductivity layer 16, as mentioned.
  • B. can consist of nickel.
  • a thin protective layer 20 is preferably provided between the conductivity layer 16 and the rough metal layer 12, which has the task of protecting the conductive layer from oxidation during the application of the rough layer 12.
  • the protective layer must be non-porous and have a uniform thickness d everywhere, which should be such that the skin effect penetration depth s for the material of the protective layer is substantially greater than d everywhere. In particular, should apply where p is the specific resistance and fL is the magnetic permeability of the protective layer and f is the nominal operating frequency.
  • the high-frequency-induced eddy currents can penetrate into the underlying conductivity layer 16 practically unhindered.
  • a nickel-phosphorus alloy with a phosphorus content of more than 8.5 percent by weight is suitable as material with these properties, since a phosphorus content of this size increases the specific resistance of the nickel many times over and eliminates the ferromagnetism of the nickel.
  • the conductivity of the non-magnetic protective layer 20 is preferably less than 10 5 AN cm, its thickness can be, for example, about 1 pm.
  • the installation can be carried out, for example, electrochemically by adding the elements mentioned in suitable electrolytes.
  • the conductivity layer 16 is made of a material other than gold
  • the gold layer 17 should be applied to the layers 16 immediately after they have been formed.
  • the rough layer 12 may e.g. B. consist of one of the noble metals Ag, Au, Rh, Pd, Ir, Pt or an alloy thereof. Gold is preferred. However, metals from groups IVA, VA, VIA and Mn, Fe, Co, Ni, their alloys or semiconducting compounds with B, C, Si, N and silicon carbide, boron carbide or boron nitride and borosilicate can also be used.
  • the ratio of roughness depth t to roughness width b of the roughened layer is preferably 1: 2 and greater, the roughness width itself being said to be smaller than the gyroradius of the secondary electrons.
  • the thickness t of the rough layer and the thickness d of the protective layer 20 are advantageously at most 1/5 of the combined skin effect penetration depth of these layers at the operating frequency.
  • the present coating can be produced as follows: First, the surface 10 of the base body is expediently pretreated for applying the adhesive layer 18, as is customary in electroplating technology, in particular degreased and pickled. If the base body consists of a non-conductor, an electrically conductive layer of sufficient thickness is first applied to it in a known manner. Then the thin adhesive layer 14 is made of z. B. nickel applied to ensure proper adhesion of the conductivity layer 16 on the surface 10 forming material. On the adhesive layer 14, the conductivity layer 16 is preferably applied immediately, z. B. by electroplating. The thin gold layer 17 is applied to this immediately.
  • pore-free thin protective layer of uniform thickness can be applied to the conductivity layer 16 or the gold layer 17 by electrochemical reduction processes.
  • the aqueous electrolytic solution shown in the following table can be used
  • the electrochemical deposition of the nickel-phosphorus alloy is preferably carried out without current at a temperature in the range from approximately 80 to 95 ° C.
  • nickel instead of or in addition to nickel, other metals such as Cr, Mn, Fe and Co can also be used.
  • compounds of the elements of group VB (As, Sb, Bi), group IVB (C, Si, Ge, Sn, Pb) or group IIIB (B, Al, Ga, In, Te) or the metals V, Cr, Ti, Mo can be used to reduce the ferromagnetism z. B. suppress the nickel matrix by reductive incorporation of the elements mentioned.
  • the rough layer 12 is now applied last to the protective layer 20 protecting the conductivity layer 16.
  • the rate of precipitation of the material to be deposited must substantially exceed the rate of two-dimensional diffusion of the material in question along the surface in order to prevent orderly (epitaxial) growth of large crystals.
  • This can u. a. by electroplating gold electrochemically, d. H. without electrodes, deposits in the strong fields of statistically distributed local elements. The latter are formed by the electrochemical potential difference between the metal forming the surface 10 and already deposited crystal nuclei, similar to that in corrosion processes.
  • acids of other noble metals can also be used, e.g. As Ag, Rh, Pd, Ir, Pt, and these metals, especially in the case of platinum, deposit as a rough layer at a greatly increased current density.
  • Platinum can e.g. B. from an aqueous electrolysis bath containing 2.5 to 3.5 wt.% Platinum chloride and 0.2 to 0.4 g / l lead acetate, at a current density of about 0.1 to 0.3 Alcm 2 and Temperature of about 20 ° C for about 10 to 25 seconds.
  • Further possibilities for the production of the rough layer are to evaporate the metal in question in an inert gas atmosphere at a pressure of 0.05 to 1.0 mbar; furthermore, the material of the rough layer can be produced in a strongly supernormal glow discharge by sputtering or can be grown chemically from the gas phase by an accelerated Van Arkel process.
