EP0111246B1 - Process for phosphatizing zinc-electroplated metal objects - Google Patents

Process for phosphatizing zinc-electroplated metal objects Download PDF

Info

Publication number
EP0111246B1
EP0111246B1 EP83112008A EP83112008A EP0111246B1 EP 0111246 B1 EP0111246 B1 EP 0111246B1 EP 83112008 A EP83112008 A EP 83112008A EP 83112008 A EP83112008 A EP 83112008A EP 0111246 B1 EP0111246 B1 EP 0111246B1
Authority
EP
European Patent Office
Prior art keywords
phosphating
zinc
acid
weight
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83112008A
Other languages
German (de)
French (fr)
Other versions
EP0111246A3 (en
EP0111246A2 (en
Inventor
Raschad Mady
Winand Hanelt
Roland Dr. Morlock
Dieter Geruhn
Lutz Leyhe
Jobst Heinrich Dr. Meyer Zu Bexten
Franz Ricke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerhard Collardin GmbH
Hoesch AG
Original Assignee
Gerhard Collardin GmbH
Hoesch AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhard Collardin GmbH, Hoesch AG filed Critical Gerhard Collardin GmbH
Priority to AT83112008T priority Critical patent/ATE38692T1/en
Publication of EP0111246A2 publication Critical patent/EP0111246A2/en
Publication of EP0111246A3 publication Critical patent/EP0111246A3/en
Application granted granted Critical
Publication of EP0111246B1 publication Critical patent/EP0111246B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations

Definitions

  • the invention relates to an improved method for producing closed, finely crystalline zinc phosphate layers with a low mass per unit area in very short treatment times on electrolytically galvanized metal products, in particular ferrous metals, for example on electrolytically galvanized steel sheets.
  • Sources of error include, for example, non-closed layers of the phosphate coating and thus poorer protection against corrosion as well as unsatisfactory deformation and paint adhesion properties. Treatment times in the phosphating stage of less than 5 seconds cannot be achieved with the known methods used in practice.
  • DE-B-19 55 002 relates to a method for applying thin, corrosion-resistant and adhesive zinc phosphate coatings on metal surfaces, for example on those made of galvanized or hot-dip galvanized steel.
  • the metal surfaces are treated with acid phosphating solutions to which at least one carbohydrate consisting of starch, a starch derivative or a polysaccharide, which has been produced by acidic decomposition of starch or a starch derivative, has been added.
  • the acidic, aqueous phosphating solutions also contain zinc and phosphate ions, nickel cations, nitrate and also fluorides. With such phosphating solutions, galvanized or hot-dip galvanized steel plates are sprayed at temperatures in the range from 40 to 70 ° C.
  • FR-A-2033717 (corresponding to GB-A-1237996) describes a method for phosphating electrolytically galvanized steel surfaces, which results in phosphate layers which have a layer weight of up to 21.5 mg / dm 2 (corresponding to 2.1 g / m 2 ), preferably in the range from 5.3 to 16.1 mg / dm 2 (corresponding to 0.5 to 1.6 g / m 2 ).
  • the phosphating solutions used for this purpose contain 0.12 to 0.50 percent by weight zinc ions, 0.55 to 2.20 percent by weight phosphate ions and 0.009 to 0.036 percent by weight nickel ions; the total acid content is in the range from 7.5 to 30 points, the temperature of the phosphating solution is 38 to 60 ° C.
  • nitrate ion content of the phosphating solutions which should be 0.001 to 0.02 percent by weight, preferably 0.005 to 0.015 percent by weight. It is said that a nitrate content of more than 0.02 percent by weight causes layer weights of more than 21.5 mg / dm 2 .
  • the duration of treatment in this procedure should be between 2 to 45 seconds; the example speaks of a treatment duration of 15 seconds.
  • DE-A-21 00 021 suggests treating the metal surfaces with solutions which essentially contain nickel ions as layer-forming cations.
  • layer-forming cations of a further divalent metal, in particular zinc ions can also be present.
  • the molar ratio of nickel ions to the other divalent metal cations is clearly above 1. It should be in the range from 1: 0.001 to 1: 0.7.
  • Essentially nickel phosphate layers are deposited here. The formation of the zinc phosphate layers required in practice is not successful.
  • the thin nickel phosphate layers according to this proposal of the prior art are also subject to drastic restrictions. So they always require a subsequent layering with other coating agents to ensure lasting protection.
  • the invention is based on the object of forming high-quality and improved zinc phosphate layers on electrolytically galvanized materials, in particular ferrous metals, despite substantially reduced processing times in the phosphating stage.
  • the invention deliberately intends to accept thin layers of the phosphate layers without, however, having to give up the uniform covering of the galvanized material with a fine crystalline, firmly adhering, self-contained zinc phosphate layer.
  • the method according to the invention it is possible, for example, to form uniform, closed phosphate layers on electrolytically galvanized steel sheets with a duration of the phosphating step of a maximum of about 5 seconds, which at the same time guarantee corrosion protection that at least approximately achieves that of "thick-layer phosphating", but has other properties even significantly different from the known thicker phosphate layers.
  • the adhesion of organic coatings during and after deformation steps - for example when folding, deep drawing, flanging and the like - is improved compared to the results that have been achievable so far.
  • the invention furthermore wants to make it possible, for example, to be able to drive electrolytic galvanizing lines with subsequent phosphating at very different strip speeds, without any significant differences in the phosphate coating being associated therewith.
  • the belt speeds that occur in practice today are, for example, in the range between 20 and 120 m / min.
  • a constant quality of the phosphate coating is achieved, in particular also in the range of high belt speeds, that is, for example, in the range from 100 to 120 m / min. enables.
  • This process of the invention produces zinc phosphate coatings of 0.6 to 1.9 g / m 2 , which have a closed, finely crystalline structure and give the electrolytically galvanized sheet a desired uniform, light gray appearance.
  • An electrolytically galvanized steel strip which has been phosphated in this way can also be processed without subsequent coating.
  • the thin phosphate layers produced by the method according to the invention behave more favorably in many shaping processes than the phosphate layers of a higher mass per unit area produced with the previous conventional methods.
  • organic coatings applied subsequently also show significantly improved adhesion compared to the prior art, both during and after deformation processes.
  • the free acid content of the phosphating bath used according to the invention is preferably in the range from 1.2 to 1.8 points.
  • the preferred acid ratio of total acid to free acid is in the range from 6 to 8.
  • the free acid score is accordingly defined as the number of milliliters n / 10 NaOH required to titrate 10 ml bath solution against dimethyl yellow, methyl orange or bromophenol blue.
  • the total acid score is the number of milliliters n / 10 NaOH required to titrate 10 ml bath solution using phenolphthalein as an indicator until the first pink color.
  • the concentration of Zn 2 + ions is kept in a low-limited range. This is an important prerequisite for the inventive design of the desired thin but nevertheless homogeneously closed layers.
  • the bath solution has a comparatively high content free acid is used, which, as indicated, is in the range from 0.8 to 3.0 points, preferably in the range from 1.2 to 1.8 points.
  • the duration of the treatment is deliberately chosen to be short. 5 seconds are not exceeded. A treatment period of 2.5 to 5 seconds is generally used.
  • the zinc phosphate layers produced by the new process are preferably in a range from 0.6 to 1.9 g / m 2 , the range from 1.2 to 1.4 g / m 2 being particularly preferred.
  • nitrate is also used as the anion of an oxygen-containing acid with an activating effect.
  • the weight ratio of Zn 2+ to NO 3 - is in the range from 1 to (1 to 8).
  • the phosphate and nitrate content of the phosphating bath is adjusted to one another in such a way that the weight ratio of PO 4 3- to NO 3 - is in the range from 1 to (0.1 to 2.5).
  • the ratio of zinc cations to primary phosphate is chosen such that weight ratios of Zn 2+ to H 2 P0 4 - are kept in the range from 1 to (1 to 8) in the treatment bath.
  • nickel cations are also used in the process according to the invention. However, these are used in minor amounts, but the zinc ion content always predominates. Mixing ratios of 20 to 2 parts by weight of Zn 2 + ions to one part by weight of Ni 2 + ions are used according to the invention. It is interesting in this context that nickel cannot generally be detected analytically in the zinc phosphates deposited by the process according to the invention. At best, it is present in traces in the phosphate coating that are below the detection limit.
  • the phosphating itself takes place at moderately elevated temperatures in the temperature range from about 50 to 70 ° C.
  • the temperature range from 60 to 65 ° C. can be particularly suitable. Any technically useful way of applying the treatment solution is suitable. In particular, it is therefore possible to carry out the new method both by means of spraying technology and by immersion.
  • the electrolytically galvanized surface Before the phosphating solution is applied, the electrolytically galvanized surface must be completely water wettable. This is usually the case in continuously operating conveyor systems. If the surface of the electrolytically galvanized strip is oiled for storage and corrosion protection, this oil must be removed by means of known, suitable means and processes prior to phosphating.
  • the water-wettable electrolytically galvanized metal surface is then expediently subjected to an activating pretreatment known per se before the phosphating solution is applied. Suitable pretreatment processes are described in particular in DE-A-20 38 105 and 20 43 085.
  • the metal surfaces to be subsequently phosphated are treated with solutions which contain, as activating agent, essentially titanium salt and sodium phosphate together with organic components such as gelatin or alkali metal salts of polyuronic acids.
  • Soluble compounds of titanium such as potassium titanium fluoride and in particular titanyl sulfate can preferably be used as the titanium component.
  • Disodium orthophosphate is generally used as the sodium phosphate, but can be replaced in whole or in part by other sodium phosphates such as monosodium orthophosphate, trisodium orthophosphate, tetrasodium pyrophosphate and sodium tripolyphosphate.
  • Titanium-containing compounds and sodium phosphate are used in such proportions that the titanium content is at least 0.005% by weight, based on the weight of the titanium-containing compounds and the sodium phosphate.
  • the process according to the invention or the zinc phosphate layers produced thereafter can also be advantageous for the process according to the invention or the zinc phosphate layers produced thereafter to passivate the phosphate layers produced in a subsequent process step.
  • Such passivation can take place, for example, with dilute chromic acid and / or phosphoric acid.
  • the concentration of chromic acid and / or phosphoric acid is generally between 0.01 and 1.0 g / l. It is possible to post-treat the protective layers with dilute chromic acid, which contains chromium (III) ions.
  • the application concentrations of the hexavalent chromium are between 0.2 and 4.0 g / l Cr0 3 and those of the trivalent chromium between 0.5 and 7.5 g / l Cr 2 0 3 . It is expedient to rinse with water between the phosphating and the aftertreatment step. However, this rinsing is not absolutely necessary and can be omitted in particular when working with squeeze rollers.
  • the free acidity was 1.3 points and the total acidity was 10.8 points.
  • the points free acid and total acid mean the ml of 0.1 N NaOH, which are required to titrate 10 ml of bath solution against bromophenol blue or phenolphthalein as an indicator.
  • the sheet was rinsed with water and then passivated with a solution containing Cr-3 + / Cr-6 + at 50 ° C and dried.
  • the mass per unit area of the phosphate coating was 1.6 g / m 2 .
  • the corrosion protection test according to SS DIN 50021 was comparable to layers that had been produced using conventional methods and had a mass per unit area of 2.4-2.6 g / m 2 .
  • the total acidity of the bath was 9.9 points and the free acidity was 1.4 points.
  • An electrolytically galvanized sheet was phosphated with this solution for 5 seconds.
  • the sheet had a closed, light gray phosphate layer with a mass per unit area of 1.3 g / m 2 .
  • a sheet metal sample was painted and, after drying at elevated temperature, provided with a cross cut according to DIN 53151.
  • the adhesion value was perfect both without and with 8 mm Erichsen cupping.
  • the free acidity of the bath was 2.1 points and the total acidity 11.3 points.
  • the tape had a uniform, light gray appearance.
  • the phosphate layer formed was closed and had a mass per unit area of 1.1 g / m 2 .
  • the paint adhesion on a sample of this sheet was good.
  • a sheet electrolytically galvanized and phosphated by a conventional method with a mass per unit area of 2.3 g / m 2 was coated with the same paint and subjected to the same deformation operation.
  • the paint adhesion values were significantly poorer than in the case of the sheet phosphated using the method according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Catalysts (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Glass Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A process for phosphating zinc-plated metal articles, particularly electrolytically zinc-plated steel sheets, by treatment thereof for a short period with an acidic phosphating solution which, in addition to zinc and phosphate ions, can contain other metal cations and/or anions of oxygen-containing acids having an accelerating effect, wherein the phosphating solution has a content of Zn2+-cations of between about 1 and 2.5 g/l, a free acid content in the range from 0.8 to 3 points, and the acid ratio of total acid to free acid in the range from 5 to 10. The phosphating treatment is carried out for a period of time not in excess of about 5 seconds.

