EP0103631A1 - Dispositif pour chirurgie interne - Google Patents

Dispositif pour chirurgie interne

Info

Publication number
EP0103631A1
EP0103631A1 EP83901301A EP83901301A EP0103631A1 EP 0103631 A1 EP0103631 A1 EP 0103631A1 EP 83901301 A EP83901301 A EP 83901301A EP 83901301 A EP83901301 A EP 83901301A EP 0103631 A1 EP0103631 A1 EP 0103631A1
Authority
EP
European Patent Office
Prior art keywords
surgical device
tube
tissue
viewing system
internal conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83901301A
Other languages
German (de)
English (en)
Inventor
Stephen R. Ash
Marvin P. Loeb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laserscope Inc
Original Assignee
Laserscope Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laserscope Inc filed Critical Laserscope Inc
Publication of EP0103631A1 publication Critical patent/EP0103631A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/32Devices for opening or enlarging the visual field, e.g. of a tube of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3614Image-producing devices, e.g. surgical cameras using optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system

Definitions

  • This invention relates to surgical devices and more particularly to surgical devices useful for performing a medical procedure on tissue within a patient.
  • the classic technique of surgery includes an emphasis on exposure of the organ or tissue of interest.
  • An incision is made in the skin, usually four to eight inches long, and the underlying muscle dise ⁇ ted and split.
  • the skin and muscle tissues are then separated by several inches to provide the surgeon with binocular vision into the created cavity.
  • Such an operation particularly when through tissue such as the abdominal wall, increases the patient's discomfort and recovery time above that caused by the medical procedure performed.
  • Endoscopes have been developed which can be inserted through the skin and muscle layers to allow the surgeon to view and collect tissue. However, endoscopes can only be used where there is a relatively large natural cavity or space such as in
  • Often medical procedures such as the collection of a biopsy tissue sample must be performed in locations lacking a natural cavity, such as in the kidney or lymph nodes. In portions of the body only having relatively small or no natural cavities, it is difficult if not impossible to use an endoscope.
  • the present invention is a surgical device for the visual inspection of tissue within a patient.
  • the surgical device can also be used to perform medical procedures such as biopsy or tissue sample collection, and tissue ablation by laser irradiation.
  • the surgical device embodying the present invention generally includes an instrument assembly associated with tissue parting means.
  • the tissue parting means separates body tissue to provide viewing and operation room for the instrument assembly.
  • the tissue parting means generally includes an elongated external tube, at least one tissue retraction member associated with the distal portion of the tube, and actuator means for moving at least a portion of the retraction member radially outwardly of the tube to create or enlarge a cavity in the tissue.
  • the instrument assembly generally includes a viewing system to permit a surgeon to visually inspect the tissue within and surrounding the produced cavity.
  • the instrument assembly can also include biopsy sampling means or a laser light transmitting fiber. It is not necessary that the tissue be inspected be within or adjacent a relatively large cavity.
  • the surgical device can enlarge an existing small cavity or create one as needed.
  • the viewing system includes coupling optics which generally remain outside the patient and are used by the surgeon for viewing through a viewing conduit which extends into the external tube.
  • the viewing conduit is carried by an internal conduit which protects the viewing conduit and provides a carrier for other components such as a fluid channel or a laser light transmitting fiber.
  • the surgical device generally has two or more tissue retracting members or levers which are pivotally mounted on the distal portion of the external tube by hinge means.
  • the actuator means preferably operates by urging the distal ends of the tissue retraction members apart as the internal conduit is moved relative to the external tube. This allows the retraction members to be operated without having an additional connector extending through the external tube. The result is not only an increased reliability, but also a decrease in the diameter of the device.
  • FIGURE 1 is a side elevational view, partly in section, showing a surgical device embodying the present invention
  • FIGURE 2 is an enlarged fragmentary view, partly in section, of the distal portion of the surgical device with tissue retraction members extended;
  • FIGURE 3 is an enlarged, cross-sectional view taken generally along plane 3-3 of FIGURE 1 showing the internal structure of the surgical device;
  • FIGURE 4 is a fragmentary side-elevational view of the distal portion of an alternative surgical device embodying the present invention;
  • FIGURE 5 is a fragmentary side-elevational view, partly in section, of the distal portion of the alternative embodiment shown in FIGURE 4;
  • FIGURE 6 is an enlarged, cross-sectional view taken generally along plane 6-6 of FIGURE 5 showing the internal structure of the alternative embodiment
  • FIGURE 7 is a fragmentary side elevational view of the distal portion of a further alternative embodiment
  • FIGURE 8 is an enlarged, cross-sectional view taken generally along plane 8-8 of FIGURE 7 showing the internal structure of the alternative embodiment.
  • the present invention is a surgical device which aids in the visual inspection of tissue within a patient by creating or enlarging a cavity within the tissue.
  • the surgical device enables the surgeon to inspect and even perform a medical procedure on tissue lacking a natural or relatively large cavity.
  • the surgical device generally comprises an elongated external tube 12 having proximal 14 and distal end portions 16, and a viewing system 18.
  • the surgical device also includes at least one tissue retraction member or lever 28 operably associated with the distal .end portion 16 of the tube 12 and actuator means 32 for urging at least a portion of the lever radially outwardly of the tube.
