EP0111488A1 - Entgasung einer flüssigkeit - Google Patents

Entgasung einer flüssigkeit

Info

Publication number
EP0111488A1
EP0111488A1 EP83900428A EP83900428A EP0111488A1 EP 0111488 A1 EP0111488 A1 EP 0111488A1 EP 83900428 A EP83900428 A EP 83900428A EP 83900428 A EP83900428 A EP 83900428A EP 0111488 A1 EP0111488 A1 EP 0111488A1
Authority
EP
European Patent Office
Prior art keywords
gas
liquid
unwanted
additional
additional gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83900428A
Other languages
English (en)
French (fr)
Inventor
Donald Stuart Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Hydromechanics Research Association
Original Assignee
British Hydromechanics Research Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Hydromechanics Research Association filed Critical British Hydromechanics Research Association
Publication of EP0111488A1 publication Critical patent/EP0111488A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0047Atomizing, spraying, trickling

Definitions

  • the invention relates to a method of extracting unwanted gas from a. liquid and has particular application in extracting dissolved air from sea water which is to be pumped into oil wells drilled in the sea bed.
  • the yield can be increased by forcing sea water into the well to occupy the space formerly occupied by gas and oil.
  • oxygen dissolved in the sea water is reduced to levels of 0.05 parts per million and less, blockage of the reservoir media can occur due to biological growths.
  • great difficulty is experienced in removing the required amount of dissolved air from sea water, particularly at the low temperatures which prevail around offshore oil rigs.
  • Dissolved gas can be removed from a liquid by adding chemicals which react with the gas.
  • this method is normally quite expensive due to difficulties in the transportation and handling of these chemicals when used in offshore systems.
  • Another technique is to heat the liquid, preferably to its boiling point. This usually involves excessive energy consumption and, in at least some cases, the liquid must be cooled before it can be used.
  • Another method of extracting unwanted gas from a liquid comprises the steps of depressurising the liquid and then passing additional gas through the liquid so as to bring the liquid into intimate contact with the additional gas.
  • this method also requires multi- stages, and good gas-liquid contact if excessive consumption of additional gas is to be avoided.
  • This purpose is achieved by first pressurising the liquid containing the'unwanted gas, and adding additional gas to the liquid all or part of which is dissolved in the liquid, and then depressurising the liquid so that on desorption of at least part of the additional gas, at least part of the original gas is also stripped from the liquid.
  • a method of extracting unwanted gas from a liquid comprising the steps of pressurising the liquid and dissolving additional gas in the pressurised liquid, and then depressurising the liquid so that on desorption of at least part of the additional gas, at least part of the original gas is also stripped from the liquid.
  • the additional gas may be of different composition to the unwanted gas and chosen so that, where the unwanted gas is chemically unacceptable, any residual additional gas will be chemically acceptable.
  • the unwanted gas is oxygen
  • the additional gas can be non-oxidising gas such as nitrogen or a hydrocarbon gas.
  • all or part of this gas may be recycled, and all or part of the recycled gas may be passed through a catalytic burner which will remove the unwanted gas from the recycled stream.
  • Figure 1 is a schematic arrangement of preferred apparatus for carrying out the invention, incorporating two gas desorbers as disclosed in UK Patent Specification No. 1401 591 ?
  • Figure 2 is a schematic arrangement of apparatus similar to that shown in Figure 1, but employing only one gas desorber as disclosed in UK Patent Specification No. 146I 591 ? and
  • Figure 3 is a schematic arrangement of a further apparatus for carrying out the invention in a two stage process.
  • first and second gas desorbers 1 and 2 have inlet pipes 3 and 4, respectively.
  • Each inlet pipe is connected to two nozzles 5 which each has a convergent orifice connected to a four-part desorption tube 6.
  • the cross- section of desorption tube 6 increases abruptly between its adjacent parts.
  • Pressurised liquid fed through the inlet pipes 3 and 4 issues from the nozzles 5 n the form of divergent jets and, as a result of the reduction in pressure in these jets, at each abrupt change in cross- section of the desorption tube 6, dissolved gas comes out of solution and forms bubbles 7. These bubbles rise to the surface 8 of liquid 9 contained in receptacles 10 and is removed by vacuum suction pumps 11.
