EP0105953A1 - Klimatisiersystem für beheizte Räume - Google Patents

Klimatisiersystem für beheizte Räume Download PDF

Info

Publication number
EP0105953A1
EP0105953A1 EP82109441A EP82109441A EP0105953A1 EP 0105953 A1 EP0105953 A1 EP 0105953A1 EP 82109441 A EP82109441 A EP 82109441A EP 82109441 A EP82109441 A EP 82109441A EP 0105953 A1 EP0105953 A1 EP 0105953A1
Authority
EP
European Patent Office
Prior art keywords
room
heat
heated
air
thermocouples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82109441A
Other languages
English (en)
French (fr)
Inventor
Viktor Bollinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP82109441A priority Critical patent/EP0105953A1/de
Publication of EP0105953A1 publication Critical patent/EP0105953A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect

Definitions

  • the invention relates to an air conditioning system for heated rooms, wherein thermocouples with heat radiation surfaces are arranged uniformly distributed on walls of the room according to the Peltier effect as a heat pump.
  • the invention is based on the task of distributing the heat in heated rooms more evenly than before - and keeping air flows as low as possible so that lower heating costs are incurred and the indoor climate is improved.
  • thermocouples are surrounded by the heated air circulating in the room.
  • the thermocouples working as a heat pump according to the Peltier effect do not serve to introduce heat into a room to be heated, but rather to conduct the heat in the heated room in the heated room to the areas where the heat is mainly needed.
  • the thermocouples absorb superfluous heat at the points in the heated room where it is not needed and radiate it to other areas of the room. This allows, in particular, the build-up of heat build-up in the ceiling area of a heated room to be continuously reduced, so that the average room temperature required for sufficient heating of the area around the room is lower than was previously necessary.
  • the Peltier effect is used to distribute the heated room air more evenly in the heated room.
  • Peltier has found that a circuit is formed on two different metallic conductors DC voltage causes one contact point of the two conductors to cool down while the other contact point heats up.
  • heat pumps operating according to this principle, in the air conditioning system according to the invention, heat is extracted from the room air located in the area of the thermocouples and supplied to the radiant surfaces.
  • a small rise in temperature at the heat radiation surfaces is sufficient.
  • the constant removal of heat from the heat accumulation areas of the heated room creates a steady state, which leads to an even temperature distribution in the heated room.
  • the lower average room temperature required for this enables significant savings in heating energy and thus also in heating costs.
  • thermocouples Since the air conditioning system according to the invention only serves to distribute heat and not to cover the heat requirement of a heated room, i.e. in addition to conventional heating systems, the surface temperature of the heat radiation surfaces of the thermocouples can be kept low. Accordingly, there is no intense heat radiation as with known radiant heaters. One can therefore arrange the heat radiation surfaces of the thermocouples so that they are directed to the areas to which heat transfer is desired.
  • thermocouples are preferably arranged under the ceiling of the heated room because the undesirable jam generally forms there. But you can also can also be arranged on the walls of the heated room.
  • the thermocouples or their heat radiation surfaces do not form an uninterrupted, continuous surface, but individual elements between which there are a few centimeters wide distances.
  • the air movement generated by the air-conditioning system according to the invention is so slight that there is no fear of the dust masses particularly in the floor area of the heated room being whirled up.
  • thermocouples can be arranged with different inclinations in order to conduct the heat in a targeted manner to the areas in which it is desired.
  • each thermocouple has a housing through which the ambient air flows, wherein the housing can be designed as a reflection hood and contains openings for the throughflow of ambient air.
  • the air conditioning system according to the invention can also be used very advantageously where locally restricted workplaces have to be heated in large rooms and workshops. To this end, it has been common to air to use heaters or ventilation systems for heating. It is hardly possible to create balanced temperature conditions.
  • the thermocouples of the air conditioning system according to the invention can be installed in the higher warmer air streams and thus turned on. be arranged so that they specifically heat the work area to be heated. This takes place when the temperature of the warm air flowing into the thermocouples is significantly lower than in previous room air heating systems, so that there are significant savings in heating costs.