  • the tissue retraction member is preferably an elongated structure such as lever 28. The lever and a portion of the tube 12 can be inserted into the patient and the actuator means 32 and lever 28 engaged to create or enlarge a cavity within the tissue to facilitate inspection with the viewing system.
  • the viewing system 18 includes coupling optics 22, most of which are located in a handle 30 mounted on the distal end of the internal conduit 34 operably associated with a viewing conduit 24.
  • the viewing system 18 also includes light transmitting means such as a light transmitting fiber 36 for emitting light beyond the probe end 26 and into the created cavity.
  • the light transmitting means can also include light source coupling 40 for operably connecting the light transmitting fiber 36 to a light source (not shown) .
  • the viewing conduit 24 and fiber 36 are carried by an internal conduit 34 and are coterminous with the probe end 26 of the internal conduit. This provides protection for the viewing conduit 24 and fiber 36.
  • the internal conduit can also carry other elements which are described in more detail below.
  • the viewing system can use any suitable type of viewing conduit.
  • These types of viewing conduits include fiberoptic bundles, thin lens systems, rod lens systems and graded index (GRIN) systems.
  • GRIN graded index
  • a GRIN system is prefered because of its relatively small size and its high quality of visualization.
  • the GRIN system can be provided with movable, totally or partially reflective mirrors to enable laser light to be transmitted through the system.
  • the GRIN system automatically focuses, the laser light.
  • the operation of viewing conduits and coupling optics is well known in the art and need not be described in further detail.
  • the surgical device is preferably provided with one or two pairs of tissue retracting levers 28 with the levers being pivotally mounted on the distal end portion 16 of the tube 12 by hinge means 38.
  • the hinge means can be pieces of spring strap welded between the tube 12 and the levers 28 or alternatively, of a standard hinge design.
  • the levers 28 preferably matingly can fit together to form a sheath having a pointed end for insertion -7- through a surgical opening cut in a patient.
  • the actuator means 32 urges the distal ends 44 of the levers 28 apart when the viewing system 18 or internal conduit 34 is moved relative to the external tube 12.
  • the external tube 12 and the internal conduit 34 should be substantially rigid to facilitate such movement.
  • the actuator means 32 includes a mechanical linkage 46 mechanically interconnecting the internal conduit 34 and the levers 28. As the internal conduit 34 is moved proximally with respect to the external tube 12, the mechanical linkage 46 extends outwardly to urge the distal ends 44 levers 28 apart.
  • the levers could be urged apart as the internal conduit 34 is moved distally, or other means can be utilized for that purpose, e.g., a rotatable rod or conduit.
  • the actuator means 132 can include camming means 154 carried by the external tube 112 and viewing system or internal conduit 134.
  • the camming means 154 includes a bead 156 carried by the internal conduit 134 which cooperates with a tab 158 on each lever 128 so that the distal ends 144 of the levers are urged apart as the conduit 134 is moved longitudinally with respect to the external tube 112.
  • the distal ends 144 of the levers 128 are urged apart when the internal conduit 134 is moved distally.
  • the bead 156 can be located on the internal conduit 124 such that the distal ends 144 of the levers 128 are urged apart when the internal conduit is moved proximally.
  • the surgical device can be provided with a hose 82 to help remove any debris and the like or to supply a washing fluid action.
  • the hose 82 extends through the external -8- tube 12 and with the distal portion 84 of the hose carried by one of the levers 28.
  • the hose is preferably semi-rigid and manufactured of stainless steel.
  • the end of the hose 82 is preferably fixed on the distal end 44 of the lever 28 and penetrates the lever to direct fluid into the produced cavity.
  • a plurality of hoses 82 as shown in FIGURES 1-3, one for each lever 28 can be provided and interconnected by a loop 86 for placing the hoses in fluid communication with a fluid or vacuum source (not shown) .
  • the combination of the hoses 82 and fluid passageway 72 permit the introduction of a flushing fluid and removal of any fluid which may obstruct the view.
  • a collet 74 seals between the proximal end
  • the 14 of the external tube 12 and the internal conduit 34 and the conduit and tube 12 define a fluid passageway 72 between them.
  • the fluid passageway 72 can be placed in fluid communication with a suction or fluid source (not shown) through fluid inlet 76.
  • a clear fluid such as carbon dioxide or saline can be introduced through inlet 76, the fluid passageway 72, and into the cavity enlarging and clearing the cavity.
  • the surgical device can be provided with an actuator such as tongs 80.
  • the tongs are interconnected between the tube 12 and handle 30 as by being mounted on the fluid inlet 76 and the light source coupling 40.
  • Biasing means such as compression spring 78 can be positioned between ' the external tube 12 as against collet 74, and the loop 86. This places tension on the hoses 82 which assist in closing the retraction levers 28 by urging them toward the axis of the tube.
  • Loop spring 91 can be placed on the tongs to provide additional bias. In the rest position the tissue retraction levers are closed and the surgeon need only apply force to the tongs 80 after the surgical device is inserted into the patient to permit viewing. Alternatively the loop spring 91 can be used to bias the conduit 34 into a proximal position with the tissue levers open.
  • the movement of the internal conduit 34 and viewing system 18 relative to the external tube 12 to operate the tissue retraction levers 28 is particularly advantageous. It is unnecessary to have a separate lever operating connections extending through the tube which would waste space and increase the size of the tube and the hole which must be made in the patient. There is also greater reliability and safety for the patient without such separate connections. Sterilization of the relatively open fluid passageway 72 is also easier.
  • the surgical device may also be provided with an access channel 88 which extends within external tube 12.