  • the rough layer 12 you can (similar to the protective layer 20) metals from groups IVA to VIA (in particular W and Mo), also Mn, Fe, Co and Ni, which z. B. can be deposited electrolytically with a greatly increased current density in order to achieve the desired roughness.
  • the rough layer 12 can also consist of high-melting semiconductors, such as compounds of the metals from groups IVA to VIA with B, C, Si, N, and silicon carbide, boron carbide, boron nitride and borosilicide, which, for. B.
  • the roughness of the formed rough layer 12 required to reduce the secondary electron emission being increased by accelerating the deposition rate with pressure and temperature and / or by a glow discharge with the coated surface as cathode and / or by handicap the diffusion along the surface and corresponding disturbance of the epitaxial crystal growth is regulated by chemisorption of foreign gases such as CO 2 , S0 2 , H 2 S, N 2 or vapors of noble metals and metals of the iron group.
  • a modified chemical vapor deposition process (“Chemical Vapor Deposition”) can be used, in which the structure to be provided with the rough layer heats up to a temperature of, for example, 800 to 1,000 ° C and is exposed to a substantially atmospheric pressure atmosphere consisting essentially of a stoichiometric mixture of gaseous or vaporous hydrocarbons, e.g. B. methane (CH 4 ), and titanium tetrachloride (TiCl 4 ) and an addition of one of the foreign gases mentioned above with a partial pressure of a few millibars.
  • a substantially atmospheric pressure atmosphere consisting essentially of a stoichiometric mixture of gaseous or vaporous hydrocarbons, e.g. B. methane (CH 4 ), and titanium tetrachloride (TiCl 4 ) and an addition of one of the foreign gases mentioned above with a partial pressure of a few millibars.
  • the structure to be coated is placed in a vacuum vessel.
  • the vacuum vessel is evacuated and then with a stoichiometric mixture of hydrocarbon, e.g. As methane and titanium tetrachloride filled mbar under a pressure of several millibars to 10. 2
  • a stoichiometric mixture of hydrocarbon e.g. As methane and titanium tetrachloride filled mbar under a pressure of several millibars to 10. 2
  • one of the above-mentioned foreign gases can also be added under a partial pressure of 10 --- 3 to 10- 5 mbar.
  • the structure to be coated is then heated to a temperature of about 200 ° C.
  • a further process for the production of the rough layer from refractory semiconductor compounds of the metals of the subgroups IVA to VIA with B, C, Si, N, in particular titanium carbide, tantalum carbide, tungsten carbide and silicon carbide, boron carbide, boron nitride and borosilicide consists in the fact that these are in the form of small Applies particles from a suspension of a Cr, Mn, Fe, Ni or Co electrolyte to the protective layer 20 by combining electrolysis and cathaphoresis at voltages around 30 V and current densities of 100-500 A / m 2 .
  • the aforementioned particles can be deposited simultaneously with the reductive deposition of Mn, Fe, Ni, Co or Cr.
  • the particle size is preferably 1 ⁇ m and smaller. Concentrations of the suspended particles in the electrolyte of 0.5 to 1 kg / liter are preferred.
  • a rough layer made of highly heat-resistant and mechanically very resistant materials is particularly advantageous if the coating is subjected to high thermal loads and other stresses, e.g. B. is exposed to particle bombardment, such as. B. is the case with the so-called first wall of a fusion reactor and also to a certain extent with accelerator electrodes.
  • the process parameters should be controlled so that the ratio of the roughness depth t to the roughness width b is greater than or equal to approximately 1: 2. If the interception of the secondary electrons is to be ensured even in the presence of strong magnetic fields, the roughness width b must be smaller than the gyrorius of secondary electrons of medium exit energy.
  • the gyro radius r ( ⁇ m) is approximately 3.4 / B at the average exit energy given above, where B is the magnetic field strength in Tesla.
  • the coating is preferably still a final heat treatment in an inert gas atmosphere or in a high vacuum, e.g. B. for a few hours at 350 ° C to 600 ° C, to solidify the transitions from layer to layer by intermetallic diffusion. This ensures a smooth transition of the eddy and heat flows generated by the high frequency.
  • the coating is advantageously stabilized by sparking (“spot knocking”).
  • spot knocking The easiest way to do this is to apply several (e.g. 50) short high-frequency pulses of such a high voltage to the waveguide or the like when it is started up for the first time that a field emission of electrons at the tip, abnormally high or loose crystals of the rough metal layer immediately changes into a short-term thermal electron emission occurs. The tips or loose crystals evaporate.
  • Permissible magnetic field 0 to 3 Tesla (30 kGauss), operating frequency range 0.5 to 5 GHz, permissible throughput of a waveguide in this frequency range: 0.3 to 3 megawatts with pulse lengths of less than 5 seconds and pressure of the residual gas atmosphere below 10- 3 millibars.
  • the average secondary emission coefficient (number of primary electrons to that of the secondary electrons measured at a residual gas pressure of 10- 4 mbar H 2 ) had the following measured values for a coating of the type specified above:

