EP0219779B1 - Phosphatizing process for electrolytically galvanized metal objects - Google Patents

Phosphatizing process for electrolytically galvanized metal objects Download PDF

Info

Publication number
EP0219779B1
EP0219779B1 EP86114075A EP86114075A EP0219779B1 EP 0219779 B1 EP0219779 B1 EP 0219779B1 EP 86114075 A EP86114075 A EP 86114075A EP 86114075 A EP86114075 A EP 86114075A EP 0219779 B1 EP0219779 B1 EP 0219779B1
Authority
EP
European Patent Office
Prior art keywords
zinc
range
content
phosphating
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86114075A
Other languages
German (de)
French (fr)
Other versions
EP0219779A3 (en
EP0219779A2 (en
Inventor
Raschad Mady
Cäcilie Daniel
Detlev Bohnhorst
Karl-Heinz Gottwald
Roland Dr. Morlock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerhard Collardin GmbH
Original Assignee
Gerhard Collardin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhard Collardin GmbH filed Critical Gerhard Collardin GmbH
Priority to AT86114075T priority Critical patent/ATE70314T1/en
Publication of EP0219779A2 publication Critical patent/EP0219779A2/en
Publication of EP0219779A3 publication Critical patent/EP0219779A3/en
Application granted granted Critical
Publication of EP0219779B1 publication Critical patent/EP0219779B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations

Definitions

  • the invention relates to an improved method for producing fine crystalline, closed conversion layers, consisting predominantly of zinc phosphate, with a low mass per unit area in very short treatment times on electrolytically galvanized metal products, in particular ferrous metals, for example on electrolytically galvanized steel strips.
  • the process is not limited to "pure zinc layers". Steel strips that have been given a zinc alloy coating can also be treated. In addition to zinc, iron, nickel and cobalt are examples of alloy components.
  • the treatment times were over 5 seconds; targeted belt speeds of 90 to 120 m / min, for example, were impossible or difficult to achieve and with quality losses, such as non-closed layers.
  • DE-A-21 00 021 proposes to form thin closed phosphate layers with mass per unit area of ⁇ 1.0 g / m 2 to treat the metal surfaces with phosphating solutions which essentially contain nickel ions as layer-forming cations.
  • nickel ions in addition to the nickel ions, further metal ions, in particular zinc ions, can be present.
  • the molar ratio of the nickel ions to the other divalent metal ions should be in the range from 1: 0.001 to 1: 0.7.
  • nickel phosphate layers are deposited. In contrast to the desired zinc phosphate layers, they always require a subsequent coating with, for example, a varnish in order to achieve acceptable corrosion protection. This is a serious disadvantage.
  • the weight ratio of Zn2+ / NO3 ⁇ is kept in the range of 1 / (1 to 8), the weight ratio PO43 ⁇ / NO3 ⁇ in the range of 1 / (0.1 to 2.5).
  • DE-A-32 45 411 uses nickel ions, the Zn2+ content preferably always predominating. Ratios of 20 to 2 parts by weight of Zn2+ ions to one part by weight of Ni2+ ions can be particularly useful. Most of the time, nickel cannot be detected analytically in the deposited layer, so it is only present in the layer in traces that remain below the detection limit.
  • the phosphating takes place in the temperature range from 50 to 70 ° C., preferably in the range from 60 to 65 ° C. The process is suitable for both spray and dip application.
  • electrolytically galvanized steel strip is also increasingly being used in body construction; in many cases the phosphating is already applied in combined galvanizing and pre-treatment lines and the material is supplied as galvanized, "pre-phosphated" steel.
  • the phosphating should therefore also be suitable for subsequent cathodic electrocoating. Since iron cannot be built into the phosphate layer in the present case, layers with a cubic or cuboid structure must be created.
  • the object of the invention is a method described below which fulfills the requirement.
  • Acid phosphating solutions which, in addition to zinc, manganese and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action.
  • the phosphate layers produced have mass per unit area of less than 2 g / m2, the preferred range is 0.9 to 1.6 g / m2. Layers in the range of 0.6 to 1.9 g / m2 can be deposited.
  • the acidic phosphating solutions are characterized in that the zinc cation content is in the range from 0.1 to 0.8 g / l, preferably 0.25 to 0.6 g / l.
  • the content of manganese II cations is kept in the range of 0.5 to 2 g / l, preferably 0.75 to 1.25 g / l.
  • the free acid content is kept in a range from 4 to 8 points, preferably 5 to 7 points.
  • the acid ratio (total acid / free acid) is kept in the range of 2.5 to 5 points, the preferred range is 2.8 to 4.5.
  • the free acid score is defined as the number of milliliters of 0.1 N NaOH required to titrate 10 ml bath solution against dimethyl yellow, methyl orange or bromophenol blue.
  • the total acid score is the number of milliliters of 0.1 N NaOH required to titrate 10 ml bath solution against phenolphthalein as an indicator until the first pink color.
  • the process according to the invention is further characterized in that the phosphating baths contain nitrate.
  • the cobalt content is preferably one part of cobalt per 100 to 150 parts of Zn2+ and Mn2+.
  • treatment times are deliberately kept short in view of the modern systems for the electrolytic galvanizing and phosphating of steel strips, 90 to 120 m / min speed of the strip. 5 seconds are not significantly exceeded, treatment times of 2.5 to 5 seconds are generally used.
  • the phosphating is expediently carried out at elevated temperatures, in particular in the temperature range from 40 to 70 ° C., the temperature range from 45 to 55 ° C. being particularly suitable. Any technically useful way of applying the treatment solution is applicable. It is particularly interesting that the process according to the invention can be carried out both by spraying technology and by immersion.
  • the electrolytically galvanized surface Before the phosphating solution is applied, the electrolytically galvanized surface must be completely water wettable. This is usually the case in conveyor systems. If the surface of the electrolytically galvanized strip is oiled for the purpose of temporary corrosion protection, this oil must be removed by known, suitable means and methods before phosphating.
  • the water-wettable electrolytically galvanized metal surface is expediently treated with activating solutions known per se before phosphating.
  • the activators essentially contain titanium salts and phosphates, together with organic components. Information on suitable activation methods can be found in DE-A-20 38 105 and DE-A-20 43 085.
  • the process according to the invention can also be advantageous for the process according to the invention to passivate the deposited conversion layers with dilute chromic acid and / or phosphoric acid.
  • the chromic acid concentration is generally between 0.01 and 1 g / l. It is also possible to passivate the protective layers with dilute chromic acid, which contains chromium III ions.
  • the concentrations generally used are 0.2 to 4.0 g / l CrO3 (hexavalent chromium) and 0.5 to 7.5 g / l Cr2O3 (trivalent chromium).
  • phosphate layers are produced on electrolytically galvanized steel, which clearly show a cuboid or cuboid structure. This is proven by scanning electron microscope images. This was not possible with the previously known method, including the method described in DE-A-32 45 411. Crystals with a needle-like shape were deposited.
  • the method according to the invention thus achieves the object of providing a conversion layer suitable for the subsequent cathodic electrocoating on electrolytically galvanized steel produce.
  • the type of layer described is also achieved on steel galvanically coated with a zinc-nickel alloy.
  • a lighter colored conversion layer is produced. This is particularly desirable when the electrolytically galvanized and phosphated steel is used without further coating. In this case, phosphating is expected to significantly delay or suppress both the occurrence of the so-called “white rust” (formation of zinc corrosion products) and the “red rust” (iron corrosion products).
  • the layers deposited from the acidic phosphating solutions according to the invention fulfill this task significantly better than layers deposited from conventional treatment baths.
  • the acidic phosphating baths according to the invention work very low in sludge. This is a not insignificant advantage for practical use.
  • the deposited layers consist predominantly of Zn phosphate.
  • the small amounts of cobalt contained in the phosphating baths lead one to expect that, given the low surface masses deposited according to the invention, cobalt can no longer be detected in the layers, since the content is below the detection limit. It is surprising, however, that manganese is only found in very small amounts in the layers deposited from the acid phosphating solutions according to the invention.
  • An electrolytically galvanized surface was treated at 30 ° C. with a solution which contained an activating agent containing titanium, as described in DE-A-20 38 105, in an amount of 3 g / l.
  • the activated surface was then treated with a solution of the following composition at 50 ° C: 1.1 g / l Mn2+, 0.50 g / l Zn2+, 0.01 g / l Co2+, 11.2 g / l H2PO4 ⁇ , 1.5 g / l NO3 ⁇ .
  • the free acidity was 6 points and the total acidity was 19.6 points.
  • the sheet was rinsed with water and then passivated with a solution containing Cr6+ + Cr3+ and dried.
  • the mass per unit area of the phosphate coating was 1.15 g / m2.
  • a sheet treated in the same way was cathodically electrocoated and provided with a filler and topcoat that are common in the automotive industry.
  • the painted surface was bombarded with steel granules under defined conditions and then stored at 40 ° C. for 40 h in a 5% saline solution. Then the sheet was again bombarded with steel granules.
  • the sheet according to Example 1 was given characteristic values 3 to 4.
  • Example 1 The activation of the sheets was carried out as shown in Example 1, as was the passivation following the phosphating.
  • the phosphating time and the temperatures also correspond to example 1.
  • the same amounts g / l as in example 1 were used, but the solution contained no cobalt.
  • Free acid and total acid as in Example 1.
  • the weight per unit area of the phosphate coating was 1.3 g / m2.
  • Test sheets made using conventional methods e.g. according to the method proposed in DE-A-32 45 411, show a significantly poorer behavior after the tests described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