  • a float 12 operates an actuator 13 when the liquid surface & reaches a predetermined level and the actuator 13 then causes operation of. liquid extraction pump 14.
  • the liquid extraction pump 14 of the first device 1 discharges liquid containing a small amount of dissolved gas at pressure into chamber 15. Additional gas from tank 16 is also fed into the chamber 15 so as to dissolve in the liquid. This liquid is then fed through inlet pipe 4 into the second gas desorber 2 where the process of gas desorption is repeated and, as a result, at least part of the gas remaining in the liquid fed to the chamber 15 is withdrawn from the liquid with at least part of the additional gas from tank 16.
  • sea water having about ten parts per million of dissolved oxygen is fed into inlet pipe 3 at the rate of 100 thousand gallons per hour.
  • the level of dissolved oxygen in the liquid 9 n the receptacle 10 of the first desorber 1 may be reduced to one part per million and this is fed by liquid extraction pump 14, at a pressure of 3 Bars into the chamber 15- Pressurised nitrogen is then fed from tank 16 into chamber 15 so as to ensure that the nitrogen is dissolved in the liquid.
  • the liquid with the dissolved nitrogen is then passed through the second desorber 2 which could be at or above atmospheric pressure in order to prevent ingress of further air, ⁇ fo as to maintain the low level of dissolved oxygen.
  • the receptacle 10 of the second desorber 2 can therefore also act as a sea water storage vessel for supplying the higj pressure injection pump necessary to force the sea water into the oil well.
  • the level of dissolved oxygen in the liquid 9 of the second desorber 2 may be reduced to one hundred parts per billion before it is removed by the pump 14.
  • the additional gas was nitrogen, another non-oxidising gas, such as hydrocarbon gas, could be used.
  • the second desorber 2 of the apparatus shown in Figure 1 has been replaced by a simple discharge device 17 having a pressure reduction valve 18 at the discharged end of the inlet.pipe 4 from the chamber 15.
  • Liquid 19 in receptacle 20 of the discharge device 17 is free of the dissolved gas which escapes in the form of bubbles 21 and this liquid can be withdrawn from the receptacle 20 through valve 22.
  • the apparatus of Figure 3 is similar to the apparatus of Figure 1 (and therefore where similarity exists identical reference numerals have been used) but modified so that "the extraction of unwanted gas from the pressurised liquid takes place in two stages. Moreover the apparatus of Figure 3 also utilises the advantages of recycling any undissolved additional gas in the gas desorbers 1 and 2, thus providing economies when a sparingly soluble gas such as nitrogen is used.
  • raw pressurised liquid in the inlet pipe 3 instead of being passed directly to the nozzles 5 as in the Figure 1 embodiment, enters a chamber 23 into which additional gas from a tank 24 is fed to dissolve in the liquid.
  • the pressurised liquid with the additional gas is then fed to the nozzles 5 of the first device 1, where the process of gas desorption takes place and as a result, at least part of the unwanted gas is withdrawn from the liquid and comes off as bubbles 7 together with any undissolved additional gas.
  • the gases from the first gas desorber device 1 are ext r zte ⁇ by the vacuum suction pump 11 as before, but instead of being delivered to atmosphere they are passed through a catalytic burner 25 to clean off the unwanted gas.
  • the purified gas now in the form of the additional
  • OMPI " gas is delivered to the chamber 15 in the inlet pipe 4 througj. delivery pipe 26 to combine with the additional gas being fed into that chamber 15 from tank 16 for subsequent delivery with the pressurised liquid from extraction pump 14, to the nozzles 5 of the second gas desorber device 2.
  • both devices 1 and 2 are operated at atmospheric pressure but-an alternative arrangement would have device 1 operating at a higher pressure than device 2 so that the liquid extraction pump 14 and the pump U in delivery pipe 26, would not be needed.
EP83900428A 1982-01-15 1983-01-17 Entgasung einer flüssigkeit Withdrawn EP0111488A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8201174 1982-01-15
GB8201174 1982-01-15

Publications (1)

Publication Number Publication Date
EP0111488A1 true EP0111488A1 (de) 1984-06-27

Family

ID=10527653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83900428A Withdrawn EP0111488A1 (de) 1982-01-15 1983-01-17 Entgasung einer flüssigkeit