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid Thermionic Cathode (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Claims (25)

1. Enduction de protection contre les perturbations dues à l'émission secondaire d'électrons, comportant une couche conductrice de l'électricité - couche rugueuse (12) - à surface rugueuse, destinée à la surface d'un corps de base, constitué d'une matière conductrice de l'électricité, au moins dans une certaine zone limitrophe de sa surface enduite, et soumis à des champs électriques de haute fréquence, lors de son utilisation, caractérisée en ce que l'épaisseur de la couche rugueuse (12) est inférieure à sa profondeur de pénétration de l'effet de peau, et en ce que sous la couche rugueuse (12) se trouve une couche intermédiaire (16) hautement conductible dont l'épaisseur (D) est nettement supérieure à sa profondeur de pénétration de l'effet de peau aux fréquences de service des champs électriques.
2. Enduction selon la revendication 1, caractérisée en ce que la couche intermédiaire (16) comprend un métal de haute conductivité électrique, tel que le cuivre, l'argent ou l'or.
3. Enduction selon la revendication 1 ou 2, caractérisée en ce que l'épaisseur (D) de la couche intermédiaire est au moins égale au double de sa profondeur de pénétration de l'effet de peau.
4. Enduction selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'une couche de protection (20) se situe entre la couche intermédiaire (16) de haute conductibilité et la couche rugueuse (12).
5. Enduction selon la revendication 4, caractérisée en ce que la matière et l'épaisseur (d) de la couche de protection (20) sont choisies en sorte que la profondeur de pénétration de l'effet de peau est nettement supérieure à l'épaisseur de la couche de protection.
6. Enduction selon la revendication 5, caractérisée en ce que la somme de l'épaisseur (d) de la couche de protection (20) et de l'épaisseur (t) de la couche rugueuse (12) est au plus égale à 1/5 de la profondeur de pénétration de l'effet de peau combiné des deux couches, aux fréquences de service.
7. Enduction selon l'une quelconque des revendications précédentes, caractérisée en ce que le rapport de la profondeur de rugosité (t) à la largeur de rugosité (b) de la couche rugueuse est supérieur ou égal à 1 : 2.
8. Enduction selon l'une quelconque des revendications précédentes, caractérisée en ce que la largeur de rugosité (b) de la couche rugueuse (12) est inférieure au rayon de rotation des électrons secondaires dans un champ magnétique régnant à la surface enduite du conducteur en service.
9. Enduction selon l'une quelconque des revendications précédentes, caractérisée en ce que la couche de protection (20) est constituée d'un alliage d'au moins un métal de transition (Mn, Fe, Ni, Co) avec au moins un élément du groupe VB (P, As, Sb, Bi) du groupe IVB (C, Si, .Ge, Sn, Pb) du groupe IIIB (B, AI, In, Ga, Te) ou de l'un des métaux V, Cr, Ti, Mo.
10. Enduction selon l'une quelconque des revendications précédentes, caractérisée en ce que la couche rugueuse (12) est constituée d'au moins l'un des métaux précieux (Ag, Au, Rh, Pd, Ir, Pt) ou de métaux des groupes IVA, VA, VIA et Mn, Fe, Ni, Co, de leurs alliages ou de composés semi-conducteurs avec B, C, Si, N ou de carbure de silicium, carbure de bore ou siliciure de bore.
11. Enduction selon l'une quelconque des revendications précédentes, caractérisée en ce que la couche intermédiaire est constituée de cuivre, la couche de protection d'un alliage nickel-phosphore d'une teneur en phosphore de 8,5 % en poids et la couche métallique rugueuse (12) d'or.
12. Enduction selon l'une quelconque des revendications précédentes, caractérisée en ce que une mince couche d'or (17) se situe entre la couche intermédiaire (16) et la couche de protection (20).
13. Procédé de fabrication d'une enduction selon la revendication 4, caractérisé en ce que la couche de protection (20) est déposée à partir d'un électrolyte d'au moins un métal de transition (Cr, Mn, Fe, Co, Ni) avec un sel d'un élément des groupes IIIB-VB de la classification périodique, par réduction chimique.
14. Procédé selon la revendication 13, caractérisé en ce que pour la réduction du ferromagnétisme, on incorpore en plus à la couche de protection, au moins un des éléments V, Cr, Ti ou Mo.