  • the air movement takes place when using the air conditioning system according to the invention at a very low speed, because the air buoyancy is not only generated by the radiators or stoves provided for heating the room, but is also present on all walls of the heated room. This results in the additional advantage that all walls are heated evenly and accordingly better, liquid deposited on the walls dries and the radiation ratio required for a good room climate is significantly promoted. The entrainment of dust in the rising air, however, is reduced to a minimum.
  • the air conditioning system according to the invention also works when there is no additional room heating, which is of particular interest in the transition period when there is only a small additional heat requirement in certain room areas. consists.
  • a conventional radiator 3 is attached, which causes the air heated by it to flow up to the ceiling 5 as walls 4 and 9 indicated by arrows 4 on the walls 8 and 9.
  • thermocouples 6 At a distance from the ceiling 5 there are heat radiation-generating thermocouples 6, which are arranged horizontally according to FIG. 1, but can also be attached or adjusted at any inclination to the ceiling 5. Each individual thermocouple 6 is individually adjustable, so that the heat radiated by it can be transported specifically to certain areas of the room 1. From Fig. 1 it can be seen that the individual thermocouples 6 are arranged next to each other at a certain distance 7.
  • thermocouples 6 are attached almost in the entire area of the ceiling 5. However, it is also possible to provide thermocouples 6 only in individual areas of the ceiling 5.
  • thermocouples 6 The heated air rising on the walls 8 and 9 of the room is distributed on the ceiling 5 and flows around or flows through the thermocouples 6, as will be explained in more detail below, the air cooling and then slowly following in accordance with arrows 10 in room 1 sinks down.
  • the downward falling air is deflected over the floor 11 of the room 1 and rises again after heating on the walls 8 and 9.
  • the warming of the downward sinking air takes place by means of the thermocouples 6 and partly also of the radiator 3.
  • Arrows 12 indicate the upward air flow outside the area of the radiator 3.
  • each thermocouple 6 has a sheet 13 serving as a heat radiation surface, on the inside of which an electrical insulator 14 and a coating 15 of heat-insulating material is arranged.
  • a plurality of sheet metal strips 16 are arranged on the back of the sheet 13 under the heat-insulating coating 15, which give off heat absorbed by the thermocouple 6 to the sheet 13.
  • These sheet metal strips 16 are each connected via negative conductors 17 and positive conductors 18 to individual sheet metal strips 19 which serve to absorb heat from the air flowing over the back of the thermocouple. The ends of the conductors 17 and 18 are soldered to the metal strips 16 and 19, respectively.
  • the heat extracted from the air flowing over the sheet metal strips 19 and given off to the sheet metal strips 16 is transferred to the sheet metal 13 and radiated into the room 1 from the exposed surface thereof according to the arrows 20.
  • the thermocouple 6 is provided on the back with a reflection hood 21, which extends over the length of the sheet 13 and is connected to it via a clamping bracket 22.
  • the clamps 22 are connected place 23 attached to the inside of the reflection hood 21, for example soldered or riveted. They are provided with two hook-like bent and resilient ends 24, which are inserted between upstanding edges 25 of the sheet 13, as shown in FIG. 2. Since the edges 25 are inclined inwards, the hook-like ends 24 establish a releasable positive connection to the sheet 13.
  • slot-like openings 26 which are located on both sides of the thermocouple 6 and extend over its entire length. Warm air can flow in through these openings 26 according to arrows 27 and 28 and flow out again after heat has been given off to the thermocouple.
  • thermocouple As shown in FIG. 3, one end of the thermocouple is connected to a positive pole 29 and the other end to a negative pole 30, so that an electrical current flows through the thermocouple and heat is exchanged according to the Peltier effect.

Abstract

Es ist ein Klimatisiersystem für beheizte Räume (1) offenbart, bei dem an Wänden und insbesondere der Decke (5) des Raumes (1) nach dem Peltier-Effekt als Wärmepumpe arbeitende Thermoelemente (6) mit Wärmestrahlflächen (13) gleichmässig verteilt angeordnet sind. Die Thermoelemente (6) werden von der im Raum (1) zirkulierenden aufgeheizten Luft umströmt und leitet die dieser entzogene Wärme mittels der einstellbaren Wärmestrahlflächen (13) in die Teile des Raumes (1), die bei üblicher Beheizung nicht ausreichend erwärmt werden.