A method for phosphate coating zinc or nickel-zinc alloy electrolytically coated metal surfaces, in which they are exposed to a phosphating solution containing zinc, manganese, and phosphate ions, and optionally cobalt and/or nitrate ions. The method is conducted at an elevated temperature for up to slightly more than 5 seconds.

Description

Die Erfindung betrifft ein verbessertes Verfahren zur Erzeugung feinkristalliner, geschlossener Konversionsschichten, überwiegend aus Zinkphosphat bestehend, mit niedriger flächenbezogener Masse in sehr kurzen Behandlungszeiten auf elektrolytisch verzinkten Metallwaren, insbesondere Eisenmetallen, beispielsweise auf elektrolytisch verzinkten Stahlbändern.The invention relates to an improved method for producing fine crystalline, closed conversion layers, consisting predominantly of zinc phosphate, with a low mass per unit area in very short treatment times on electrolytically galvanized metal products, in particular ferrous metals, for example on electrolytically galvanized steel strips.

Das Verfahren ist nicht auf "Reinzinkschichten" beschränkt. Es können auch Stahlbänder behandelt werden, die einen Zinklegierungsüberzug erhalten haben. Als Legierungsbestandteile neben Zink seien Eisen, Nickel und Kobalt beispielhaft angeführt.The process is not limited to "pure zinc layers". Steel strips that have been given a zinc alloy coating can also be treated. In addition to zinc, iron, nickel and cobalt are examples of alloy components.

Die Verwendung von verzinktem Stahl, speziell elektrolytisch verzinktem Stahl in Bandform, hat in den letzten Jahren sehr an Bedeutung gewonnen. Als Folge davon sind die Vorbehandlungs- bzw. Phosphatierungsverfahren für elektrolytisch verzinkten Bandstahl verstärkt bearbeitet worden.The use of galvanized steel, especially electrolytically galvanized steel in strip form, has become very important in recent years. As a result, the pretreatment and phosphating processes for electrolytically galvanized steel strip have been increasingly processed.

Flächenbezogene Massen von 2 bis 3 g/m² galten als erforderlich, um ausreichenden Korrosionsschutz sowohl im anschließend lackierten Zustand als auch nur phosphatiert zu erreichen. Diese vergleichsweise hohen Schichtauflagen führten zu einer Reihe von Problemen, wie unbefriedigende Haftungseigenschaften nachfolgender Beschichtungen besonders bei verformender Weiterverarbeitung. Flächenbezogene Massen von über 2 g/m² sind jedoch auch bei der Verarbeitung im unlackierten, nur phosphatierten Zustand bei Verformungs- und Schweißvorgängen von Nachteil.Area-related masses of 2 to 3 g / m² were considered necessary in order to provide adequate corrosion protection in the subsequent to achieve lacquered condition as well as only phosphated. These comparatively high layer runs led to a number of problems, such as unsatisfactory adhesion properties of subsequent coatings, especially in the case of deforming further processing. However, mass per unit area of over 2 g / m² is also a disadvantage when processing in the unpainted, only phosphated state during deformation and welding processes.

Die Behandlungszeiten lagen bei über 5 sec; damit waren angestrebte Bandgeschwindigkeiten von beispielsweise 90 bis 120 m/min unmöglich oder nur schwierig und mit Qualitätseinbußen, wie nicht geschlossene Schichten, zu erreichen.The treatment times were over 5 seconds; targeted belt speeds of 90 to 120 m / min, for example, were impossible or difficult to achieve and with quality losses, such as non-closed layers.

Die DE-B-19 55 002 schlägt zur Erzeugung dünner, haftfester und korrosionsfester Zinkphosphatschichten auf beispielsweise elektrolytisch verzinkten Stahloberflächen vor, saure Phosphatierungslösungen zu verwenden, denen ein aus Stärke, Stärkederivat oder Polysaccharid durch saure Zersetzung gewonnenes Kohlehydrat zugesetzt wird. Es sollen sich in Behandlungszeiten von 3 bis 10 sec Zinkphosphatschichten mit flächenbezogenen Massen von beispielsweise 1,2 bis 1,8 g/m² bilden.DE-B-19 55 002 proposes the use of acid phosphating solutions to which a carbohydrate obtained from starch, starch derivative or polysaccharide by acidic decomposition is added in order to produce thin, adherent and corrosion-resistant zinc phosphate layers on, for example, electrolytically galvanized steel surfaces. Zinc phosphate layers with mass per unit area of, for example, 1.2 to 1.8 g / m 2 should form in treatment times of 3 to 10 seconds.

Der erwähnte Zusatz führt jedoch in der Praxis zu Schwierigkeiten. Die organischen Bestandteile werden in sauren Lösungen bei erhöhten Temperaturen und zunehmender Badstandzeit zersetzt. Die zunächst niedrigen flächenbezogenen Massen der Phosphatschichten steigen deutlich an. Die Zersetzungsprodukte führen zu Geruchsbelästigungen. Ebenfalls unerwünscht ist die starke Schlammbildung.However, the addition mentioned leads to difficulties in practice. The organic components are decomposed in acidic solutions at elevated temperatures and increasing bath life. The initially low area-related masses of the phosphate layers increase significantly. The decomposition products lead to unpleasant smells. Heavy sludge formation is also undesirable.