15. Procédé selon la revendication 13, caractérisé en ce que la couche de protection (20) est réalisée au moyen d'un électrolyte aqueux contenant par litre 27 à 25 g de chlorure de nickel, 25 à 27 de fluorure d'ammonium, 5 à 12 g d'acétate de sodium, 18 à 23 g d'acide citrique ainsi que 6 à 9 g d'hypophosphure de sodium, et présentant un pH compris entre 3,5 et 4,6.
16. Procédé de fabrication d'une enduction selon la revendication 1 ou selon l'une des revendications 13 à 15, caractérisé en ce que la couche rugueuse (12) est déposée par immersion, dans une solution acide d'un métal fin.
17. Procédé selon la revendication 16, caractérisé en ce que le corps de base est immergé, après application de la couche intermédiaire (16) bonne conductrice et de la couche de protection (20), de 30 à 100 mn environ dans une solution aurochlorhydrique de 0,1 à 0,3 % en poids, d'un pH compris entre 2,5 et 4,5, à une température variant entre 20 et 60 °C, pour réaliser la couche rugueuse (12).
18. Procédé de fabrication d'une enduction selon la revendication 1, caractérisé en ce que la couche rugueuse (12) est réalisée par électrolyse d'une durée approximative de 10 à 25 s, dans un électrolyte aqueux contenant de 2,5 à 3,5 % en poids de chlorure de platine et de 0,2 à 0,4 g/litre d'acétate de plomb, sous une densité de courant de 0,1 à 0,3 A/cm2 et une température approximative de 20 °C.
19. Procédé de fabrication d'une enduction selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la couche rugueuse est réalisée par un procede accéléré de Van-Arkel ou catalyse hétérogène (Chemical Vapor Deposition).
20. Procédé selon la revendication 19, caractérisé en ce que la surface sur laquelle sera appliquée la couche rugueuse est portée à une température élevée et soumise à une atmosphère contenant au moins un composé sous forme de vapeur, notamment un composé halogéné, au moins l'un des métaux des groupes IVA à VIA de la classification périodique, et au moins un composé, notamment un composé hydrogéné, au moins l'un des éléments suivants : bore, carbone, silicium et azote, leur réaction donnant lieu à la matière souhaitée pour la couche rugueuse, ainsi que le cas échéant un gaz étranger inhibant la croissance cristalline épitaxiale, tel que SO2, CO2 ou H2S et en ce que la couche rugueuse est déposée à la surface, à partir de cette atmosphère, par bombardement d'ions dans une décharge gazeuse.
21. Procédé de fabrication d'un enduction selon la revendication 1 ou selon l'une quelconque des revendications 13 à 15, caractérisé en ce que la couche rugueuse (12) est déposée à partir d'une suspension contenant des particules de carbure de silicium, de carbure de bore, de nitrure de bore et/ou de siliciure de bore et/ou au moins d'un composé semi-réducteur réfractaire des métaux du groupe IVA à VIA avec B, C, Si, N ainsi qu'un électrolyte de Cr, Mn, Fe, Co ou Ni, sur la couche (20).
22. Procédé selon la revendication 21, caractérisé en ce que le dépôt des particules en suspension s'effectue avec l'un des métaux Mn, Fe, Ni, Co ou Cr, par l'association d'une électrolyse et d'une ataphorèse, à des intensités de courant comprises entre 100 et 500 A/M 2.
23. Procédé selon la revendication 21 ou 22, caractérisé en ce que les particules en suspension sont incorporées aux métaux Mn, Fe, Ni, Co ou Cr lors du dépôt par réduction de l'un de ces métaux.
24. Procédé selon l'une quelconque des revendications 13 à 23, caractérisé en ce que l'enduction (12, 14, 16, 17, 20) est soumise à un dernier traitement thermique dans une atmosphère inerte ou dans un vide poussé, pendant quelques heures à une température comprise entre 350 et 600 °C environ.
25. Procédé de fabrication d'une enduction selon l'une quelconque des revendications 13 à 24, caractérisé en ce que l'enduction est stabilisée par «spot knocking •, après l'application de la couche rugueuse (12).
EP83112926A 1982-12-21 1983-12-21 Couche destinée à empêcher les perturbations provoquées par l'émission d'électrons secondaires et procédé de fabrication d'une telle couche Expired EP0113907B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83112926T ATE19325T1 (de) 1982-12-21 1983-12-21 Zur verhinderung von stoerungen durch sekundaerelektronenemission dienende beschichtung und verfahren zum herstellen einer solchen beschichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3247268 1982-12-21
DE3247268A DE3247268C1 (de) 1982-12-21 1982-12-21 Zum Verringern von Stoerungen durch Sekundaerelektronenemission dienende Beschichtung fuer einen Hochfrequenzleiter und Verfahren zum Herstellen einer solchen Beschichtung