Description

  • Die Erfindung betrifft ein Klimatisiersystem für beheizte Räume, wobei an Wänden des Raumes nach dem Peltier-Effekt als Wärmepumpe arbeitende Thermoelemente mit Wärmestrahlflächen gleichmäßig verteilt angeordnet sind.
  • Es ist bekannt, daß in beheizten Räumen sich unzweckmäßige Raumtemperatur- und Klimaverhältnisse einstellen, da die von Öfen, Heizkörpern und dergleichen erwärmte Raumluft nach oben steigt und dort mehr oder weniger unbewegt verbleibt, so daß man eine verhältnismäßig hohe mittlere Raumtemperatur benötigt, wenn es auch im Bodenbereich ausreichend warm sein soll. Die bisherigen Versuche, durch besondere Heizsysteme diese Unzulänglichkeiten abzustellen, scheiterten immer wieder, weil sich durch Verringern einer Fehlerquelle andere Nachteile verstärken. Diese Versuche haben in vielen Fällen sogar dazu geführt, daß gesundheitsschädliche Klimaverhältnisse in beheizten Räumen entstehen.
  • Die bei den bekannten Raumheizungsmethoden auftretenden starken Luftströme der erwärmten Luft führen eine Menge Staubpartikel mit, so daß sich ein hoher Staubpegel im Raum ergibt, der sogar gesundheitsschädlich sein kann.
  • Zur Raumklimatisierung ist es bekannt, große Wandflächen gleichmäßig mit Thermoelementen und deren Wärmetauschflächen zu versehen, um bei Ausnutzung des Peltier-Effektes der Außenluft Wärme zu entziehen und in den zu beheizenden Raum einzustrahlen (R. Plank, Handbuch der Kältetechnik, Band 6, Teil A, Seiten 501 bis 503, Springer-Verlag, 1969). Dabei stellt sich jedoch das Problem eines unerwünschten Wärmerückflusses aus dem beheizten Raum bei zu niedriger Außentemperatur, so daß die mit der Außenluft in Kontakt tretenden Wärmetauscher in Kanäle eingebaut werden müssen, welche bei zu tiefen Außentemperaturen geschlossen werden. Auch bei dieser Art der Raumbeheizung wird nicht vermieden, daß die Räume unter der Decke überheizt werden müssen, damit im Aufenthaltsbereich ange- ; messene Temperaturen herrschen. Die Überheizung_der Räume im oberen Bereich ist um so stärker, je höher der betreffende Raum ist. Besonders in Fabrikhallen, die sehr hoch ausgebildet sein müssen, ist eine zweckmäßige und wirtschaftliche Beheizung der Aufenthaltsbereiche kaum zu erreichen, weil sich die Wärme unter der Decke bzw. dem Dach staut, während am Boden durch ständiges Öffnen und Schließen von Türen zusätzlich Kälte eindringt, die am Boden bleibt und von der im oberen Raumbereich befindlichen Wärme kaum ausgeglichen werden kann.
  • Der Ertindung liegt die Autgabe zugrunde, in beheizten Räumen die Wärme gleichmäßiger als bisher möglich zu verteilen-und dabei Luftströmungen so gering wie möglich zu halten, damit geringere Heizkosten anfallen und das Raumklima verbessert wird.
  • Zur Lösung dieser Aufgabe wird bei einem Klimatisiersystem der eingangs genannten Gattung vorgeschlagen, daß die Thermoelemente von der im Raum zirkulierenden aufgeheizten Luft umströmt sind. Die nach dem Peltier-Effekt als Wärmepumpe arbeitenden Thermoelemente dienen gemäß der vorliegenden Erfindung also nicht dazu, Wärme in einen zu beheizenden Raum einzuleiten, sondern dazu, die in dem beheizten Raum befindliche Wärme im beheizten Raum in die Bereiche zu leiten, in denen die Wärme hauptsächlich benötigt wird. Die Thermoelemente nehmen überflüssige Wärme an den Stellen des beheizten Raumes auf, wo sie nicht benötigt wird, und strahlen dieselbe in andere Bereiche des Raumes ab. Damit kann insbesondere der im Deckenbereich eines beheizten Raumes sich aufbauende Wärmestau ständig abgebaut werden, so daß die für eine ausreichende Erwärmung des Aufenthaltesbereiches des Raumes erforderliche mittlere Raumtemperatur niedriger als bisher notwendig ist.
  • Bei dem erfindungsgemäßen Klimatiersiersystem wird der Peltier-Effekt zur gleichmäßigeren Verteilung der erwärmten Raumluft im beheizten Raum benutzt. Peltier hat gefunden, daß eine an einen aus zwei unterschiedlichen metallischen Leitern gebildeten Stromkreis angelegten Gleichspannung bewirkt, daß sich die eine Kontaktstelle der beiden Leiter abkühlt, während sich die andere Kontaktstelle erwärmt. Mit nach diesem Prinzip arbeitenden Wärmepumpen wird bei dem erfindungsgemäßen Klimatisiersystem der im Bereich der Thermoelemente befindlichen Raumluft Wärme entzogen und den Strahlflächen zugeführt. Um von den Wärmestrahlflächen einen Wärmetransport zum Boden oder auch zu den kälteren Wänden des beheizten Raumes in Gang zu setzen, genügt schon ein geringer Temperaturanstieg an den Wärmestrahlflächen. Der ständige Abtransport der Wärme aus den Wärmestaubereichen des beheizten Raumes schafft einen Beharrungszustand, der zu einer gleichmäßigen Temperaturverteilung im beheizten Raum führt. Die deshalb notwendige niedrigere mittlere Raumtemperatur ermöglicht bedeutende Einsparungen an Heizenergie und damit auch an Heizkosten.