Die DE-A-21 00 021 schlägt zur Ausbildung von dünnen geschlossenen Phosphatschichten mit flächenbezogenen Massen von <1,0 g/m² vor, die Metalloberflächen mit Phosphatierungslösungen zu behandeln, die als schichtbildende Kationen im wesentlichen Nickelionen enthalten. Neben den Nickelionen können weitere Metallionen, insbesondere Zinkionen, enthalten sein. Das molare Verhältnis der Nickelionen zu den anderen zweiwertigen Metallionen soll im Bereich von 1 : 0,001 bis 1 : 0,7 liegen.DE-A-21 00 021 proposes to form thin closed phosphate layers with mass per unit area of <1.0 g / m 2 to treat the metal surfaces with phosphating solutions which essentially contain nickel ions as layer-forming cations. In addition to the nickel ions, further metal ions, in particular zinc ions, can be present. The molar ratio of the nickel ions to the other divalent metal ions should be in the range from 1: 0.001 to 1: 0.7.

Es werden im wesentlichen Nickelphosphatschichten abgeschieden. Sie erfordern im Gegensatz zu den gewünschten Zinkphosphatschichten stets eine nachfolgende Beschichtung mit beispielsweise einer Lackierung, um einen akzeptablen Korrosionsschutz zu erzielen. Dies stellt einen gravierenden Nachteil dar.Essentially, nickel phosphate layers are deposited. In contrast to the desired zinc phosphate layers, they always require a subsequent coating with, for example, a varnish in order to achieve acceptable corrosion protection. This is a serious disadvantage.

Wie bereits erwähnt, hat die Forderung nach verbessertem Korrosionsschutz bei vielen Industriegütern zu einem verstärkten Einsatz von elektrolytisch verzinktem Stahl geführt. Damit waren jedoch auch verbesserte Phosphatierungsverfahren erforderlich. Einen wesentlichen Schritt in die gewünschte Richtung stellt ein in der DE-A-32 45 411 vorgeschlagenes Verfahren dar. Es wird ein Verfahren zur Phosphatierung von elektrolytisch verzinkten Stahlbändern beschrieben. In Behandlungszeiten von nicht wesentlich über 5 sec, meist in 5 oder weniger, werden Zinkphosphatschichten mit flächenbezogenen Massen unterhalb 2 g/m², bevorzugt 0,6 bis 1,9 g/m², abgeschieden, die ohne Einbußen bezüglich des geforderten Korrosionsschutzes, sowohl im unlackierten als auch im lackierten Zustand, die durch hohe Schichtauflage bedingten Nachteile nicht aufweisen. Man arbeitet mit sauren Phosphatierungslösungen, die neben Zink- und Phosphationen weitere Metallkationen und/oder Anionen sauerstoffhaltiger Säuren mit Beschleunigerwirkung enthalten können. Der Gehalt an Zn²⁺-Kationen liegt bei etwa 1 bis 2,5 g/l, der Gehalt an freier Säure im Bereich von 0,8 bis 3 Punkten, das Säureverhältnis (Gesamtsäure/freie Säure) wird im Bereich von 5 bis 10 gehalten. Vorzugsweise wird mit nitrathaltigen Phosphatierungslösungen gearbeitet.As already mentioned, the demand for improved corrosion protection has led to an increased use of electrolytically galvanized steel in many industrial goods. However, this also required improved phosphating processes. An essential step in the desired direction is a method proposed in DE-A-32 45 411. A method for the phosphating of electrolytically galvanized steel strips is described. In treatment times of not significantly more than 5 seconds, usually in 5 or less, zinc phosphate layers with mass per unit area of less than 2 g / m², preferably 0.6 to 1.9 g / m², are deposited, which do not affect the required corrosion protection, both in the unpainted as well as in the lacquered state, which do not have disadvantages due to the high layer coverage. You work with acid phosphating solutions, which, in addition to zinc and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action. The content of Zn²⁺ cations is about 1 to 2.5 g / l, the free acid content is in the range of 0.8 to 3 points, the acid ratio (total acid / free acid) is kept in the range of 5 to 10 . It is preferred to work with phosphate solutions containing nitrate.

Das Gewichtsverhältnis von Zn²⁺/NO₃⁻ wird im Bereich von 1/(1 bis 8) gehalten, das Gewichtsverhältnis PO₄³⁻/NO₃⁻ im Bereich von 1/(0,1 bis 2,5).The weight ratio of Zn²⁺ / NO₃⁻ is kept in the range of 1 / (1 to 8), the weight ratio PO₄³⁻ / NO₃⁻ in the range of 1 / (0.1 to 2.5).

Es können neben Zink auch andere Kationen mitverwendet werden, in der Regel jedoch in untergeordneten Mengen. So werden in der DE-A-32 45 411 Nickelionen mitverwendet, wobei der Gehalt an Zn²⁺ bevorzugt stets überwiegt. Besonders brauchbar können Verhältnisse von 20 bis 2 Gewichtsteilen Zn²⁺-Ionen auf einen Gewichtsteil Ni²⁺-Ionen sein. Meist ist Nickel in der abgeschiedenen Schicht analytisch nicht nachweisbar, es liegt also in der Schicht nur in Spuren vor, die unterhalb der Nachweisgrenze bleiben. Die Phosphatierung erfolgt im Temperaturbereich 50 bis 70°C, bevorzugt im Bereich 60 bis 65°C. Das Verfahren ist sowohl für Spritz- als auch für Tauchauftrag geeignet.In addition to zinc, other cations can also be used, but usually in minor amounts. Thus, DE-A-32 45 411 uses nickel ions, the Zn²⁺ content preferably always predominating. Ratios of 20 to 2 parts by weight of Zn²⁺ ions to one part by weight of Ni²⁺ ions can be particularly useful. Most of the time, nickel cannot be detected analytically in the deposited layer, so it is only present in the layer in traces that remain below the detection limit. The phosphating takes place in the temperature range from 50 to 70 ° C., preferably in the range from 60 to 65 ° C. The process is suitable for both spray and dip application.

Wie erwähnt, hat die Verwendung von elektrolytisch verzinktem Stahl bei der Herstellung der verschiedensten Industriegüter in den letzten Jahren erheblich zugenommen, so auch in der Automobilindustrie. Der Grund ist, wie erwähnt, die Forderung nach verbessertem Korrosionsschutz. Aus demselben Grunde hat die Automobilindustrie den Grundierungsauftrag besonders im Karosseriebau von der anodischen auf die kathodische Elktrotauchlackierung umgestellt. Dies bedingte Phosphatierungsverfahren, die einen hohen Eisenanteil in der erzeugten Schicht aufwiesen, d.h. neben Zinkphosphat (Hopeit) soll in möglichst hohen Anteilen Zinkeisenphosphat (Phosphophyllit) gebildet werden. Das benötigte Eisen muß durch eine saure Beizreaktion vom Substrat geliefert werden.As mentioned, the use of electrolytically galvanized steel in the manufacture of a wide variety of industrial goods has increased significantly in recent years, including in the automotive industry. The reason, as mentioned, is the need for improved corrosion protection. For the same reason, the automotive industry has the priming job, particularly in body construction, from anodic to cathodic Electrodeposition coating changed. This necessitated phosphating processes which had a high iron content in the layer produced, ie in addition to zinc phosphate (hopeit), zinc iron phosphate (phosphophyllite) should be formed in the highest possible proportions. The iron required must be supplied from the substrate by an acid pickling reaction.