  • the access channel 88 can be used to position tissue collection or biopsy sampling means through the device and into the cavity created by the tissue levers 28.
  • FIGURES 1-3 show biopsy sampling means 90 extending through the access channel 88. The end of the biopsy sampling means is inserted into the tissue and on removal, it takes a small sample with it.
  • Other instruments such as a laser transmitting fiber, a suction hose, or an injection needle may be operated through the access channel 88.
  • means for emitting laser irradiation can be located within the tube.
  • This laser irradiation emitting means can include a laser light transmitting fiber 192 carried by the internal conduit 134.
  • the internal conduit 134 can also carry other light transmitting systems.
  • the laser light transmitting fiber 192 is preferably a single quartz glass fiber surrounded by a protective sheath.
  • the viewing bundle 124 and laser light transmitting fiber 192 preferably extend within the internal conduit 134 and are substantially coterminous with the probe end 126.
  • a replaceable transparent window 194 can be mounted on the probe end 126 of conduit and positioned on the distal end of the laser light transmitting fiber 192 to protect the end of the fiber.
  • the window should be of glass or quartz and can include a lens to focus the laser light at a specific distance. Should the window become damaged, it may be replaced, avoiding the costly necessity of replacing the entire laser light transmitting fiber 192.
  • the internal conduit 134 can also be provided with a fluid tube 196 having a cowl 198 for directing flushing fluid over the window 194 to prevent the collection of debris.
  • any suitable laser can be used with the laser light transmitting fiber 192 or a GRIN system, such as ruby rod, argon or neodymium-YAG (yttrium-aluminum-garnet) laser light.
  • a carbon dioxide laser can be employed if a wave guide as known in the art is used, instead of a laser light transmitting fiber 192.
  • the blue-green wavelength of -11- a argon or neodymium-YAG laser is particularly useful * for blood coagulation while the infared wavelength of a carbon dioxide laser is particularly useful for the removal of tissue.
  • the tissue levers 128 also serve to space the tissue which will be irradiated by the laser from the end of the laser light transmitting fiber 192. It is preferred to use a YAG laser with 0.1 second exposures intermittently to stop bleeding or remove 10 tissue.
  • FIGURES 7 and 8 An embodiment having a deflectable internal conduit is shown in FIGURES 7 and 8.
  • the retraction members 228 are pivotably mounted on the distal end portion 216 of the elongated tube 212.
  • the internal conduit carries a laser light transmitting fiber 292, a viewing conduit 224, a light transmitting fiber 236 and an access channel 288. All of these elements extend and operate through an end wall 233 of the internal conduit 234.
  • the internal conduit 234 is articulated at its distal portion by flexing means such as elastic collar 235 about the conduit so that the distal portion of the internal conduit and viewing system can be deflected relative to the axis of the tube 212 25 or the axis of the internal conduit.
  • the surgical device also includes directing means for deflecting the probe end and viewing system.
  • this directing means includes one or more cables 298 which extend within 30 the internal conduit 234 and have one end fixed on the end wall 233. By placing tension on one or more wires, the probe end is deflected so that it is possible to change the area of viewing as well as aim emitted laser irradiation at a selected site. 35
  • one area where it is desirable to obtain biopsy tissue samples from a part of the body lacking a natural cavity is the kidney and the retroperitoneal tissue surrounding the kidney. A one centimeter incision is first made in the patient's skin using local anesthesia.
  • the distal end of the surgical device is then inserted through the incision with the retraction levers 28 closed.
  • the surgical device is advanced until the muscular layers overlying the kidney are reached.
  • the retraction levers 28 are then opened by means of the tongs 80 and suction is applied through the hoses 82 to draw fluid from the cavity produced. Air can enter the cavity through the fluid passageway 72 to replace the fluid removed.
  • the surgeon can use the viewing system to see muscular tissue through the space betwee -the retraction levers.
  • the device can be pushed forward, and the retraction levers opened, spreading the muscular tissue in the classic "blunt disection" technqiue.
  • Bleeding can be reduced and controlled by coagulation by laser radiation through either the viewing system or the laser light transmitting fiber. After penetrating through the muscular layers, the retroperitoneal tissue in the area of the kidney becomes visible. This tissue can also be parted to make the kidney visible.
  • the kidney is highly mobile especially during patient respiration.
  • the retraction levers may be advanced and placed against the kidney capsule. The surgeon can then advance a biopsy tissue collecting means through the surgical device and into the kidney. The biopsy means collects its sample and any excessive bleeding can be controlled by laser irradiation.
  • OMPI retraction levers are then closed and the device is removed from the patient.
  • the skin wound may be closed by a single suture or by an adhesive strip bandage. The patient is thus spared the risk of a totally blind biopsy procedure and the risk and discomfort of a major surgical procedure which would otherwise be necessary.
  • Another use of the present invention is for spinal disc surgery.
  • the problem with this disease is not inside the spinal canal, but rather near the lateral formina at the exit of the spinal nerves.
  • rupture or egress of the spinal disc compresses on a nerve root causing severe pain.
  • the spinal column can be approached inferolaterally with the surgical device.
  • a space is then created between the vertabral processes with the retraction levers so the impinging disc can be seen.
  • laser irradiation can be used in short bursts to severe a piece of the disc at some distance from the nerve.
  • the tissue retraction levers can then be closed to grasp the severed portion of the disc.
  • the surgical device and severed portion of the disc are then removed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Endoscopes (AREA)
  • Laser Surgery Devices (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Surgical Instruments (AREA)