Description

Die Erfindung betrifft ein verbessertes Verfahren zur Erzeugung von geschlossenen, feinkristallinen Zinkphosphatschichten mit niedriger flächenbezogener Masse in sehr kurzen Behandlungszeiten auf elektrolytisch verzinkten Metallwaren, insbesondere Eisenmetallen, beispielsweise auf elektrolytisch verzinkten Stahlblechen.The invention relates to an improved method for producing closed, finely crystalline zinc phosphate layers with a low mass per unit area in very short treatment times on electrolytically galvanized metal products, in particular ferrous metals, for example on electrolytically galvanized steel sheets.

Die heute in der Praxis eingesetzten Verfahren zur Phosphatierung von beispielsweise elektrolytisch verzinkten Stahlbändern weisen noch Beschränkungen auf, deren Beseitigung wünschenswert ist. So wird es zur Gewährleistung eines ausreichenden Korrosionsschutzes für erforderlich gehalten, flächenbezogene Massen der Phosphatauflagen von etwa 2 bis 3 g/m2 auszubilden. Die Folge dieser vergleichsweise hohen flächenbezogenen Massen ist häufig eine unbefriedigende bis schlechte Haftung nachfolgender Beschichtungen, insbesondere dann, wenn phosphatiertes und beschichtetes Material verformt wird. Die Dauer der Phosphatierung liegt in den in der Praxis eingesetzten Verfahren oberhalb von 5 Sekunden. Ihre Verkürzung - beispielsweise durch Erhöhung der Bandgeschwindigkeit von 60 auf 120 m/min. - ist mit den bislang eingesetzten Verfahren sehr schwierig oder unmöglich. Als Fehlerquellen treten beispielsweise nichtgeschlossene Schichten der Phosphatauflage und damit schlechterer Korrisionsschutz sowie unbefriedigende Verformungs- und Lackhaftungseigenschaften auf. Behandlungszeiten in der Phosphatierungstufe unter 5 Sekunden sind mit den in der Praxis eingesetzten bekannten Verfahren nicht zu verwirklichen.The processes currently used in practice for the phosphating of, for example, electrolytically galvanized steel strips still have restrictions, the elimination of which is desirable. In order to ensure adequate protection against corrosion, it is considered necessary to form surface-related masses of the phosphate coatings of approximately 2 to 3 g / m 2 . The result of these comparatively high area-related masses is often an unsatisfactory to poor adhesion of subsequent coatings, particularly when phosphated and coated material is deformed. The duration of the phosphating is above 5 seconds in the processes used in practice. Your reduction - for example by increasing the belt speed from 60 to 120 m / min. - is very difficult or impossible with the methods used to date. Sources of error include, for example, non-closed layers of the phosphate coating and thus poorer protection against corrosion as well as unsatisfactory deformation and paint adhesion properties. Treatment times in the phosphating stage of less than 5 seconds cannot be achieved with the known methods used in practice.