Es hat sich außerdem als äußerst wünschenswert gezeigt, daß vor einer kathodischen Elektrotauchlackierung Phosphatschichten mit einer würfel- oder quaderähnlichen Struktur abgeschieden werden, nadelförmige Kristalle sind unerwünscht. Beide Eigenschaften, der Gehalt an Eisen in der Schicht und die geänderte Schichtmorphologie, lassen sich durch geeignete Formulierung der Phosphatierungslösungen und durch entsprechende Prozeßführung erreichen. Hinweise auf diese Zusammenhänge finden sich in der Literatur. Es seien angeführt:

  • 1.) Klaus Wittel, "Moderne Zinkphosphatierverfahren, Niedrig-Zink-Verfahren", Industrie-Lackierbetrieb 5/83, Seite 169 und Industrie-Lackierbetrieb 6/83, Seite 210.
  • 2.) James W. Davis, "The pretreatment of steel and galvanized steel for cathodic electrodeposition paint systems". SAE Technical Paper Series 820336, SAE The Engineering Resource for Advancing Mobility, 400 Commonwealth Drive, Warrendale, PA 15096, USA.
  • 3.) Harry E. Chandler, "Second Generation Zinc Phosphate Coating". Metal Progress May 1982, 1982 American Society for Metals.
It has also been shown to be extremely desirable that phosphate layers with a cube-like or cuboid-like structure are deposited before cathodic electrocoating. Needle-shaped crystals are undesirable. Both properties, the iron content in the layer and the changed layer morphology, can be achieved by suitable formulation of the phosphating solutions and by appropriate process control. References to these relationships can be found in the literature. The following should be mentioned:
  • 1.) Klaus Wittel, "Modern zinc phosphating processes, low-zinc processes", industrial paint shop 5/83, page 169 and industrial paint shop 6/83, page 210.
  • 2.) James W. Davis, "The pretreatment of steel and galvanized steel for cathodic electrodeposition paint systems". SAE Technical Paper Series 820336, SAE The Engineering Resource for Advancing Mobility, 400 Commonwealth Drive, Warrendale, PA 15096, USA.
  • 3.) Harry E. Chandler, "Second Generation Zinc Phosphate Coating". Metal Progress May 1982, 1982 American Society for Metals.

Die erste Forderung, der Einbau von Eisen in die Schicht, läßt sich naturgemäß auf einer Zinkoberfläche nicht verwirklichen. Neben vielen anderen Anwendungsgebieten wird elektrolytisch verzinkter Bandstahl auch verstärkt im Karosseriebau eingesetzt; dabei wird die Phosphatierung in vielen Fällen bereits in kombinierten Verzinkungs- und Vorbehandlungslinien aufgebracht und das Material als verzinkter, "vorphosphatierter" Stahl weitergeliefert.The first requirement, the incorporation of iron into the layer, cannot, of course, be met on a zinc surface. In addition to many other areas of application, electrolytically galvanized steel strip is also increasingly being used in body construction; in many cases the phosphating is already applied in combined galvanizing and pre-treatment lines and the material is supplied as galvanized, "pre-phosphated" steel.

Die Phosphatierung sollte also auch geeignet sein für eine nachfolgende kathodische Elektrotauchlackierung. Da Eisen im vorliegenden Fall nicht in die Phosphatschicht eingebaut werden kann, müssen Schichten mit Würfel- oder Quaderstruktur erzeugt werden.The phosphating should therefore also be suitable for subsequent cathodic electrocoating. Since iron cannot be built into the phosphate layer in the present case, layers with a cubic or cuboid structure must be created.

Gegenstand der Erfindung ist ein in der Folge beschriebenes Verfahren, das die gestellte Forderung erfüllt.The object of the invention is a method described below which fulfills the requirement.

Man arbeitet mit sauren Phosphatierungslösungen, die neben Zink-, Mangan- und Phosphationen weitere Metallkationen und/oder Anionen sauerstoffhaltiger Säuren mit Beschleunigerwirkung enthalten können. Die erzeugten Phosphatschichten haben flächenbezogene Massen von weniger als 2 g/m², der bevorzugte Bereich ist 0,9 bis 1,6 g/m². Es können Schichten im Bereich von 0,6 bis 1,9 g/m² abgeschieden werden. Die sauren Phosphatierungslösungen sind dadurch gekennzeichnet, daß mit einem Gehalt an Zink-Kationen gearbeitet wird, der im Bereich von 0,1 bis 0,8 g/l liegt, vorzugsweise bei 0,25 bis 0,6 g/l. Der Gehalt von Mangan-II-Kationen wird im Bereich von 0,5 bis 2 g/l gehalten, vorzugsweise bei 0,75 bis 1,25 g/l.Acid phosphating solutions are used which, in addition to zinc, manganese and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action. The phosphate layers produced have mass per unit area of less than 2 g / m², the preferred range is 0.9 to 1.6 g / m². Layers in the range of 0.6 to 1.9 g / m² can be deposited. The acidic phosphating solutions are characterized in that the zinc cation content is in the range from 0.1 to 0.8 g / l, preferably 0.25 to 0.6 g / l. The content of manganese II cations is kept in the range of 0.5 to 2 g / l, preferably 0.75 to 1.25 g / l.

Der Gehalt an freier Säure wird in einem Bereich von 4 bis 8 Punkten gehalten, bevorzugt sind 5 bis 7 Punkte. Das Säureverhältnis (Gesamtsäure/freie Säure) wird im Bereich von 2,5 bis 5 Punkte gehalten, der bevorzugte Bereich liegt bei 2,8 bis 4,5.The free acid content is kept in a range from 4 to 8 points, preferably 5 to 7 points. The acid ratio (total acid / free acid) is kept in the range of 2.5 to 5 points, the preferred range is 2.8 to 4.5.

Zu den Begriffsbestimmungen der freien Säure, der Gesamtsäure und der im folgenden noch erwähnten Phosphate in Phosphatierungsbädern wird auf den Stand der Technik verwiesen, insbesondere auf die Veröffentlichung Christian Ries "Überwachung von Phosphatierungsbädern", Galvanotechnik, 50, (1968), Nr. 1, Seiten 37 bis 39 (Eugen G. Leuze Verlag, Saulgau (Württ.)). Die Punkte oder Punktzahl der freien Säure ist definiert als die Anzahl Milliliter 0,1 N NaOH, die zur Titration von 10 ml Badlösung gegen Dimethylgelb, Methylorange oder Bromphenolblau erforderlich ist. Die Gesamtsäure-Punktzahl ergibt sich als die Anzahl Milliliter 0,1 N NaOH, die zur Titration von 10 ml Badlösung gegen Phenolphtalein als Indikator bis zur ersten Rosafärbung nötig sind.With regard to the definitions of free acid, total acid and the phosphates mentioned below in phosphating baths, reference is made to the prior art, in particular to the publication Christian Ries "Monitoring of Phosphating Baths", Galvanotechnik, 50, (1968), No. 1, Pages 37 to 39 (Eugen G. Leuze Verlag, Saulgau (Württ.)). The free acid score is defined as the number of milliliters of 0.1 N NaOH required to titrate 10 ml bath solution against dimethyl yellow, methyl orange or bromophenol blue. The total acid score is the number of milliliters of 0.1 N NaOH required to titrate 10 ml bath solution against phenolphthalein as an indicator until the first pink color.