  • Da das erfindungsgemäße Klimatisiersystem nur zur Wärmeverteilung und nicht zur Deckung des Wärmebedarfes eines beheizten Raumes dient, d.h. also zusätzlich zu konventionellen Heizsystemen vorgesehen wird, kann die Oberflächentemperatur der Wärmestrahlflächen der Thermoelemente niedrig gehalten werden. Dementsprechend kommt es nicht zu intensiven Wärmeeinstrahlungen wie bei bekannten Strahlungsheizungen. Man kann deshalb die Wärmestrahlflächen der Thermoelemente so anordnen, daß sie auf die Bereiche gerichtet sind, zu denen ein Wärmetransport gewünscht ist.
  • Vorzugsweise sind die Thermoelemente unter der Decke des beheizten Raumes angeordnet, weil sich dort im allgemeinen der unerwünschte Stau bildet. Sie können aber auch zusätzlich an den Wänden des beheizten Raumes angeordnet werden. Die Thermoelemente bzw. deren Wärmestrahlflächen bilden keine ununterbrochene durchgehende Fläche, sondern einzelne Elemente, zwischen denen sich einige Zentimeter breite Abstände befinden. Die beim Umströmen der Thermoelemente abgekühlte und damit schwerer gewordene Luft sinkt als Luftmasse stetig nach unten. Geschwindigkeit und Temperaturgefälle dieser sich bewegenden Luftmasse sind aber so gering, daß sie von den sich im Raum aufhaltenden Personen nicht wahrgenommen werden. Die vom erfindungsgemäßen Klimatisiersystem erzeugte Luftbewegung ist so gering, daß ein Hochwirbeln der besonders im Bodenbereich des beheizten Raumes befindlichen Staubmassen nicht zu befürchten ist.
  • Die Thermoelemente können nach einem weiteren Merkmal der Erfindung mit unterschiedlicher Neigung angeordnet sein, um damit die Wärme gezielt in die Bereiche zu leiten, in denen sie erwünscht ist.
  • Nach einem weiteren Merkmal der Erfindung weist jedes Thermoelement ein von der Raumluft zu durchströmendes Gehäuse auf, wobei das Gehäuse als Reflexionshaube ausgebildet sein kann und Öffnungen für den Durchstrom von Raumluft enthält.
  • Das erfindungsgemäße Klimatisiersystem läßt sich auch sehr vorteilhaft dort anwenden, wo in großen Räumen und Werkshallen örtlich begrenzte Arbeitsplätze beheizt werden müssen. Zu diesem Zweck ist es bisher üblich, Luftheizungen oder Lüftungsanlagen zur Beheizung zu verwenden. Dabei ist es kaum möglich, ausgewogene Temperaturverhältnisse zu schaffen. Die Thermoelemente des erfindungsgemäßen Klimatisiersystems können in den höher gelegenen wärmeren Luftströmen installiert und so ange- . ordnet werden, daß sie die zu beheizenden Arbeitsplatzbereiche gezielt erwärmen. Dies erfolgt schon dann, wenn die Temperatur der den Thermoelementen zuströmenden Warmluft wesentlich niedriger als bei bisherigen Raumluftbeheizungen ist, so daß sich bedeutende Einsparungen an Heizkosten ergeben.
  • Die Luftbewegung erfolgt bei Anwendung des erfindungsgemäßen Klimatisiersystems mit sehr geringer Geschwindigkeit, weil der Luftauftrieb nicht nur durch die für die Beheizung des Raumes vorgesehenen Heizkörper oder Öfen erzeugt wird, sondern an allen Wänden des beheizten Raumes vorhanden ist. Dadurch ergibt sich der zusätzliche Vorteil, daß alle Wände gleichmäßig und dementsprechend besser erwärmt werden, an den Wänden niedergeschlagene Flüssigkeit abtrocknet und das für ein gutes Raumklima erforderliche Strahlungsverhältnis erheblich gefördert wird. Die Mitnahme von Staub in der hochsteigenden Luft wird hingegen auf ein Minimum verringert.
  • Das erfindungsgemäße Klimatisiersystem arbeitet auch dann, wenn keine zusätzliche Raumbeheizung erfolgt, was insbesondere in der Übergangszeit von Interesse ist, wenn nur ein geringer zusätzlicher Wärmebedarf in bestimmten Raumbereichen. besteht.
  • Das erfindungsgemäße Klimatisiersystem verteilt die in einem Raum vorhandene Wärme mittels Wärmepumpen und Wärmestrahlflächen. Es ist in allen beheizbaren Räumen einsetzbar und wird zusätzlich zu konventionellen Heizsystemen, die den Räumen Wärme zuführen, benutzt. Die wichtigsten Vorteile dieses Klimatisiersystems sind folgende:
    • a) Verbesserung des Raumklimas;
    • b) Ersparnisse an Heizenergie und Heizkosten;
    • c) Temperierung der Räume im Sommer und der Übergangszeit;
    • d) gezielte Einsatzmöglichkeit, beispielsweise in bestimmten Aufenthaltsbereichen oder für bestimmte Arbeitsplatzbereiche;