Gegenstand der DE-B-19 55 002 ist ein Verfahren zum Aufbringen von dünnen, korrosionsbeständigen und haftfesten Zinkphosphatüberzügen auf Metalloberflächen, beispielsweise auf solchen aus galvanisch verzinktem oder feuerverzinktem Stahl. Hierbei werden die Metalloberflächen mit sauren Phosphatierungslösungen behandelt, denen wenigstens ein aus Stärke, einem Stärkederivat oder einem Polysaccharid, das durch saure Zersetzung von Stärke oder einem Stärkederivat hergestellt worden ist, bestehendes Kohlenhydrat zugesetzt worden ist. Die verwendeten sauren, wässrigen Phosphatierungslösungen enthalten ausserdem Zink- und Phosphationen, Nickelkationen, Nitrat sowie ferner Fluoride. Mit derartigen Phosphatierungslösungen werden galvanisch verzinkte oder feuerverzinkte Stahlplatten bei Temperaturen im Bereich von 40 bis 70°C entweder während einer Zeitspanne von 3 bis 10 Sekunden besprüht oder während einer Zeispanne von 5 bis 30 Sekunden im Tauchverfahren behandelt. Hierbei werden festhaftende Zinkphosphatüberzüge mit gleichmässigem Aussehen und einem geringen Überzugsgewicht von 1,2 bis 1,8 g/m2 ausgebildet. Verwendet man demgegenüber die gleichen Phosphatierungslösungen ohne Additive, so resultieren wesentlich gröbere, weniger dichte und weniger gleichmässige Überzüge, deren Überzugsgewicht 3,5 bis 4,0 g/m2 beträgt.DE-B-19 55 002 relates to a method for applying thin, corrosion-resistant and adhesive zinc phosphate coatings on metal surfaces, for example on those made of galvanized or hot-dip galvanized steel. Here, the metal surfaces are treated with acid phosphating solutions to which at least one carbohydrate consisting of starch, a starch derivative or a polysaccharide, which has been produced by acidic decomposition of starch or a starch derivative, has been added. The acidic, aqueous phosphating solutions also contain zinc and phosphate ions, nickel cations, nitrate and also fluorides. With such phosphating solutions, galvanized or hot-dip galvanized steel plates are sprayed at temperatures in the range from 40 to 70 ° C. either for a period of 3 to 10 seconds or treated in a dipping process for a period of 5 to 30 seconds. Here, adherent zinc phosphate coatings with a uniform appearance and a low coating weight of 1.2 to 1.8 g / m 2 are formed. If, on the other hand, the same phosphating solutions are used without additives, the result is substantially coarser, less dense and less uniform coatings, the coating weight of which is 3.5 to 4.0 g / m 2 .

Für die praktische Verwertung ergeben sich aus der Mitverwendung der Stärke, Stärkederivate bzw. Polysaccharide im Phosphatierungsbad beträchtliche Schwierigkeiten. Die eingearbeiteten organischen Bestandteile werden durch die Temperatur und den pH-Wert mit zunehmender Bad-Standzeit zersetzt. Die anfänglich niedrigen Phosphatauflagen steigen deutlich an. Die Zersetzungsprodukte führen zu starker Geruchsbelästigung. Als ebenfalls besonders unerwünscht macht sich die äusserst starke Schlammbildung bemerkbar.For practical use, there are considerable difficulties in using the starch, starch derivatives or polysaccharides in the phosphating bath. The incorporated organic components are decomposed by the temperature and the pH value with increasing bath life. The initially low phosphate requirements increase significantly. The decomposition products lead to strong odor nuisance. The extremely strong sludge formation is also particularly undesirable.

In der FR-A-2033717 (entsprechend GB-A-1237996) wird ein Verfahren zum Phosphatieren von elektrolytisch verzinkten Stahloberflächen beschrieben, bei welchem Phosphatschichten resultieren, die ein Schichtgewicht von bis zu 21,5 mg/ dm2 (entsprechend 2,1 g/m2), vorzugsweise im Bereich von 5,3 bis 16,1 mg/dm2 (entsprechend 0,5 bis 1,6 g/m2) aufweisen. Die hierzu verwendeten Phosphatierungslösungen enthalten 0,12 bis 0,50 Gewichtsprozent Zink-Ionen, 0,55 bis 2,20 Gewichtsprozent Phosphat-Ionen und 0,009 bis 0,036 Gewichtsprozent Nickel-Ionen; der Gehalt an Gesamtsäure liegt im Bereich von 7,5 bis 30 Punkten, die Temperatur der Phosphatierungslösung beträgt 38 bis 60 °C. Von besonderer Bedeutung ist der Gehalt der Phosphatierungslösungen an Nitrat-lonen, der 0,001 bis 0,02 Gewichtsprozent, vorzugsweise 0,005 bis 0,015 Gewichtsprozent, betragen soll. Hierzu wird gesagt, dass ein NitratGehalt von mehr als 0,02 Gewichtsprozent Schichtgewichte von mehr als 21,5 mg/dm2 bedingt. Die Behandlungsdauer soll bei diesem Verfahren zwischen 2 bis 45 Sekunden betragen; im Beispiel ist von einer Behandlungsdauer von 15 Sekunden die Rede.FR-A-2033717 (corresponding to GB-A-1237996) describes a method for phosphating electrolytically galvanized steel surfaces, which results in phosphate layers which have a layer weight of up to 21.5 mg / dm 2 (corresponding to 2.1 g / m 2 ), preferably in the range from 5.3 to 16.1 mg / dm 2 (corresponding to 0.5 to 1.6 g / m 2 ). The phosphating solutions used for this purpose contain 0.12 to 0.50 percent by weight zinc ions, 0.55 to 2.20 percent by weight phosphate ions and 0.009 to 0.036 percent by weight nickel ions; the total acid content is in the range from 7.5 to 30 points, the temperature of the phosphating solution is 38 to 60 ° C. Of particular importance is the nitrate ion content of the phosphating solutions, which should be 0.001 to 0.02 percent by weight, preferably 0.005 to 0.015 percent by weight. It is said that a nitrate content of more than 0.02 percent by weight causes layer weights of more than 21.5 mg / dm 2 . The duration of treatment in this procedure should be between 2 to 45 seconds; the example speaks of a treatment duration of 15 seconds.

Die DE-A-21 00 021 schlägt zur Ausbildung von dünnen, zusammenhängenden Phosphatüberzügen mit einem Schichtgewicht von < 1,0 g/m2 vor, die Metalloberflächen mit Lösungen zu behandeln, die als schichtbildende Kationen im wesentlichen Nickelionen enthalten. Neben den Nickelionen können auch noch schichtbildende Kationen eines weiteren zweiwertigen Metalls, insbesondere Zinkionen vorliegen. Dabei ist allerdings das molare Verhältnis von Nickelionen zu den anderen zweiwertigen Metallkationen deutlich über 1. Es soll im Bereich von 1:0,001 bis 1:0,7 liegen. Hier werden im wesentlichen Nickelphosphatschichten abgeschieden. Die Ausbildung der in der Praxis geforderten Zinkphosphatschichten gelingt damit nicht. Die dünnen Nickelphosphatschichten gemäss diesem Vorschlag des Standes der Technik unterliegen darüber hinaus einschneidenden Einschränkungen. So fordern sie stets eine nachfolgende Überschichtung mit weiteren Beschichtungsmitteln, um bleibenden Schutz zu gewährleisten.For the formation of thin, coherent phosphate coatings with a layer weight of <1.0 g / m 2 , DE-A-21 00 021 suggests treating the metal surfaces with solutions which essentially contain nickel ions as layer-forming cations. In addition to the nickel ions, layer-forming cations of a further divalent metal, in particular zinc ions, can also be present. However, the molar ratio of nickel ions to the other divalent metal cations is clearly above 1. It should be in the range from 1: 0.001 to 1: 0.7. Essentially nickel phosphate layers are deposited here. The formation of the zinc phosphate layers required in practice is not successful. The thin nickel phosphate layers according to this proposal of the prior art are also subject to drastic restrictions. So they always require a subsequent layering with other coating agents to ensure lasting protection.