Das erfindungsgemäße Verfahren ist weiterhin dadurch gekennzeichnet, daß die Phosphatierungsbäder Nitrat enthalten. Das Gewichtsverhältnis der Summe an Zn²⁺- und Mn²⁺-Kationen zu den Nitrationen wird im Bereich (ZN²⁺ + Mn²⁺)/NO₃⁻ = 1 :/(0,5 bis 1,5) gehalten, bevorzugt im Bereich 1/(0,7 bis 1,25), während das Verhältnis Zn²⁺/Mn²⁺ im Bereich 1/(1 bis 3), bevorzugt im Bereich 1/(1,5 bis 2,5) liegt, und das Gewichtsverhältnis H₂PO₄⁻/NO₃⁻ im Bereich von (6 bis 9)/1, bevorzugt bei (7 bis 8)/1, gehalten wird.The process according to the invention is further characterized in that the phosphating baths contain nitrate. The weight ratio of the sum of Zn²⁺ and Mn²⁺ cations to the nitrate ions is kept in the range (ZN²⁺ + Mn²⁺) / NO₃⁻ = 1: / (0.5 to 1.5), preferably in the range 1 / ( 0.7 to 1.25), while the ratio Zn²⁺ / Mn²⁺ in the range 1 / (1 to 3), preferably in the range 1 / (1.5 to 2.5), and the weight ratio H₂PO₄⁻ / NO₃ ⁻ In the range from (6 to 9) / 1, preferably at (7 to 8) / 1.

Für die erfindungsgemäßen Phosphatierungslösungen ist außerdem wesentlich, daß das Gewichtsverhältnis der Summe von Zn²⁺- und Mn²⁺-Kationen zu primären H₂PO₄⁻ - Anionen im Bereich 1/(6 bis 9) gehalten wird.It is also essential for the phosphating solutions according to the invention that the weight ratio of Sum of Zn²⁺ and Mn²⁺ cations to primary H₂PO₄⁻ anions in the range 1 / (6 to 9) is kept.

Es hat sich außerdem als vorteilhaft erwiesen, die erfindungsgemäßen Phosphatierungslösungen mit einem geringen Gehalt an Kobalt zu fahren. Der Gehalt an Kobalt, bezogen auf den Gehalt an Zn²⁺ und Mn²⁺ liegt bevorzugt bei einem Teil Kobalt auf 100 bis 150 Teile Zn²⁺ und Mn²⁺.It has also proven to be advantageous to drive the phosphating solutions according to the invention with a low cobalt content. The cobalt content, based on the Zn²⁺ and Mn²⁺ content, is preferably one part of cobalt per 100 to 150 parts of Zn²⁺ and Mn²⁺.

Die Behandlungszeiten sind, im Hinblick auf die modernen Anlagen zur elektrolytischen Verzinkung und Phosphatierung von Stahlbändern, 90 bis 120 m/min Geschwindigkeit des Bandes, bewußt kurz gehalten. 5 sec werden nicht wesentlich überschritten, im allgemeinen wird mit Behandlungszeiten von 2,5 bis 5 sec gearbeitet.The treatment times are deliberately kept short in view of the modern systems for the electrolytic galvanizing and phosphating of steel strips, 90 to 120 m / min speed of the strip. 5 seconds are not significantly exceeded, treatment times of 2.5 to 5 seconds are generally used.

Die Phosphatierung erfolgt zweckmäßigerweise bei erhöhten Temperaturen, insbesondere im Temperaturbereich von 40 bis 70°C, dabei kann besonders der Temperaturbereich von 45 bis 55°C geeignet sein. Jede technisch brauchbare Möglichkeit des Aufbringens der Behandlungslösung ist anwendbar. Es ist besonders interessant, daß das erfindungsgemäße Verfahren sowohl mittels Spritztechnik als auch im Tauchverfahren durchführbar ist.The phosphating is expediently carried out at elevated temperatures, in particular in the temperature range from 40 to 70 ° C., the temperature range from 45 to 55 ° C. being particularly suitable. Any technically useful way of applying the treatment solution is applicable. It is particularly interesting that the process according to the invention can be carried out both by spraying technology and by immersion.

Vor dem Aufbringen der Phosphatierungslösung muß die elektrolytisch verzinkte Oberfläche vollständig wasserbenetzbar sein. Dies ist in Bandanlagen in der Regel gegeben. Wenn die Oberfläche des elektrolytisch verzinkten Bandes zwecks temporärem Korrosionsschutz beölt ist, so muß dieses Öl vor der Phosphatierung mit bekannten, geeigneten Mitteln und Verfahren entfernt werden.Before the phosphating solution is applied, the electrolytically galvanized surface must be completely water wettable. This is usually the case in conveyor systems. If the surface of the electrolytically galvanized strip is oiled for the purpose of temporary corrosion protection, this oil must be removed by known, suitable means and methods before phosphating.

Die wasserbenetzbare elektrolytisch verzinkte Metalloberfläche wird vor der Phosphatierung zweckmäßig mit an sich bekannten aktivierenden Lösungen behandelt. Die Aktivierungsmittel enthalten im wesentlichen Titansalze und Phosphate, zusammen mit organischen Komponenten. Hinweise auf geeignete Aktivierungsverfahren sind der DE-A-20 38 105 und der DE-A-20 43 085 zu entnehmen.The water-wettable electrolytically galvanized metal surface is expediently treated with activating solutions known per se before phosphating. The activators essentially contain titanium salts and phosphates, together with organic components. Information on suitable activation methods can be found in DE-A-20 38 105 and DE-A-20 43 085.

Nach dem Stand der Technik wie z.B. in der DE-A-21 00 021 beschrieben, kann es auch für das erfindungsgemäße Verfahren vorteilhaft sein, die abgeschiedenen Konversionsschichten mit verdünnter Chromsäure und/oder Phosphorsäure zu passivieren. Die Chromsäurekonzentration liegt dabei im allgemeinen zwischen 0,01 und 1 g/l. Es ist auch möglich, die Schutzschichten mit verdünnter Chromsäure zu passivieren, die Chrom-III-Ionen enthält. Die im allgemeinen verwendeten Konzentrationen liegen bei 0,2 bis 4,0 g/l CrO₃ (sechswertiges Chrom) und 0,5 bis 7,5 g/l Cr₂O₃ (dreiwertiges Chrom).According to the state of the art, e.g. described in DE-A-21 00 021, it can also be advantageous for the process according to the invention to passivate the deposited conversion layers with dilute chromic acid and / or phosphoric acid. The chromic acid concentration is generally between 0.01 and 1 g / l. It is also possible to passivate the protective layers with dilute chromic acid, which contains chromium III ions. The concentrations generally used are 0.2 to 4.0 g / l CrO₃ (hexavalent chromium) and 0.5 to 7.5 g / l Cr₂O₃ (trivalent chromium).

Aus den erfindungsgemäßen sauren Phosphatierungslösungen werden auf elektrolytisch verzinktem Stahl Phosphatschichten erzeugt, die eindeutig eine würfel- bzw. quaderförmige Struktur zeigen. Dies wird durch Raster-Elektronen-Mikroskopaufnahmen belegt. Mit dem bisher bekannten Verfahren, auch mit dem in der DE-A-32 45 411 beschriebenen Verfahren, war das nicht möglich. Es wurden Kristalle mit nadelförmiger Gestalt abgeschieden. Das erfindungsgemäße Verfahren löst damit die gestellte Aufgabe, auf elektrolytisch verzinktem Stahl eine für die nachfolgende kathodische Elektrotauchlackierung geeignete Konversionsschicht zu erzeugen. Der beschriebene Schichttyp wird auch auf einem mit einer Zink-Nickel-Legierung galvanisch beschichteten Stahl erzielt.From the acidic phosphating solutions according to the invention, phosphate layers are produced on electrolytically galvanized steel, which clearly show a cuboid or cuboid structure. This is proven by scanning electron microscope images. This was not possible with the previously known method, including the method described in DE-A-32 45 411. Crystals with a needle-like shape were deposited. The method according to the invention thus achieves the object of providing a conversion layer suitable for the subsequent cathodic electrocoating on electrolytically galvanized steel produce. The type of layer described is also achieved on steel galvanically coated with a zinc-nickel alloy.