Publications (2)

Publication Number Publication Date
EP0113907A1 EP0113907A1 (fr) 1984-07-25
EP0113907B1 true EP0113907B1 (fr) 1986-04-16

Family

ID=6181265

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83112926A Expired EP0113907B1 (fr) 1982-12-21 1983-12-21 Couche destinée à empêcher les perturbations provoquées par l'émission d'électrons secondaires et procédé de fabrication d'une telle couche

Country Status (5)

Country Link
US (1) US4559281A (fr)
EP (1) EP0113907B1 (fr)
JP (1) JPS59133706A (fr)
AT (1) ATE19325T1 (fr)
DE (2) DE3247268C1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334909A (en) * 1991-07-05 1994-08-02 Nec Corporationcorporation Microwave tube collector assembly including a chromium oxide film
US5573845A (en) * 1994-12-09 1996-11-12 Olin Corporation Superficial coating layer having acicular structures for electrical conductors
US5767808A (en) * 1995-01-13 1998-06-16 Minnesota Mining And Manufacturing Company Microstrip patch antennas using very thin conductors
JP2001035249A (ja) * 1999-07-23 2001-02-09 Philips Japan Ltd 導電性部材
US6179976B1 (en) 1999-12-03 2001-01-30 Com Dev Limited Surface treatment and method for applying surface treatment to suppress secondary electron emission
KR100696458B1 (ko) * 2000-10-06 2007-03-19 삼성에스디아이 주식회사 전자관용 음극 및 그 제조방법
US7998594B2 (en) 2008-02-11 2011-08-16 Honeywell International Inc. Methods of bonding pure rhenium to a substrate
DE112009001179A5 (de) * 2008-03-20 2011-02-17 Tesat-Spacecom Gmbh & Co.Kg RF-Bauteil und deren Verfahren zur Oberflächenbearbeitung
US9960468B2 (en) * 2012-09-07 2018-05-01 Remec Broadband Wireless Networks, Llc Metalized molded plastic components for millimeter wave electronics and method for manufacture
CN103196932B (zh) * 2013-02-26 2014-11-19 西安空间无线电技术研究所 一种确定微波部件金属表面二次电子发射系数的方法
ES2564054B1 (es) 2014-09-16 2016-12-27 Consejo Superior De Investigaciones Científicas (Csic) Recubrimiento anti-multipactor
CN104646832B (zh) * 2015-01-23 2016-04-13 中国航天时代电子公司 一种抑制二次电子发射的微波器件表面加工装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2294562A (en) * 1939-07-15 1942-09-01 Hygrade Syivania Corp Carbonized steel strip and method of making same
DE965857C (de) * 1951-05-23 1957-06-27 Int Standard Electric Corp Verfahren zur Herstellung von nicht emittierenden Elektroden fuer elektrische Entladungsgefaesse
US2748067A (en) * 1951-07-20 1956-05-29 Sylvania Electric Prod Processing plated parts
DE1022700B (de) * 1955-11-19 1958-01-16 Varian Associates Metallischer Bauteil fuer Elektronenroehren
GB913301A (en) * 1958-03-25 1962-12-19 Emi Ltd Improvements in or relating to the formation of firmly adherent coatings of refractory materials on metal
US3252034A (en) * 1962-04-16 1966-05-17 Eitel Mccullough Inc R-f window for high power electron tubes
US3662210A (en) * 1970-04-28 1972-05-09 Viktor Fedorovich Maximov Electrode for pulse high-power electrovacuum devices
FR2133212A5 (fr) * 1971-04-13 1972-11-24 Thomson Csf
US4233539A (en) * 1979-03-05 1980-11-11 Varian Associates, Inc. Electron tube with reduced secondary emission
GB2045518A (en) * 1979-03-22 1980-10-29 English Electric Valve Co Ltd Travelling wave tube collectors
DE2937874A1 (de) * 1979-09-19 1981-04-02 Bayer Ag, 5090 Leverkusen Vergoldete, metallisierte, textile flaechengebilde, garne und fasern, verfahren zu ihrer herstellung und verwendung des textilgutes bei der absorption und reflexion von mikrowellen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. RAMO u.a.: "Fields and waves in modern radio", 2. Ausgabe, 1953, John Wiley & Sons, Inc. New York, US, Chapman & Hall, Ltd. London, GB, "Skin effect and circuit impedance elements", Seiten 230-242, 249-251 *