Die Forderung nach verbessertem Korriosionsschutz hat heute bei vielen Industriegütern zu einem verstärkten Einsatz von elektrolytisch verzinktem Stahl geführt. Gleichzeitig ist die Praxis bestrebt, vorhandene Anlagen aus wirtschaftlichen Gründen mit höheren Geschwindigkeiten zu fahren. Bei den bis heute üblichen Phosphatierungsverfahren für elektrolytisch verzinkten Stahl resultiert aus diesen verkürzten Behandlungszeiten eine deutliche Verschlechterung der erzeugten Phosphatschicht.The demand for improved corrosion protection has led to an increased use of electrolytically galvanized steel in many industrial goods. At the same time, the practice endeavors to close existing systems at higher speeds for economic reasons drive. In the phosphating processes for electrolytically galvanized steel that are still common today, these shortened treatment times result in a significant deterioration in the phosphate layer produced.

Die Erfindung geht dementsprechend von der Aufgabe aus, hochwertige und verbesserte Zinkphosphatschichten auf elektrolytisch verzinkten Materialien, insbesondere Eisenmetallen, trotz substantiell verkürzter Bearbeitungszeiten in der Phosphatierungsstufe auszubilden. Bewusst will dabei die Erfindung dünne Auflagemassen der Phosphatschichten in Kauf nehmen, ohne dabei jedoch die gleichmässige Bedeckung des verzinkten Gutes mit einer feinkristallinen, festhaftenden, in sich geschlossenen Zinkphosphatschicht aufgeben zu müssen. Mit dem erfindungsgemässen Verfahren ist es beispielsweise möglich, bei einer Dauer der Phosphatierungstufe von maximal etwa 5 Sekunden auf elektrolytisch verzinkten Stahlblechen gleichmässige geschlossene Phosphatschichten auszubilden, die gleichzeitig aber einen Korrosionsschutz gewährleisten, der wenigstens annähernd den der «Dickschichtphosphatierung» erreicht, sich in weiteren Eigenschaften aber sogar deutlich vorteilhaft von den bekannten dickeren Phosphatschichten unterscheidet. So ist beispielsweise die Haftung von organischen Beschichtungen bei und nach Verformungsschritten - beispielsweise beim Abkanten, Tiefziehen, Bördeln und dergleichen - gegenüber den bisher erzielbaren Ergebnissen verbessert. Die Erfindung will weiterhin beispielsweise ermöglichen, elektrolytische Verzinkungslinien mit nachfolgender Phosphatierung mit sehr unterschiedlichen Bandgeschwindigkeiten fahren zu können, ohne dass wesentliche Differenzen in der Phosphatauflage damit verbunden sind. Die in der Praxis heute anfallenden Bandgeschwindigkeiten liegen beispielsweise im Bereich zwischen 20 und 120 m/ min. Erfindungsgemäss wird eine gleichbleibende Qualität der Phosphatauflage, insbesondere auch in dem Bereich hoher Bandgeschwindigkeiten, also beispielsweise im Bereich von 100 bis 120 m/ min. ermöglicht.Accordingly, the invention is based on the object of forming high-quality and improved zinc phosphate layers on electrolytically galvanized materials, in particular ferrous metals, despite substantially reduced processing times in the phosphating stage. The invention deliberately intends to accept thin layers of the phosphate layers without, however, having to give up the uniform covering of the galvanized material with a fine crystalline, firmly adhering, self-contained zinc phosphate layer. With the method according to the invention, it is possible, for example, to form uniform, closed phosphate layers on electrolytically galvanized steel sheets with a duration of the phosphating step of a maximum of about 5 seconds, which at the same time guarantee corrosion protection that at least approximately achieves that of "thick-layer phosphating", but has other properties even significantly different from the known thicker phosphate layers. For example, the adhesion of organic coatings during and after deformation steps - for example when folding, deep drawing, flanging and the like - is improved compared to the results that have been achievable so far. The invention furthermore wants to make it possible, for example, to be able to drive electrolytic galvanizing lines with subsequent phosphating at very different strip speeds, without any significant differences in the phosphate coating being associated therewith. The belt speeds that occur in practice today are, for example, in the range between 20 and 120 m / min. According to the invention, a constant quality of the phosphate coating is achieved, in particular also in the range of high belt speeds, that is, for example, in the range from 100 to 120 m / min. enables.

Gegenstand der Erfindung ist dementsprechend ein Verfahren zur Phosphatierung von elektrolytisch verzinkten Metallwaren, insbesondere elektrolytisch verzinkten Stahlbändern, unter Ausbildung von Zinkphosphat-Schichten einer flächenbezogenen Masse unterhalb von 2 g/m2, vorzugsweise von 0,6 bis 1,9 g/m2 und insbesondere von 1,2 bis 1,4 g/m2, durch kurzfristige Behandlung mit sauren Phosphatierungslösungen, die neben Zink- und Phosphationen Nickelkationen sowie als Beschleuniger Nitrationen enthalten - jedoch frei von Fluoriden sind -, wobei

  • a) die Dauer der Behandlung 5 s nicht übersteigt,
  • b) die Phosphatierung im Temperaturbereich von 50 bis 70°C durchgeführt wird und die Phosphatierungslösungen den folgenden Bedingungen entsprechen:
  • c) Gehalt an Zn2+-Kationen = 1 bis 2,5 g/l,
  • d) Gewichtsverhältnis Zn2+/H2PO4 - = 1:(1 bis 8),
  • e) Gewichtsverhältnis Ni2+ IZn2+ = 1:(2 bis 20),
    welches dadurch gekennzeichnet ist, dass für die Phosphatierungslösungen ferner die folgenden Bedingungen gelten:
  • f) Gewichtsverhältnis Zn2+/NO3 = 1: (1 bis 8),
  • g) Gewichtsverhältnis PO4 3-/NO3 = 1: (0,1 bis 2,5),
  • h) Gehalt an freier Säure = 0,8 bis 3 Punkte,
  • i) Säureverhältnis Gesamtsäure/freie Säure = 5 bis 10
The invention accordingly relates to a process for the phosphating of electrolytically galvanized metal products, in particular electrolytically galvanized steel strips, with the formation of zinc phosphate layers with a mass per unit area below 2 g / m 2 , preferably from 0.6 to 1.9 g / m 2 and in particular from 1.2 to 1.4 g / m 2 , by short-term treatment with acid phosphating solutions which, in addition to zinc and phosphate ions, contain nickel cations and, as accelerators, nitrate ions - but are free from fluorides -,
  • a) the duration of the treatment does not exceed 5 s,
  • b) the phosphating is carried out in the temperature range from 50 to 70 ° C. and the phosphating solutions meet the following conditions:
  • c) content of Zn 2 + cations = 1 to 2.5 g / l,
  • d) weight ratio Zn 2+ / H 2 PO 4 - = 1: (1 to 8),
  • e) weight ratio Ni2 + IZn2 + = 1: (2 to 20),
    which is characterized in that the following conditions also apply to the phosphating solutions:
  • f) weight ratio Zn 2+ / NO 3 = 1: (1 to 8),
  • g) PO 4 3- / NO 3 = 1: (0.1 to 2.5) weight ratio,
  • h) free acid content = 0.8 to 3 points,
  • i) Acid ratio total acid / free acid = 5 to 10

Durch dieses Verfahren der Erfindung werden Zinkphosphatauflagen von 0,6 bis 1,9 g/m2 erzeugt, die eine geschlossene feinkristalline Struktur aufweisen und dem elektrolytisch verzinkten Blech ein erwünschtes gleichmässiges, hellgraues Aussehen verleihen. Ein derart phosphatiertes elektrolytisch verzinktes Stahlband kann auch ohne nachfolgende Lackierung weiterverarbeitet werden. Die nach dem erfindungsgemässen Verfahren erzeugten dünnen Phosphatschichten verhalten sich bei vielen Verformungsvorgängen günstiger als die mit den bisherigen üblichen Verfahren erzeugten Phosphatschichten einer höheren flächenbezogenen Masse. Aber auch nachträglich aufgebrachte organische Beschichtungen zeigen gegenüber dem Stand der Technik deutlich verbesserte Haftung sowohl während als auch nach Verformungsvorgängen.This process of the invention produces zinc phosphate coatings of 0.6 to 1.9 g / m 2 , which have a closed, finely crystalline structure and give the electrolytically galvanized sheet a desired uniform, light gray appearance. An electrolytically galvanized steel strip which has been phosphated in this way can also be processed without subsequent coating. The thin phosphate layers produced by the method according to the invention behave more favorably in many shaping processes than the phosphate layers of a higher mass per unit area produced with the previous conventional methods. However, organic coatings applied subsequently also show significantly improved adhesion compared to the prior art, both during and after deformation processes.