Im Vergleich zu den bisher bekannten Verfahren wird eine farblich hellere Konversionsschicht erzeugt. Dies ist besonders dann erwünscht, wenn der elektrolytisch verzinkte und phosphatierte Stahl ohne weitere nachfolgende Beschichtung verwendet wird. In diesem Fall wird von der Phosphatierung erwartet, daß sie sowohl das Auftreten des sogenannten "Weißrost" (Bildung von Zinkkorrosionsprodukten) als auch den "Rotrost" (Eisenkorrosionsprodukte) erheblich verzögert bzw. zurückdrängt.In comparison to the previously known methods, a lighter colored conversion layer is produced. This is particularly desirable when the electrolytically galvanized and phosphated steel is used without further coating. In this case, phosphating is expected to significantly delay or suppress both the occurrence of the so-called "white rust" (formation of zinc corrosion products) and the "red rust" (iron corrosion products).

Die aus den erfindungsgemäßen sauren Phosphatierungslösungen abgeschiedenen Schichten erfüllen diese Aufgabe deutlich besser als Schichten, die aus herkömmlichen Behandlungsbädern abgeschieden wurden.The layers deposited from the acidic phosphating solutions according to the invention fulfill this task significantly better than layers deposited from conventional treatment baths.

Dies läßt sich durch vergleichende Prüfung nach DIN 50 021 SS (Salzsprühtest) belegen.This can be proven by a comparative test according to DIN 50 021 SS (salt spray test).

Zur kombininerten Haftungs- und Korrosionsprüfung von elektrolytisch verzinktem, phosphatiertem und unter Verwendung einer kathodischen Elektrotauchlackierung als Grundierung lackiertem Stahl, werden neuerdings verstärkt Wasserlagerungstests durchgeführt. Auch in solchen Tests erweisen sich die aus den erfindungsgemäßen sauren Phosphatierungsbädern abgeschiedenen Schichten den nach herkömmlichen Verfahren erzeugten Schichten überlegen.For the combined adhesion and corrosion testing of electrolytically galvanized, phosphated and steel coated with a cathodic electrodeposition coating as primer, water storage tests have recently been increasingly carried out. In such tests too, the layers deposited from the acid phosphating baths according to the invention prove to be superior to the layers produced by conventional methods.

Aufgrund des hohen Gehaltes an freien Säuren arbeiten die erfindungsgemäßen sauren Phosphatierungsbäder sehr schlammarm. Das stellt einen für den praktischen Einsatz nicht unwesentlichen Vorteil dar.Because of the high content of free acids, the acidic phosphating baths according to the invention work very low in sludge. This is a not insignificant advantage for practical use.

Die vergleichsweise niedrigen möglichen Badtemperaturen von 45 bis 55°C kommen dem Streben nach Energieeinsparungen entgegen.The comparatively low possible bath temperatures of 45 to 55 ° C meet the pursuit of energy savings.

Die abgeschiedenen Schichten bestehen, wie eingangs erwähnt, überwiegend aus Zn-Phosphat. Die geringen Mengen an in den Phosphatierungsbädern enthaltenem Kobalt lassen erwarten, daß bei den erfindungsgemäß abgeschiedenen niedrigen flächenbezogenen Massen Kobalt in den Schichten nicht mehr nachgewiesen werden kann, da der Gehalt unterhalb der Nachweisgrenze liegt. Es ist jedoch überraschend, daß Mangan in den aus den erfindungsgemäßen sauren Phosphatierungslösungen abgeschiedenen Schichten nur in sehr kleinen Mengen gefunden wird.As mentioned at the beginning, the deposited layers consist predominantly of Zn phosphate. The small amounts of cobalt contained in the phosphating baths lead one to expect that, given the low surface masses deposited according to the invention, cobalt can no longer be detected in the layers, since the content is below the detection limit. It is surprising, however, that manganese is only found in very small amounts in the layers deposited from the acid phosphating solutions according to the invention.

Die bei Stichproben gefundenen Werte liegen bei 25 bis 125 mg/m² Mangan. Der exakte Mechanismus der Schichtbildung aus den erfindungsgemäßen Lösungen wird zur Zeit noch nicht völlig verstanden. Man kann jedoch davon ausgehen, daß Zinkgehalte in den Lösungen nur für den Start erforderlich sind. Bei längeren Standzeiten der Bäder wird das für die Schichtbildung benötigte Zink durch den Beizangriff der sauren Phosphatierungslösungen auf die elektrolytische Verzinkung geliefert. Diese Ansicht wird durch die Ergebnisse von ausgedehnten Durchsatzversuchen gestützt, bei denen die Bäder problemlos mit "zinkarmen" bis zinkfreien Nachschärflösungen betrieben wurden.The values found in samples are 25 to 125 mg / m² manganese. The exact mechanism of the layer formation from the solutions according to the invention is not yet fully understood. However, it can be assumed that zinc levels in the solutions are only required for the start. If the baths are to stand for a longer period of time, the zinc required for the layer formation is supplied by the acidic phosphating solutions pickling on the electrolytic galvanizing. This view is supported by the results of extensive throughput tests, in which the baths were operated with "low-zinc" to zinc-free resharpening solutions.

Die nachfolgenden Beispiele schildern die erfindungsgemäße Arbeitsweise:The following examples describe the mode of operation according to the invention:

Beispiel 1example 1

Eine elektrolytisch verzinkte Oberfläche wurde bei 30°C mit einer Lösung behandelt, die ein titanhaltiges Aktivierungsmittel, wie in DE-A-20 38 105 beschrieben, in einer Menge von 3 g/l enthielt. Danach wurde die aktivierte Oberfläche mit einer Lösung folgender Zusammensetzung bei 50°C behandelt:
1,1 g/l Mn²⁺,
0,50 g/l Zn²⁺,
0,01 g/l Co²⁺,
11,2 g/l H₂PO₄⁻,
1,5 g/l NO₃⁻.
An electrolytically galvanized surface was treated at 30 ° C. with a solution which contained an activating agent containing titanium, as described in DE-A-20 38 105, in an amount of 3 g / l. The activated surface was then treated with a solution of the following composition at 50 ° C:
1.1 g / l Mn²⁺,
0.50 g / l Zn²⁺,
0.01 g / l Co²⁺,
11.2 g / l H₂PO₄⁻,
1.5 g / l NO₃⁻.

Die freie Säure betrug 6 Punkte und die Gesamtsäure 19,6 Punkte. Nach einer Phosphatierzeit von 3,5 sec wurde das Blech mit Wasser gespült und anschließend mit einer Cr⁶⁺ + Cr³⁺-haltigen Lösung passiviert und getrocknet. Die flächenbezogene Masse der Phosphatauflage war 1,15 g/m².The free acidity was 6 points and the total acidity was 19.6 points. After a phosphating time of 3.5 seconds, the sheet was rinsed with water and then passivated with a solution containing Cr⁶⁺ + Cr³⁺ and dried. The mass per unit area of the phosphate coating was 1.15 g / m².

Nach 55 h Salzsprühtest (DIN 50021) zeigte die unlackierte, phosphatierte Probe nur auf 10 bis 20 % der Fläche Weißrost; Rotrost war nicht feststellbar.After 55 h of salt spray test (DIN 50021), the unpainted, phosphated sample showed white rust only on 10 to 20% of the surface; There was no red rust.