    • e) Kombination mit einer Entlüftungsanlage;
    • f) Kombinationsmöglichkeiten mit anderen Wärmepumpen.- systemen.
  • In der Zeichnung ist ein Ausführungsbeispiel des erfindungsgemäßen Klimatisiersystems schematisch dargestellt, und zwar zeigt
    • Fig. 1 einen Querschnitt durch einen mit diesem Klimati- . siersystem ausgestatteten beheizten Raum,
    • Fig. 2 einen Querschnitt einer Ausführungsform eines erfindungsgemäßen Thermoelementes nach Linie II-II aus Fig. 3 und
    • Fig. 3 einen Längsschnitt durch einen Teil des Thermoelementes nach Linie III-III aus Fig. 2.
  • Gemäß Fig. 1 ist in einem in sich abgeschlossenen Raum 1 eines Gebäudes unter dem Fenster 2 ein konventioneller Heizkörper 3 angebracht, der veranlaßt, daß die von ihm erwärmte Luft als durch Pfeile 4 angedeuteter Luftstrom an den Wänden 8 und 9 zur Decke 5 hochströmt.
  • Unter der Decke 5 sind im Abstand von derselben eine Wärmestrahlung erzeugende Thermoelemente 6 angebracht, die gemäß Fig. 1 horizontal angeordnet sind, jedoch auch in jeder beliebigen Neigung zur Decke 5 angebracht oder eingestellt werden können. Jedes einzelne Thermoelement 6 ist für sich allein einstellbar, so daß die von ihm abgestrahlte Wärme gezielt in bestimmte Bereiche des Raumes 1 transportiert werden kann. Aus Fig. 1 ist erkennbar, daß die einzelnen Thermoelemente 6 in einem bestimmten Abstand 7 nebeneinander angeordnet sind.
  • Gemäß Fig. 1 sind die Thermoelemente 6 fast im gesamten Bereich der Decke 5 angebracht. Es ist jedoch auch möglich, Thermoelemente 6 nur in einzelnen Bereichen der Decke 5 vorzusehen.
  • Die an den Wänden 8 und 9 des Raumes hochsteigende erwärmte Luft wird an der Decke 5 verteilt und umströmt bzw. durchströmt die Thermoelemente 6, wie weiter unten im einzelnen erläutert wird, wobei sich die Luft abkühlt und dann gemäß Pfeilen 10 im Raum 1 langsam nach unten sinkt. Die nach unten sinkende Luft wird über dem Fußboden 11 des Raumes 1 umgelenkt und steigt nach Erwärmung an den Wänden 8 und 9 wieder hoch. Die Erwärmung der nach abwärts sinkenden Luft erfolgt mittels der Thermoelemente 6 und teilweise auch des Heizkörpers 3. Pfeile 12 deuten den nach oben gerichteten Luftstrom außerhalb des Bereiches des Heizkörpers 3 an.
  • Aus Fig. 2 und 3 ist zu erkennen, daß jedes Thermoelement 6 ein als Wärmestrahlfläche dienendes Blech 13 aufweist, auf dessen Innenseite ein elektrischer Isolator 14 und eine Beschichtung 15 aus wärmedämmendem Material angeordnet ist. Außerdem sind auf der Rückseite des Bleches 13 unter der wärmedämmenden Beschichtung 15 mehrere Blechstreifen 16 angeordnet, welche vom Thermoelement 6 aufgenommene Wärme an das Blech 13 abgeben. Diese Blechstreifen 16 sind jeweils über negative Leiter 17 und positive Leiter 18 mit einzelnen Blechstreifen 19 verbunden, welche zur Aufnahme von Wärme aus der über die Rückseite des Thermoelementes strömenden Luft dienen. Die Leiter 17 und 18 sind mit ihren Enden jeweils an die Blechstreifen 16 und 19 angelötet.
  • Die aus der über die Blechstreifen 19 strömenden Luft entzogene und an die Blechstreifen 16 abgegebene Wärme wird auf das Blech 13 übertragen und von dessen frei liegender Oberfläche gemäß den Pfeilen 20 in den Raum 1 abgestrahlt.
  • Das Thermoelement 6 ist an der Rückseite mit einer Reflexionshaube 21 versehen, welche sich über die Länge des Bleches 13.erstreckt und mit diesem über Klemmbügel 22 verbunden ist. Die Klemmbügel 22 sind über Verbindungsstellen 23 an der Innenseite der Reflexionshaube 21 befestigt, beispielsweise angelötet oder angenietet. Sie sind mit zwei hakenartig gebogenen und federnden Enden 24 versehen, welche zwischen hochstehende Ränder 25 des Bleches 13 eingesteckt werden, wie Fig. 2 zeigt. Da die Ränder 25 nach innen geneigt verlaufen, stellen die hakenartigen Enden 24 eine lösbare formschlüssige Verbindung zu dem Blech 13 her. Zwischen der Reflexionshaube 21 und dem Blech 13 befinden sich schlitzartige Öffnungen 26, die sich auf beiden Seiten des Thermoelementes 6 befinden und sich über dessen gesamte Länge erstrecken. Durch diese Öffnungen 26 kann gemäß den Pfeilen 27 und 28 warme Luft einströmen und nach Wärmeabgabe an das Thermoelement wieder ausströmen.
  • Wie Fig. 3 zeigt, ist das eine Ende des Thermoelementes an einen Pluspol 29 und das andere Ende an einen Minuspol 30 angeschlossen, so daß das Thermoelement von einem elektrischen Strom durchflossen wird und ein Wärmetausch nach dem Peltier-Effekt erfolgt.