Der Gehalt des erfindungsgemässen eingesetzten Phosphatierungsbades an freier Säure liegt bevorzugt im Bereich von 1,2 bis 1,8 Punkten. Das bevorzugte Säureverhältnis von Gesamtsäure zu freier Säure liegt im Bereich von 6 bis 8. Zu den Begriffsbestimmungen der freien Säure, der Gesamtsäure und der im nachfolgenen noch erwähnten primären Phosphate in Phosphatierungsbädern wird auf den einschlägigen druckschriftlichen Stand der Technik verwiesen, insbesondere auf die Veröffentlichung Christian Ries «Überwachung von Phosphatierungsbädern» Galvanotechnik, 59 (1968) Nr. 1, Seiten 37 bis 39 (Eugen G. Leuze Verlag, Saulgau (Württ)). In dieser Veröffentlichung sind sowohl die Begriffe der hier genannten Parameter als auch ihre Bestimmung im einzelnen geschildert. Die Punktzahl der freien Säure ist dementsprechend definiert als die Anzahl Milliliter n/10 NaOH, die zur Titration von 10 ml Badlösung gegen Dimethylgelb, Methylorange oder Bromphenolblau erforderlich ist. Die Gesamtsäure-Punktzahl ergibt sich als die Anzahl Milliliter n/10 NaOH, die bei der Titration von 10 ml Badlösung unter Verwendung von Phenolphthalein als Indikator bis zur ersten Rosafärbung erforderlich ist.The free acid content of the phosphating bath used according to the invention is preferably in the range from 1.2 to 1.8 points. The preferred acid ratio of total acid to free acid is in the range from 6 to 8. For the definitions of free acid, total acid and the primary phosphates mentioned below in phosphating baths, reference is made to the relevant prior art in writing, in particular to the publication Christian Ries «Monitoring of phosphating baths» Galvanotechnik, 59 (1968) No. 1, pages 37 to 39 (Eugen G. Leuze Verlag, Saulgau (Württ)). In this publication, both the terms of the parameters mentioned here and their determination are described in detail. The free acid score is accordingly defined as the number of milliliters n / 10 NaOH required to titrate 10 ml bath solution against dimethyl yellow, methyl orange or bromophenol blue. The total acid score is the number of milliliters n / 10 NaOH required to titrate 10 ml bath solution using phenolphthalein as an indicator until the first pink color.

Für das erfindungsgemässe Verfahren ist dementsprechend die Kombination der folgenden Parameter wesentlich: Die Konzentration von Zn2+- Ionen wird in einem niedrig begrenzten Bereich gehalten. Für die erfindungsgemässe Ausbildung der angestrebten dünnen aber gleichwohl homogen geschlossenen Schichten ist das eine wichtige Vorraussetzung. Gleichzeitig damit wird in der Badlösung ein vergleichsweise hoher Gehalt an freier Säure verwendet, der wie angegeben im Bereich von 0,8 bis 3,0 Punkten, vorzugsweise im Bereich von 1,2 bis 1,8 Punkten, liegt. Schliesslich wird gleichzeitig die Dauer der Behandlung bewusst kurz gewählt. 5 Sekunden werden nicht überschritten. Im allgemeinen wird mit einem Behandlungszeitraum von 2,5 bis 5 Sekunden gearbeitet.Accordingly, the combination of the following parameters is essential for the method according to the invention: The concentration of Zn 2 + ions is kept in a low-limited range. This is an important prerequisite for the inventive design of the desired thin but nevertheless homogeneously closed layers. At the same time, the bath solution has a comparatively high content free acid is used, which, as indicated, is in the range from 0.8 to 3.0 points, preferably in the range from 1.2 to 1.8 points. Finally, the duration of the treatment is deliberately chosen to be short. 5 seconds are not exceeded. A treatment period of 2.5 to 5 seconds is generally used.

Untersuchungen zur Entstehungsgeschichte und Verwandlung der erfindungsgemäss auszubildenden Phosphatauflage haben dabei die interessante Tatsache gezeigt, dass aufgrund der erfindungsgemäss gewählten Bad- und Verfahrensparameter - vermutlich insbesondere unter dem Einfluss des an sich hohen Gehalts an freier Säure - zunächst sehr rasch ein Aufbau der Zinkphosphatschicht stattfindet, der dann aber noch innerhalb des erfindungsgemäss gewählten kurzen Verfahrenszeitraums anteilsmässig wieder verringert wird. Die Masse der Phosphatauflage durchschreitet im neuen Verfahren in der Anfangsphase offenbar einen Maximumwert, der sich in den späteren Verfahrensabschnitten - das heisst etwa im Zeitraum von 3 bis 5 Sekunden - wieder verringert. Die so erzeugten dünnen Zinkphosphatauflagen erfüllen die Forderungen der erfindungsgemässen Aufgabenstellung.Investigations into the history of origin and transformation of the phosphate layer to be formed according to the invention have shown the interesting fact that due to the bath and process parameters chosen according to the invention - presumably in particular under the influence of the high content of free acid - the zinc phosphate layer initially builds up very quickly, which but then proportionally reduced again within the short process period selected according to the invention. The mass of the phosphate coating in the new process apparently passes through a maximum value in the initial phase, which decreases again in the later process sections - that is to say in the period of 3 to 5 seconds. The thin zinc phosphate coatings produced in this way meet the requirements of the task according to the invention.

Die nach dem neuen Verfahren hergestellten Zinkphosphatschichten liegen bevorzugt in einem Bereich von 0,6 bis 1,9 g/m2, wobei der Bereich von 1,2 bis 1,4 g/m2 besonders bevorzugt ist.The zinc phosphate layers produced by the new process are preferably in a range from 0.6 to 1.9 g / m 2 , the range from 1.2 to 1.4 g / m 2 being particularly preferred.

Die in den Phosphatierungsbädern der Erfindung darüber hinaus einzusetzenden Komponenten ergeben sich aus dem Wissen des Standes der Technik. So wird als Anion einer sauerstoffhaltigen Säure mit Aktivierungswirkung Nitrat mitverwendet. Dabei liegt das Gewichtsverhältnis von Zn2+ zu NO3- im Bereich von 1 zu (1 bis 8). Der Phosphat- und der Nitratgehalt des Phosphatierungsbades wird derart aufeinander abgestellt, dass das Gewichtsverhältnis von PO4 3- zu NO3 - im Bereich von 1 zu (0,1 bis 2,5) liegt. Ferner wird das Verhältnis von Zinkkationen zu primärem Phosphat derart gewählt, dass im Behandlungsbad Gewichtsverhältnisse von Zn2+ zu H2P04- im Bereich von 1 zu (1 bis 8) gehalten werden.The additional components to be used in the phosphating baths of the invention result from the knowledge of the prior art. For example, nitrate is also used as the anion of an oxygen-containing acid with an activating effect. The weight ratio of Zn 2+ to NO 3 - is in the range from 1 to (1 to 8). The phosphate and nitrate content of the phosphating bath is adjusted to one another in such a way that the weight ratio of PO 4 3- to NO 3 - is in the range from 1 to (0.1 to 2.5). Furthermore, the ratio of zinc cations to primary phosphate is chosen such that weight ratios of Zn 2+ to H 2 P0 4 - are kept in the range from 1 to (1 to 8) in the treatment bath.