Ein gleich behandeltes Blech wurde kathodisch elektrotauchlackiert und mit einem in der Automobilindustrie üblichen Füller und Decklack versehen. Die lackierte Fläche wurde mit Stahlgranulat unter definierten Bedingungen beschossen und anschließend bei 40°C für 40 h in einer 5 %igen Kochsalzlösung gelagert. Danach wurde das Blech erneut mit Stahlgranulat beschossen.A sheet treated in the same way was cathodically electrocoated and provided with a filler and topcoat that are common in the automotive industry. The painted surface was bombarded with steel granules under defined conditions and then stored at 40 ° C. for 40 h in a 5% saline solution. Then the sheet was again bombarded with steel granules.

Die Größe der Fläche, auf welcher der Lackaufbau durch diesen Test zerstört, d.h. der Untergrund freigelegt wird, kann durch einen Kennwert ausgedrückt werden:
größte mögliche Fläche = schlechtestes Testergebnis = Kennwert 10
kleinste mögliche Fläche = bestes Testergebnis = Kennwert 1
The size of the surface on which the paint build-up is destroyed by this test, ie the surface is exposed, can be expressed by a characteristic value:
largest possible area = worst test result = characteristic value 10
smallest possible area = best test result = characteristic value 1

Das Blech nach Beispiel 1 erhielt Kennwert 3 bis 4.The sheet according to Example 1 was given characteristic values 3 to 4.

Beispiel 2Example 2

Die Aktivierung der Bleche wurde wie in Beispiel 1 gezeigt durchgeführt, ebenso die der Phosphatierung folgende Passivierung. Die Phosphatierungszeit und die Temperaturen entsprechen ebenfalls Beispiel 1. Es wurden die gleichen Mengen g/l wie in Beispiel 1 verwendet, jedoch enthielt die Lösung kein Kobalt. Freie Säure und Gesamtsäure ebenfalls wie in Beispiel 1. Die flächenbezogene Masse der Phosphatauflage war 1,3 g/m².The activation of the sheets was carried out as shown in Example 1, as was the passivation following the phosphating. The phosphating time and the temperatures also correspond to example 1. The same amounts g / l as in example 1 were used, but the solution contained no cobalt. Free acid and total acid as in Example 1. The weight per unit area of the phosphate coating was 1.3 g / m².

Nach 55 h Salzsprühtest zeigte die phosphatierte, unlackierte Probe auf ca. 40 % der Fläche Weißrost und auf ca. 10 % der Fläche Rotrost. Der Wasserlagerungstest des wie in Beispiel 1 lackierten und geprüften Bleches ergab einen Kennwert von 6.After a 55-hour salt spray test, the phosphated, unpainted sample showed white rust on approximately 40% of the surface and red rust on approximately 10% of the surface. The water storage test of the sheet painted and tested as in Example 1 gave a characteristic value of 6.

Prüfbleche, die nach herkömmlichen Verfahren, z.B. nach dem in der DE-A-32 45 411 vorgeschlagenen Verfahren, hergestellt wurden, zeigen nach den beschriebenen Tests ein deutlich schlechteres Verhalten.Test sheets made using conventional methods, e.g. according to the method proposed in DE-A-32 45 411, show a significantly poorer behavior after the tests described.

Claims (12)

  1. A process for phosphating electrolytically zinc-coated metal goods, preferably electrolytically zinc-coated steel goods, more especially electrolytically zinc-coated steel strip, by brief treatment for not much longer than 5 seconds with acidic phosphating solutions which, in addition to zinc, manganese and phosphate ions, contain other metal cations and/or anions of oxygen-containing acids having an accelerating effect to form coatings consisting predominantly of zinc phosphate and having a weight per unit area of less than 2 g/m², characterized in that the phosphating solutions used are acidic phosphating solutions of which the content of zinc cations (Zn²⁺) is from 0.1 to 0.8 g/l and their content of manganese cations (Mn²⁺) from 0.5 to 2.0 g/l, while the free acid content is from 4 to 8 points and the acid ratio (total acid to free acid) in the range from 2.5 to 5.
  2. A process as claimed in claim 1, characterized in that the content of Zn²⁺-cations is in the range from 0.25 to 0.6 g/l.
  3. A process as claimed in claims 1 and 2, characterized in that the content of Mn²⁺-cations is in the range from 0.75 to 1.25 g/l.
  4. A process as claimed in claims 1 to 3, characterized in that the free acid content is from 5 to 7 points and the acid ratio is in the range of from 2.8 to 4.5.
  5. A process as claimed in claims 1 to 4, characterized in that coatings predominantly consisting of zinc phosphate are desposited in a thickness of from 0.6 to 1.9 g/m².
  6. A process as claimed in claims 1 to 5, characterized in that nitrate-containing phosphating baths are used, the ratio by weight of Zn²⁺ + Mn²⁺ to NO₃⁻ being in the range of 1/(0.5 to 1.5).
  7. A process as claimed in claims 1 to 6, characterized in that the ratio of Zn²⁺ to Mn²⁺ is in the range of 1/(1 to 3).
  8. A process as claimed in claims 1 to 7, characterized in that the ratio by weight of H₂PO₄⁻ to NO₃⁻ is in the range of (6 to 9)/1.
  9. A process as claimed in claims 1 to 8, characterized in that the ratio of (Zn²⁺ + Mn²⁺) to H₂PO₄⁻ is in the range of 1/(6 to 9).
  10. A process as claimed in claims 1 to 9, characterized in that the baths used contain small quantities of cobalt, the cobalt content, based on the content of (Zn²⁺ + Mn²⁺) being 1 part of cobalt to 100 - 150 parts (Zn²⁺ + Mn²⁺).
  11. A process as claimed in claims 1 to 10, characterized in that phosphating is carried out at a temperature of from 40 to 70°C.
  12. A process as claimed in claims 1 to 11, characterized in that electrolytically zinc-coated strip steel which has been subjected to an activating pretreatment known per se with titanium-containing activating solutions is phosphated.
EP86114075A 1985-10-18 1986-10-10 Phosphatizing process for electrolytically galvanized metal objects Expired - Lifetime EP0219779B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86114075T ATE70314T1 (en) 1985-10-18 1986-10-10 PROCESSES FOR THE PHOSPHATION OF ELECTROLYTIC GALVANIZED METALWORK.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3537108 1985-10-18
DE19853537108 DE3537108A1 (en) 1985-10-18 1985-10-18 METHOD FOR PHOSPHATING ELECTROLYTICALLY GALVANIZED METALWARE

Publications (3)

Publication Number Publication Date
EP0219779A2 EP0219779A2 (en) 1987-04-29
EP0219779A3 EP0219779A3 (en) 1988-12-21
EP0219779B1 true EP0219779B1 (en) 1991-12-11

Family

ID=6283862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86114075A Expired - Lifetime EP0219779B1 (en) 1985-10-18 1986-10-10 Phosphatizing process for electrolytically galvanized metal objects

Country Status (10)