Claims (5)

1. Klimatisiersystem für beheizte Räume, wobei an Wänden des Raumes nach dem Peltier-Effekt als Wärmepumpe arbeitende Thermoelemente mit Wärmestrahlflächen gleichmäßig angeordnetsind, dadurch gekennzeichnet, daß die Thermoelemente (6) von der im Raum (1) zirkulierenden aufgeheizten - Luft umströmt sind.
2. System nach Anspruch 1, dadurch gekennzeichnet, daß die Thermoelemente (6) unter der Decke (5) des Raumes (1) angeordnet sind.
3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Thermoelemente (6) mit unterschiedlicher Neigung angeordnet sind.
4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß jedes Thermoelement (6) ein von der Raumluft zu durchströmendes Gehäuse (21) aufweist.
5. System nacn Anspruch 4, dadurch gekennzeichnet, daß das Gehäuse (21) als Reflexionshaube ausgebildet ist und Öffnungen (26) für den Durchstrom von Raumluft aufweist.
EP82109441A 1982-10-13 1982-10-13 Klimatisiersystem für beheizte Räume Withdrawn EP0105953A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP82109441A EP0105953A1 (de) 1982-10-13 1982-10-13 Klimatisiersystem für beheizte Räume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP82109441A EP0105953A1 (de) 1982-10-13 1982-10-13 Klimatisiersystem für beheizte Räume