Im Rahmen des erfindungsgemässen Verfahrens werden neben Zink auch Nickel-Kationen mitverwendet. Diese werden jedoch in untergeordneten Mengen eingesetzt, wobei aber der Gehalt an Zinkionen stets überwiegt. Mischungsverhältnisse von 20 bis 2 Gewichtsteilen Zn2+_lonen auf einen Gewichtsteil Ni2+-lonen werden erfindungsgemäss eingesetzt. Interessant ist in diesem Zusammenhang, dass in den nach dem erfindungsgemässen Verfahren abgeschiedenen Zinkphosphaten Nickel analytisch in der Regel nicht nachzuweisen ist. Es liegt also im Phosphatüberzug bestenfalls in Spuren vor, die unterhalb der Nachweisgrenze liegen.In addition to zinc, nickel cations are also used in the process according to the invention. However, these are used in minor amounts, but the zinc ion content always predominates. Mixing ratios of 20 to 2 parts by weight of Zn 2 + ions to one part by weight of Ni 2 + ions are used according to the invention. It is interesting in this context that nickel cannot generally be detected analytically in the zinc phosphates deposited by the process according to the invention. At best, it is present in traces in the phosphate coating that are below the detection limit.

Die Phosphatierung selber erfolgt bei mässig erhöhten Temperaturen im Temperaturbereich von etwa 50 bis 70°C. Besonders geeignet kann der Temperaturbereich von 60 bis 65°C sein. Jede technisch brauchbare Möglichkeit des Aufbringens der Behandlungslösung ist geeignet. Insbesondere ist es also möglich, das neue Verfahren sowohl mittels Spritztechnik als im Tauchverfahren durchzuführen.The phosphating itself takes place at moderately elevated temperatures in the temperature range from about 50 to 70 ° C. The temperature range from 60 to 65 ° C. can be particularly suitable. Any technically useful way of applying the treatment solution is suitable. In particular, it is therefore possible to carry out the new method both by means of spraying technology and by immersion.

Vor dem Aufbringen der Phosphatierungslösung muss die elektrolytisch verzinkte Oberfläche vollständig wasserbenetzbar sein. Dies ist in kontinuierlich arbeitenden Bandanlagen in der Regel gegeben. Falls die Oberfläche des elektrolytisch verzinkten Bandes zwecks Lagerung und Korrosionsschutz beölt sein sollte, so ist dieses Öl vor der Phosphatierung mit bereits bekannten, geeigneten Mitteln und Verfahren zu entfernen. Die wasserbenetzbare elektrolytisch verzinkte Metalloberfläche wird anschliessend vor dem Aufbringen der Phosphatierungslösung zweckmässig einer an sich bekannten, aktivierenden Vorbehandlung unterworfen. Geeignete Vorbehandlungsverfahren sind insbesondere in den DE-A-20 38 105 und 20 43 085 beschrieben. Demgemäss werden die anschliessend zu phosphatierenden Metalloberflächen mit Lösungen behandelt, die als Aktivierungsmittel im wesentlichen Titansalz und Natriumphosphat zusammen mit organischen Komponenten wie Gelatine oder Alkalisalzen von Polyuronsäuren enthalten. Als Titankomponente können bevorzugt lösliche Verbindungen des Titans wie Kaliumtitanfluorid und insbesondere Titanylsulfat verwendet werden. Als Natriumphosphat kommt im allgemeinen Dinatriumorthophosphat zum Einsatz, das jedoch ganz oder teilweise durch andere Natriumphosphate wie Mononatriumorthophosphat, Trinatriumorthophosphat, Tetranatriumpyrophosphat und Natriumtripolyphosphat ersetzt sein kann. Titanhaltige Verbindungen und Natriumphosphat werden in solchen Mengenverhältnissen verwendet, dass der Titangehalt mindestens 0,005 Gew.-% bezogen auf das Gewicht der titanhaltigen Verbindungen und des Natriumphosphats beträgt.Before the phosphating solution is applied, the electrolytically galvanized surface must be completely water wettable. This is usually the case in continuously operating conveyor systems. If the surface of the electrolytically galvanized strip is oiled for storage and corrosion protection, this oil must be removed by means of known, suitable means and processes prior to phosphating. The water-wettable electrolytically galvanized metal surface is then expediently subjected to an activating pretreatment known per se before the phosphating solution is applied. Suitable pretreatment processes are described in particular in DE-A-20 38 105 and 20 43 085. Accordingly, the metal surfaces to be subsequently phosphated are treated with solutions which contain, as activating agent, essentially titanium salt and sodium phosphate together with organic components such as gelatin or alkali metal salts of polyuronic acids. Soluble compounds of titanium such as potassium titanium fluoride and in particular titanyl sulfate can preferably be used as the titanium component. Disodium orthophosphate is generally used as the sodium phosphate, but can be replaced in whole or in part by other sodium phosphates such as monosodium orthophosphate, trisodium orthophosphate, tetrasodium pyrophosphate and sodium tripolyphosphate. Titanium-containing compounds and sodium phosphate are used in such proportions that the titanium content is at least 0.005% by weight, based on the weight of the titanium-containing compounds and the sodium phosphate.

Wie im Stand der Technik- beispielsweise DE-A-21 00 021 - beschrieben, kann es auch für das erfindungsgemässe Verfahren beziehungsweise die danach hergestellten Zinkphosphatschichten vorteilhaft sein, in einer nachfolgenden Verfahrensstufe die erzeugten Phosphatschichten zu passivieren. Eine solche Passivierung kann beispielsweise mit verdünnter Chromsäure und/oder Phosphorsäure erfolgen. die Konzentration der Chromsäure und/oder Phosphorsäure liegt dabei im allgemeinen zwischen 0,01 und 1,0 g/I. Es ist dabei möglich, die Schutzschichten mit verdünnter Chromsäure nachzubenhandeln, die Chrom(III)-lonen enthält. Im allgemeinen liegen hier die Anwendungungskonzentrationen des 6- wertigen Chroms zwischen 0,2 und 4,0 g/I Cr03 und die des 3-wertigen Chroms zwischen 0,5 und 7,5 g/i Cr203. Zwischen dem Phosphatierungs-und dem Nachbehandlungsschritt wird zweckmässig mit Wasser gespült. Diese Spülung ist jedoch nicht unbedingt erforderlich und kann insbesondere dann entfallen, wenn mit Abquetschrollen gearbeitet wird.As described in the prior art, for example DE-A-21 00 021, it can also be advantageous for the process according to the invention or the zinc phosphate layers produced thereafter to passivate the phosphate layers produced in a subsequent process step. Such passivation can take place, for example, with dilute chromic acid and / or phosphoric acid. the concentration of chromic acid and / or phosphoric acid is generally between 0.01 and 1.0 g / l. It is possible to post-treat the protective layers with dilute chromic acid, which contains chromium (III) ions. In general, the application concentrations of the hexavalent chromium are between 0.2 and 4.0 g / l Cr0 3 and those of the trivalent chromium between 0.5 and 7.5 g / l Cr 2 0 3 . It is expedient to rinse with water between the phosphating and the aftertreatment step. However, this rinsing is not absolutely necessary and can be omitted in particular when working with squeeze rollers.

Die nachfolgenden Beispiele schildern die erfindungsgemässe Arbeitsweise.The following examples describe the procedure according to the invention.

Beispiel 1example 1

Eine elektrolytisch verzinkte Oberfläche wurde bei 30 °C mit einer Lösung behandelt, die ein titanhaltiges Aktivierungsmittel, wie es in DE-A-20 38 105 beschrieben ist, in einer Menge von 3 g/I enthielt. Danach wurde die aktivierte Oberfläche bei 60 °C mit einer Lösung behandelt, die folgende Zusammensetzung hatte:

  • 1,1 g/l Zn2+
  • 0,4 g/I Ni2+
  • 7,4 g/l PO4 3-
  • 2,1 g/I N03 -
  • 3 mg/l Fe2+
An electrolytically galvanized surface was treated at 30 ° C. with a solution which contained a titanium-containing activating agent, as described in DE-A-20 38 105, in an amount of 3 g / l. The activated surface was then treated at 60 ° C. with a solution which had the following composition:
  • 1.1 g / l Zn 2+
  • 0.4 g / l Ni 2+
  • 7.4 g / l PO 4 3-
  • 2.1 g / I N0 3 -
  • 3 mg / l Fe 2+

Die freie Säure betrug 1,3 Punkte und die Gesamtsäure 10,8 Punkte. (Die Punkte freie Säure und Gesamtsäure bedeuten die ml 0,1 N NaOH, die zur Titration von 10 ml Badlösung gegen Bromphenolblau bzw. Phenolphthalein als Indikator erforderlich sind.) Nach einer Phosphatierzeit von 3,5 sec wurde das Blech mit Wasser gespült und anschliessend mit einer Cr-3+/Cr-6+ haltigen Lösung bei 50°C nachpassiviert und getrocknet.The free acidity was 1.3 points and the total acidity was 10.8 points. (The points free acid and total acid mean the ml of 0.1 N NaOH, which are required to titrate 10 ml of bath solution against bromophenol blue or phenolphthalein as an indicator.) After a phosphating time of 3.5 seconds, the sheet was rinsed with water and then passivated with a solution containing Cr-3 + / Cr-6 + at 50 ° C and dried.