Country Link
US (1) US4762572A (en)
EP (1) EP0219779B1 (en)
JP (1) JPH086183B2 (en)
KR (1) KR930010339B1 (en)
AT (1) ATE70314T1 (en)
AU (1) AU581789B2 (en)
CA (1) CA1240905A (en)
DE (2) DE3537108A1 (en)
ES (1) ES2002422A6 (en)
ZA (1) ZA867903B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3927131A1 (en) * 1989-08-17 1991-02-21 Henkel Kgaa METHOD FOR THE PRODUCTION OF MANGANIZED ZINC PHOSPHATE LAYERS ON GALVANIZED STEEL
US5118367A (en) * 1989-09-25 1992-06-02 The Goodyear Tire & Rubber Company Process for treating a brass-plated steel wire
JPH05287549A (en) * 1992-04-03 1993-11-02 Nippon Paint Co Ltd Zinc phosphate treatment on metallic surface for cation type electrodeposition coating
DE4228470A1 (en) * 1992-08-27 1994-03-03 Henkel Kgaa Process for phosphating steel strips galvanized on one side
CA2169927A1 (en) * 1993-09-17 1995-03-23 Kevin Brown Pre-rinse for phosphating metal surfaces
DE19808755A1 (en) 1998-03-02 1999-09-09 Henkel Kgaa Layer weight control for strip phosphating
CA2390018C (en) * 1999-11-04 2010-10-19 Henkel Corporation Zinc phosphating process and composition with reduced pollution potential
US20060054248A1 (en) * 2004-09-10 2006-03-16 Straus Martin L Colored trivalent chromate coating for zinc
WO2009017535A2 (en) * 2007-06-07 2009-02-05 Henkel Ag & Co. Kgaa High manganese cobalt-modified zinc phosphate conversion coating
CN101827903B (en) * 2007-08-24 2012-12-26 Posco公司 Coating composition for steel sheets having zinc and zinc alloy coating layer, method for forming coating layer using the coating composition and steel sheet having the coating layer formed thereof
DE202011107125U1 (en) * 2011-04-13 2011-11-30 Tata Steel Ijmuiden Bv Thermoformable strip, sheet or blank and thermoformed product
CN102864446A (en) * 2012-10-12 2013-01-09 广西工学院 Normal-temperature phosphating solution and method for preparing same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB526815A (en) * 1939-03-14 1940-09-26 Samuel Thomas Roberts Improvements relating to the rustproofing of ferrous surfaces prior to painting or enamelling
US3338755A (en) * 1963-09-03 1967-08-29 Hooker Chemical Corp Production of phosphate coatings on metals
US3625777A (en) * 1968-10-31 1971-12-07 Hooker Chemical Corp Process for phosphate conversion coating
DE2043085C3 (en) * 1970-08-31 1979-03-29 Gerhard Collardin Gmbh, 5000 Koeln Process for applying zinc phosphate layers to electrolytically galvanized material
DE2100021A1 (en) * 1971-01-02 1972-09-07 Collardin Gmbh Gerhard Process for applying phosphate layers to steel, iron and zinc surfaces
IT1120362B (en) * 1979-05-29 1986-03-19 Fosfa Col S A S Di A Dal Pane SOLUTION FOR COLD PHOSPHATION OF METALLIC SURFACES
GB2072225B (en) * 1980-03-21 1983-11-02 Pyrene Chemical Services Ltd Process and composition for coating metal surfaces
DE3101866A1 (en) * 1981-01-22 1982-08-26 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PHOSPHATING METALS
JPS57152472A (en) * 1981-03-16 1982-09-20 Nippon Paint Co Ltd Phosphating method for metallic surface for cation type electrodeposition painting
US4486241A (en) * 1981-09-17 1984-12-04 Amchem Products, Inc. Composition and process for treating steel
DE3245411A1 (en) * 1982-12-08 1984-07-05 Gerhard Collardin GmbH, 5000 Köln METHOD FOR PHOSPHATING ELECTROLYTICALLY GALVANIZED METAL GOODS
ATE39134T1 (en) * 1983-08-22 1988-12-15 Nippon Paint Co Ltd PHOSPHATION OF METAL SURFACES.
AU1834083A (en) * 1983-08-23 1985-02-28 Nippon Paint Co., Ltd. Process for phosphating metal surfaces
JPS6050175A (en) * 1983-08-26 1985-03-19 Nippon Paint Co Ltd Surface treating bath of zinc and zinc alloy
US4595424A (en) * 1985-08-26 1986-06-17 Parker Chemical Company Method of forming phosphate coating on zinc

Also Published As

Publication number Publication date
KR930010339B1 (en) 1993-10-16
ZA867903B (en) 1987-05-27
KR870004164A (en) 1987-05-07
DE3682865D1 (en) 1992-01-23
JPS6299478A (en) 1987-05-08
AU581789B2 (en) 1989-03-02
JPH086183B2 (en) 1996-01-24
US4762572A (en) 1988-08-09
EP0219779A3 (en) 1988-12-21
CA1240905A (en) 1988-08-23
ATE70314T1 (en) 1991-12-15
EP0219779A2 (en) 1987-04-29
DE3537108A1 (en) 1987-04-23
ES2002422A6 (en) 1988-08-01
AU6415686A (en) 1987-04-30

Similar Documents

Publication Publication Date Title
EP0064790A1 (en) Method of phosphating metals, as well as its use in the electrodip painting pretreatment
EP0219779B1 (en) Phosphatizing process for electrolytically galvanized metal objects
DE2100021A1 (en) Process for applying phosphate layers to steel, iron and zinc surfaces
EP0359296B1 (en) Phosphating process
DE3245411C2 (en)
EP0134895B1 (en) Process and compounds for applying accelerated and grain-refined phosphate coatings to metallic surfaces
DE3932006A1 (en) METHOD FOR APPLYING PHOSPHATE
EP0931179B1 (en) Method for phosphating a steel band
DE4228470A1 (en) Process for phosphating steel strips galvanized on one side
EP0486576B1 (en) Process for producing manganese-containing zinc phosphate coatings on galvanized steel
EP0713539A1 (en) Phosphate treatment process for steel strip with one galvanised surface
DE3875459T2 (en) METHOD FOR PHOSPHATING METAL SURFACES.
EP0039093B1 (en) Method of phosphating the surfaces of metals, and its use
DE2031358A1 (en) Protective coatings on iron, zinc or aluminium - formed by treatment with acid solns contg complex fluorides, free fluorine
EP0215041B1 (en) Process for the phosphating of metal surfaces
EP1019564A1 (en) Method for phosphatizing a steel strip
DE2851432A1 (en) CONTINUOUS PROCEDURE FOR APPLYING A PHOSPHATE COATING TO A FERONIC OR ZINCIC METAL SUBSTRATE
DE4330104A1 (en) Nickel- and copper-free phosphating process
EP0461133B1 (en) Process for producing zinc/barium phosphate coatings on metal surfaces
DE19808755A1 (en) Layer weight control for strip phosphating
DE2213781C3 (en) Process for the phosphating of steel
EP0866888B1 (en) Method of phosphating metal surfaces
WO1997014821A1 (en) Layer weight-adjustment in hydroxylamine-accelerated phosphatisation systems
DE19756735A1 (en) Phosphating one-side galvanized steel strip on the galvanized side only
DE3239088A1 (en) Process for phosphating metal surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890426

17Q First examination report despatched

Effective date: 19901019

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 70314

Country of ref document: AT

Date of ref document: 19911215

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3682865

Country of ref document: DE

Date of ref document: 19920123

ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920929

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921005

Year of fee payment: 7

Ref country code: AT

Payment date: 19921005

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 7

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931010

Ref country code: AT

Effective date: 19931010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931010

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86114075.4

Effective date: 19930510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960917

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961128

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

BERE Be: lapsed

Owner name: GERHARD COLLARDIN G.M.B.H.

Effective date: 19971031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051010