Also Published As

Publication number Publication date
ATE19325T1 (de) 1986-05-15
US4559281A (en) 1985-12-17
DE3247268C1 (de) 1984-03-29
EP0113907A1 (fr) 1984-07-25
JPS59133706A (ja) 1984-08-01
DE3363101D1 (en) 1986-05-22

Similar Documents

Publication Publication Date Title
EP0040092B1 (fr) Procédé de dépôt d'un revêtement anticorrosif sur un substrat métallique
EP0034408B2 (fr) Procédé pour former un revêtement anticorrosif sur un substrat métallique servant à un electrode
AT412002B (de) Diamantelektrode und verfahren zu ihrer herstellung
EP0113907B1 (fr) Couche destinée à empêcher les perturbations provoquées par l'émission d'électrons secondaires et procédé de fabrication d'une telle couche
DE3632209C2 (fr)
DE2601656C2 (de) Verfahren zum Herstellen eines hochohmigen Cermet-Schichtwiderstandes und Cermet-Schichtwiderstand
CH619740A5 (fr)
DE69410548T2 (de) Wolfram Metallisierung des CVD-Diamantes
DE3330388C2 (fr)
EP0432090B1 (fr) Procédé de production d'un revêtement et article revêtu par le procédé
DE2119066A1 (de) Verfahren zum Herstellen von edel metall und/oder edelmetalloxid beschich teten Gegenstanden, insbesondere Elektro den
DE2904653C3 (de) Oxidbeschichtete Kathode für Elektronenröhren und Verfahren zum Herstellen derselben
DE69514157T2 (de) Metallisierung eines Ferriten mittels Oberflächenreduktion
DE1916292C3 (de) Verfahren zum Beschichten von Niob mit Kupfer
EP0259792B1 (fr) Procédé pour la fabrication d'éléments de construction thermiquement chargés munis d'une couche protectrice
DE19605097A1 (de) Eingekapseltes Kontaktmaterial und Herstellungsverfahren für dieses und Herstellungsverfahren und Verwendungsverfahren für einen eingekapselten Kontakt
DE69318515T2 (de) Eisen-Basis-Legierung mit hoher Oxidationsbeständigkeit bei erhöhten temperaturen und Verfahren zur Herstellung deselben
DE1275221B (de) Verfahren zur Herstellung eines einen Tunneleffekt aufweisenden elektronischen Festkoerperbauelementes
DE7434875U (de) Elektrode zur anwendung in einem elektrochemischen verfahren
DE19523635C2 (de) Stromkollektor für eine Hochtemperaturbrennstoffzelle mit vermindertem Oberflächenwiderstand, sowie Verfahren zur Herstellung eines solchen und dessen Verwendung
DE2202827B2 (de) Gitterelektrode für elektrische Entladungsgefäß^ und Verfahren zu ihrer Herstellung
EP0001778A2 (fr) Electrodes pour applications électrolytiques
DE102007041374A1 (de) Verfahren zur Beschichtung von Substraten
DE1957717B2 (de) Verfahren zur herstellung einer cermet-duennschicht
DE102022205791A1 (de) Verfahren zum Herstellen einer Silizium-Metallelektrode mittels sequentiellen Abscheidens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840820

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 19325

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3363101

Country of ref document: DE

Date of ref document: 19860522

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861230

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19861231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861231

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871231

Ref country code: CH

Effective date: 19871231

Ref country code: BE

Effective date: 19871231

BERE Be: lapsed

Owner name: MAX-PLANCK-G ZUR FORDERUNG DER WISSENSCHAFTEN E.

Effective date: 19871231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;DERFLER HEINRICH - PERCHERMEIER JURGEN -

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881221

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900226

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903

EUG Se: european patent has lapsed

Ref document number: 83112926.7

Effective date: 19880913