Die flächenbezogene Masse der Phosphatauflage betrug 1,6 g/m2. Der Korrosionsschutztest nach SS DIN 50021 war vergleichbar mit Schichten, die mit herkömmlichen Verfahren erzeugt worden waren und eine flächenbezogene Masse von 2,4-2,6 g/m2 aufweisen.The mass per unit area of the phosphate coating was 1.6 g / m 2 . The corrosion protection test according to SS DIN 50021 was comparable to layers that had been produced using conventional methods and had a mass per unit area of 2.4-2.6 g / m 2 .

Beispiel 2Example 2

Es wurde eine Phosphatierungslösung hergestellt, mit der ein elektrolytisch verzinktes Stahlblech bei 63 °C behandelt wurde. Das Bad hatte folgende Zusammensetzung:

  • 1,80 g/I Zn 2+
  • 0,35 g/I Ni2+
  • 5,50 g/I PO4 3-
  • 4,8 g/I NO3 -
A phosphating solution was prepared, with which an electrolytically galvanized steel sheet was treated at 63 ° C. The bathroom had the following composition:
  • 1.80 g / l Zn 2+
  • 0.35 g / l Ni 2+
  • 5.50 g / I PO 4 3-
  • 4.8 g / I NO 3 -

Die Gesamtsäure des Bades betrug 9,9 Punkte und die freie Säure 1,4 Punkte. Mit dieser Lösung wurde ein elektrolytisch verzinktes Blech 5 sec phosphatiert. Das Blech hatte eine geschlossene, hellgraue Phosphatschicht mit einer flächenbezogenen Masse von 1,3 g/m2.The total acidity of the bath was 9.9 points and the free acidity was 1.4 points. An electrolytically galvanized sheet was phosphated with this solution for 5 seconds. The sheet had a closed, light gray phosphate layer with a mass per unit area of 1.3 g / m 2 .

Bei einer anschliessenden Abkantung um 90° und 180° traten keine Risse oder Abplatzungen der Phosphatschicht auf.With a subsequent bend of 90 ° and 180 ° there were no cracks or flaking of the phosphate layer.

Eine Blechprobe wurde lackiert und nach der Trocknung bei erhöhter Temperatur mit einem Gitterschnitt nach DIN 53151 versehen. Der Haftungswert war sowohl ohne als auch mit 8 mm Erichsen-Tiefung einwandfrei.A sheet metal sample was painted and, after drying at elevated temperature, provided with a cross cut according to DIN 53151. The adhesion value was perfect both without and with 8 mm Erichsen cupping.

Beispiel 3Example 3

Ein frisch elektrolytisch verzinktes Stahlblech wurde bei 45°C mit einer Lösung aktiviert, die 1,5 g/I einer titanhaltigen Komponente enthielt und in vollentsalztem Wasser einen pH-Wert von 8.5 aufwies. Anschliessend wurde die verzinkte Oberfläche mit einer Lösung folgender Zusammensetzung bei 60°C 4 sec phosphatiert:

  • 2,0 g/l Zn2+
  • 0,4 g/l Ni2+
  • 4,95 g/l PO4 3-
  • 6,0 g/l NO3 -
A freshly electrolytically galvanized steel sheet was activated at 45 ° C. with a solution which contained 1.5 g / l of a titanium-containing component and had a pH of 8.5 in demineralized water. The galvanized surface was then phosphated with a solution of the following composition at 60 ° C. for 4 seconds:
  • 2.0 g / l Zn 2+
  • 0.4 g / l Ni 2+
  • 4.95 g / l PO 4 3-
  • 6.0 g / l NO 3 -

Die freie Säure des Bades betrug 2,1 Punkte und die Gesamtsäure 11,3 Punkte. Auch in diesem Fall hatte das Band ein gleichmässiges, hellgraues Aussehen. Die gebildete Phosphatschicht war geschlossen und hatte eine flächenbezogene Masse von 1,1 g/m2. Die Lackhaftung auf einer Probe dieses Bleches war gut.The free acidity of the bath was 2.1 points and the total acidity 11.3 points. In this case, too, the tape had a uniform, light gray appearance. The phosphate layer formed was closed and had a mass per unit area of 1.1 g / m 2 . The paint adhesion on a sample of this sheet was good.

Ein nach einem herkömmlichen Verfahren elektrolytisch verzinktes und phosphatiertes Blech mit einer flächenbezogenen Masse von 2,3 g/m2 wurde mit demselben Lack beschichtet und derselben Verformungsoperation unterworfen. Die Lackhaftungswerte waren deutlich schlechter als bei dem mit dem erfindungsgemässen Verfahren phosphatierten Blech.A sheet electrolytically galvanized and phosphated by a conventional method with a mass per unit area of 2.3 g / m 2 was coated with the same paint and subjected to the same deformation operation. The paint adhesion values were significantly poorer than in the case of the sheet phosphated using the method according to the invention.

Claims (4)

1. A process for the phosphating of electrolytically zinc-plated metal products, more especially electrolytically zinc-plated steel strip, with formation of zinc phosphate coatings having a weight per unit area of less than 2 g/m2, preferably from 0.6 to 1.9 g.m2 and more preferably from 1.2 to 1.4 g/m2 by brief tratment with acidic phosphating solutions which, in addition to zinc and phosphate ions, contain nickel cations and, as accelerators, nitrate ions, but are free from fluoride ions, with the proviso that
a) the treatment time does not exceed 5 seconds,
b) phosphating is carried out at a temperature of 50 to 70°C and the phosphating solutions satisfy the following requirements:
c) content of Zn2+ cations = 1 to 2.5 g/I,
d) ratio by weight of Zn2+ to H2PO4 = 1: (1 to 8),
e) ratio by weight of Ni2+ to Zn2+ = 1 :(2 to 20), characterized in that the phosphating solutions also satisfy the following requirements:
f) ratio by weight of Zn2+ to NO3 - = 1: (1 to 8),
g) ratio by weight of P04 3- to N03 = 1: (0.1 to 2.5),
h) free acid content = 0.8 to 3 points,
i) acid ratio of total acid to free acid = 5 to 10.
2. A process as claimed in claim 1, characterized in that the phosphating solutions have a free acid content of from 1.2 to 1.8 points and an acid ratio of total acid to free acid of from 6 to 8.
3. A process as claimed in claims 1 and 2, characterized in that phosphating is carried out at a temperature in the range from 60 to 65°C.
4. A process as claime in claims 1 to 3, characterized in that electrolytically zinc-plated ferrous metals which have been subjected to an activating pretreatment known per se, more especially with titanium-containing activating solutions, are used in the process.
EP83112008A 1982-12-08 1983-11-30 Process for phosphatizing zinc-electroplated metal objects Expired EP0111246B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83112008T ATE38692T1 (en) 1982-12-08 1983-11-30 PROCESS FOR THE PHOSPHATION OF ELECTROLYTIC GALVANIZED METAL GOODS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3245411 1982-12-08
DE19823245411 DE3245411A1 (en) 1982-12-08 1982-12-08 METHOD FOR PHOSPHATING ELECTROLYTICALLY GALVANIZED METAL GOODS

Publications (3)

Publication Number Publication Date
EP0111246A2 EP0111246A2 (en) 1984-06-20
EP0111246A3 EP0111246A3 (en) 1986-01-08
EP0111246B1 true EP0111246B1 (en) 1988-11-17