Publications (1)

Publication Number Publication Date
EP0105953A1 true EP0105953A1 (de) 1984-04-25

Family

ID=8189275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82109441A Withdrawn EP0105953A1 (de) 1982-10-13 1982-10-13 Klimatisiersystem für beheizte Räume

Country Status (1)

Country Link
EP (1) EP0105953A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600470A1 (de) * 1995-08-01 1997-02-06 Bernhard Harter H-Thermokompaktgerät

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1198837B (de) * 1964-06-23 1965-08-19 Siemens Elektrogeraete Gmbh Regelvorrichtung fuer einen Kuehlschrank
FR2012499A1 (de) * 1968-07-08 1970-03-20 Svenska Flaektfabriken Ab
DE2444223A1 (de) * 1973-09-18 1975-03-20 Cit Alcatel Peltier-effekt-luftkonditionierungsmodul und mit einem solchen modul ausgestattete luftkonditionierungsanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1198837B (de) * 1964-06-23 1965-08-19 Siemens Elektrogeraete Gmbh Regelvorrichtung fuer einen Kuehlschrank
FR2012499A1 (de) * 1968-07-08 1970-03-20 Svenska Flaektfabriken Ab
DE2444223A1 (de) * 1973-09-18 1975-03-20 Cit Alcatel Peltier-effekt-luftkonditionierungsmodul und mit einem solchen modul ausgestattete luftkonditionierungsanlage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600470A1 (de) * 1995-08-01 1997-02-06 Bernhard Harter H-Thermokompaktgerät
DE19600470C2 (de) * 1995-08-01 1999-06-10 Bernhard Harter H-Thermokompaktgerät

Similar Documents

Publication Publication Date Title
DE1966721C3 (de) Platte mit veränderlichem Wärmedurchgang
WO2012110461A1 (de) Raumklimagerät mit einem flüssigkeit-luft wärmeaustauschgerät mit peltierelementen
DE2902909A1 (de) Schaltschrank-heizgeraet
DE60317179T2 (de) Beheiztes und gekühltes Lenkrad
DE3907665A1 (de) Ptc-thermistorvorrichtung mit waermeabstrahlrippen
DE4036210A1 (de) Temperiervorrichtung
DE60303654T2 (de) Klimaanlage
DE2444223A1 (de) Peltier-effekt-luftkonditionierungsmodul und mit einem solchen modul ausgestattete luftkonditionierungsanlage
EP0105953A1 (de) Klimatisiersystem für beheizte Räume
DE3115256C2 (de) Klimatisiersystem für beheizte Räume
EP3430324B1 (de) Temperierkörper-anordnung mit flexiblen betriebsarten
DE954193C (de) Belueftungseinrichtung mit einer Luftverteilungsoeffnungen aufweisenden Unterdecke
EP1541934B1 (de) Kühlelement sowie Kühleinrichtung und Verfahren zu ihrem Betrieb
DE2138667B2 (de) Deckenstrahlkörper mit Frischluftversorgung
EP0219887A2 (de) Strahlungs- und Konvektionsapparat
DE3500805A1 (de) Kuehlkoerper fuer einen transistor
DE1655069A1 (de) Waermeaustauscher fuer die Heizung und Kuehlung von Fahrzeugen
DE102016101439A1 (de) Temperiereinheit
EP1674801A2 (de) Klimaelement
DE2133780A1 (de) Zimmerheizgerat
DE19638023A1 (de) Vorrichtung und Verfahren zur Klimatisierung eines Raums
DE2033216A1 (de) Wärmetauscher insbesondere Heizkörper fur Heizungsanlagen
EP3502609B1 (de) Heizkörperanordnung
EP3192477A1 (de) Medizinisches temperiergerät
AT308252B (de) Wärmespeichergerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850403