Country Status (4)

Country Link
EP (1) EP0111488A1 (de)
JP (1) JPS59500165A (de)
NO (1) NO833302L (de)
WO (1) WO1983002402A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145937A (en) * 1983-07-07 1985-04-11 British Hydromechanics Contacting a gas and a liquid to remove an unwanted gas
FR2550954B1 (fr) * 1983-08-26 1988-07-08 Alsthom Atlantique Procede de degazage d'un liquide
FR2565576B1 (fr) * 1984-06-06 1989-12-22 Petroles Cie Francaise Procede de desaeration d'eau
NO158283C (no) * 1986-02-13 1988-08-17 Norsk Hydro As Fremgangsmaate og anordning for behandling av blandinger vaeske/gass.
US5096544A (en) * 1989-05-12 1992-03-17 The Research Corporation Of The University Of Hawaii Seawater pre-deaerator for open-cycle ocean thermal energy conversion applications
NL1012246C2 (nl) * 1999-06-07 2000-12-08 Johannes Andries Tennekes Werkwijze en inrichting voor het strippen van water.
WO2003024559A1 (de) * 2001-09-14 2003-03-27 Alstom Technology Ltd Verfahren und vorrichtung zur thermischen entgasung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1762432A (en) * 1928-01-03 1930-06-10 Milon J Trumble Absorption trap
US3815330A (en) * 1973-02-22 1974-06-11 C Lawley Apparatus for removing oxygen from liquids
GB1461591A (en) * 1973-04-24 1977-01-13 British Hydromechanics Gas desorption from liquids
CH598142A5 (de) * 1976-03-24 1978-04-28 Bbc Brown Boveri & Cie
GB1531537A (en) * 1976-03-26 1978-11-08 British Petroleum Co Degassing treatment of liquid
US4259360A (en) * 1979-04-16 1981-03-31 Liquid Carbonic Corporation Deoxygenation of liquids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8302402A1 *

Also Published As

Publication number Publication date
NO833302L (no) 1983-09-14
JPS59500165A (ja) 1984-02-02
WO1983002402A1 (en) 1983-07-21

Similar Documents

Publication Publication Date Title
JP2922791B2 (ja) 液化ガスを使用した安価な洗浄装置
US4889638A (en) Agitation and/or gas separation and dispersed gas flotation
EP0179768B1 (de) Gas/flüssigkeits-kontakt zur austreibung unerwünschten gases
EP0277760B1 (de) Verfahren zur Durchführung einer beschleunigten Oxydationsreaktion
US6315893B1 (en) Gas/liquid mixer with degasifier
EP0111488A1 (de) Entgasung einer flüssigkeit
CN106457170A (zh) 用于将气体溶解到液体中的系统和方法
US5772731A (en) Treatment of liquors
GB2159727A (en) Water deaeration process
US5662837A (en) Method and apparatus for dissolving and isolating carbon dioxide gas under the sea
JPH06254538A (ja) 溶存酸素除去装置
US5980613A (en) Pressurized radon stripper
US20030111429A1 (en) Cavitation method and apparatus for deaeration
US6350351B1 (en) Plant for the vacuum distillation of a liquid product
RU2146778C1 (ru) Способ работы насосно-эжекторной установки и насосно-эжекторная установка для реализации способа ее работы
RU2073123C1 (ru) Насосно-эжекторная установка
RU2063790C1 (ru) Способ получения воздуха, обогащенного азотом
US5096544A (en) Seawater pre-deaerator for open-cycle ocean thermal energy conversion applications
RU2023683C1 (ru) Способ аэрирования жидкости
JPH05184811A (ja) 液体中からの脱酸素方法
JP5573299B2 (ja) 汚泥消化槽及び消泡方法
RU95117151A (ru) Способ вакуумной перегонки жидкого продукта и установка для его реализации
JP2021146283A (ja) 抽出液の製造装置及び抽出液の製造方法
RU94032171A (ru) Способ работы насосно-эжекторной установки
SU1063789A1 (ru) Способ биологической очистки сточных вод и устройство дл его осуществлени

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840215

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19860129

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MILLER, DONALD STUART