Family

ID=6180124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83112008A Expired EP0111246B1 (en) 1982-12-08 1983-11-30 Process for phosphatizing zinc-electroplated metal objects

Country Status (10)

Country Link
US (1) US4497668A (en)
EP (1) EP0111246B1 (en)
JP (1) JPS59116383A (en)
KR (1) KR910002568B1 (en)
AT (1) ATE38692T1 (en)
AU (1) AU561151B2 (en)
CA (1) CA1205727A (en)
DE (2) DE3245411A1 (en)
ES (1) ES8406564A1 (en)
ZA (1) ZA839106B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569203B1 (en) * 1984-08-16 1989-12-22 Produits Ind Cie Fse PROCESS FOR THE TREATMENT BY CHEMICAL CONVERSION OF SUBSTRATES IN ZINC OR IN ONE OF ITS ALLOYS, CONCENTRATE AND BATH USED FOR THE IMPLEMENTATION OF THIS PROCESS
DE3537108A1 (en) * 1985-10-18 1987-04-23 Collardin Gmbh Gerhard METHOD FOR PHOSPHATING ELECTROLYTICALLY GALVANIZED METALWARE
DE3630246A1 (en) * 1986-09-05 1988-03-10 Metallgesellschaft Ag METHOD FOR PRODUCING PHOSPHATE COVER AND ITS APPLICATION
JPS63270478A (en) * 1986-12-09 1988-11-08 Nippon Denso Co Ltd Phosphating method
DE3712339A1 (en) * 1987-04-11 1988-10-20 Metallgesellschaft Ag METHOD FOR PHOSPHATIZING BEFORE ELECTROPLATING
DE3828676A1 (en) * 1988-08-24 1990-03-01 Metallgesellschaft Ag PHOSPHATING PROCESS
EP0370535B1 (en) * 1988-11-25 1992-11-11 Metallgesellschaft Aktiengesellschaft Process for applying phosphate coatings
DE3927131A1 (en) * 1989-08-17 1991-02-21 Henkel Kgaa METHOD FOR THE PRODUCTION OF MANGANIZED ZINC PHOSPHATE LAYERS ON GALVANIZED STEEL
DE4228470A1 (en) * 1992-08-27 1994-03-03 Henkel Kgaa Process for phosphating steel strips galvanized on one side
JP3766707B2 (en) 1995-10-25 2006-04-19 ディップソール株式会社 Water-soluble composition for water-repellent treatment of zinc and zinc alloy and water-repellent treatment method
DE19808755A1 (en) 1998-03-02 1999-09-09 Henkel Kgaa Layer weight control for strip phosphating
KR100470638B1 (en) * 2000-11-22 2005-03-07 주식회사 포스코 A method for manufacturing pre-phosphated anti-finger treatment steel sheet with good corrosion resistance property and anti-alkalinity
DE202011107125U1 (en) * 2011-04-13 2011-11-30 Tata Steel Ijmuiden Bv Thermoformable strip, sheet or blank and thermoformed product

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049659B (en) * 1959-01-29
FR1366777A (en) * 1963-04-02 1964-07-17 Parker Ste Continentale Zinc coating process
GB1257947A (en) * 1968-10-31 1971-12-22
FR2033717A5 (en) * 1969-03-07 1970-12-04 Parker Ste Continentale
DE2043085C3 (en) * 1970-08-31 1979-03-29 Gerhard Collardin Gmbh, 5000 Koeln Process for applying zinc phosphate layers to electrolytically galvanized material
DE2100021A1 (en) * 1971-01-02 1972-09-07 Collardin Gmbh Gerhard Process for applying phosphate layers to steel, iron and zinc surfaces
GB1376310A (en) * 1973-04-27 1974-12-04 Pyrene Chemical Services Ltd Phosphating of metals
JPS562666B2 (en) * 1974-06-28 1981-01-21
JPS53106373A (en) * 1977-02-28 1978-09-16 Sumitomo Metal Ind Ltd Treating method for lubrication primer
JPS555590A (en) * 1978-06-29 1980-01-16 Mitsubishi Electric Corp Remote monitor unit
US4328209A (en) * 1979-04-11 1982-05-04 Board Of Regents, The University Of Texas System Cholera vaccine
DE3101866A1 (en) * 1981-01-22 1982-08-26 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PHOSPHATING METALS
DE3108484A1 (en) * 1981-03-06 1982-09-23 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PRODUCING PHOSPHATE COATINGS ON METAL SURFACES
DE3118375A1 (en) * 1981-05-09 1982-11-25 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PHOSPHATING METALS AND ITS APPLICATION FOR PRE-TREATMENT FOR ELECTRO DIP PAINTING

Also Published As

Publication number Publication date
US4497668A (en) 1985-02-05
DE3378481D1 (en) 1988-12-22
ES527886A0 (en) 1984-08-01
DE3245411A1 (en) 1984-07-05
ES8406564A1 (en) 1984-08-01
KR910002568B1 (en) 1991-04-26
DE3245411C2 (en) 1988-03-31
AU561151B2 (en) 1987-04-30
ATE38692T1 (en) 1988-12-15
JPS59116383A (en) 1984-07-05
KR840007037A (en) 1984-12-04
EP0111246A3 (en) 1986-01-08
ZA839106B (en) 1984-07-25
CA1205727A (en) 1986-06-10
EP0111246A2 (en) 1984-06-20
AU2217283A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
DE1933013C3 (en) Process for the production of protective layers on aluminum, iron and zinc by means of solutions containing complex fluorides
DE69737728T2 (en) Solution and method for the production of protective layers on metals
EP0214571B1 (en) Process for forming conversion layers on zinc and/or zinc alloys
EP0056881B1 (en) Method of phosphating metals
EP0064790A1 (en) Method of phosphating metals, as well as its use in the electrodip painting pretreatment
EP0111246B1 (en) Process for phosphatizing zinc-electroplated metal objects
DE2100021A1 (en) Process for applying phosphate layers to steel, iron and zinc surfaces
DE1955002C3 (en) Process for applying zinc phosphate conversion coatings to metal surfaces
DE3628303A1 (en) METHOD FOR APPLYING PHOSPHATE
EP0155547B1 (en) Process for the zinc-calcium phosphatizing of metal surfaces at a low treating temperature
DE69119138T2 (en) Process for phosphating metal surfaces
EP0656957B1 (en) Process for phosphatizing steel zinc-coated on one side only
DE3932006A1 (en) METHOD FOR APPLYING PHOSPHATE
EP0219779B1 (en) Phosphatizing process for electrolytically galvanized metal objects
EP0134895B1 (en) Process and compounds for applying accelerated and grain-refined phosphate coatings to metallic surfaces
EP0486576B1 (en) Process for producing manganese-containing zinc phosphate coatings on galvanized steel
EP0931179B1 (en) Method for phosphating a steel band
DE2031358C3 (en) Process for the production of protective layers on aluminum, iron and zinc by means of acidic solutions containing complex fluorides
EP0039093A1 (en) Method of phosphating the surfaces of metals, and its use
DE3719312A1 (en) METHOD FOR PRODUCING CHROMATUES
EP0215041B1 (en) Process for the phosphating of metal surfaces
EP1019564A1 (en) Method for phosphatizing a steel strip
DE2043085C3 (en) Process for applying zinc phosphate layers to electrolytically galvanized material
EP0461133B1 (en) Process for producing zinc/barium phosphate coatings on metal surfaces
DE1696143B2 (en) PROCESS FOR CREATING BLACK MATS SURFACE LAYERS ON OBJECTS MADE OF FERROUS METAL, CADMIUM, ZINC OR ALUMINUM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOESCH AKTIENGESELLSCHAFT

Owner name: GERHARD COLLARDIN GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: C23C 22/12

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860525

17Q First examination report despatched

Effective date: 19870213

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 38692

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3378481

Country of ref document: DE

Date of ref document: 19881222

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921022

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921130

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931201

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 83112008.4

Effective date: 19940710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001110

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001113

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20001124

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001129

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020128

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

BERE Be: lapsed

Owner name: *HOESCH A.G.

Effective date: 20021130

Owner name: *GERHARD COLLARDIN G.M.B.H.

Effective date: 20021130