Abstract

Un dispositif chirurgical comporte un assemblage d'instrument associé à des moyens de séparation de tissus (28) pour séparer les tissus du corps et fournir un espace opératoire et d'observation pour l'assemblage d'instrument. Une partie du dispositif chirurgical (16) est insérée dans le corps du patient, et les moyens de séparation de tissus (28) sont engagés pour augmenter ou créer une cavité dans le tissu du patient. Le tissu peut alors être observé par le moyen d'un système d'observation (18) porté sur l'assemblage d'instrument. Des moyens de prélèvement de tissus (90) peuvent également être utilisés afin d'obtenir des spécimens de tissus et l'assemblage (192) peut effectuer une irradiation aux rayons laser afin de limiter l'écoulement de sang et d'enlever des tissus.
EP83901301A 1982-03-16 1983-03-16 Dispositif pour chirurgie interne Withdrawn EP0103631A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35861982A 1982-03-16 1982-03-16
US358619 1982-03-16

Publications (1)

Publication Number Publication Date
EP0103631A1 true EP0103631A1 (fr) 1984-03-28

Family

ID=23410381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83901301A Withdrawn EP0103631A1 (fr) 1982-03-16 1983-03-16 Dispositif pour chirurgie interne

Country Status (5)

Country Link
EP (1) EP0103631A1 (fr)
JP (1) JPS59500004U (fr)
DE (1) DE3337016T1 (fr)
GB (1) GB2125702A (fr)
WO (1) WO1983003189A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8407894U1 (de) * 1984-03-15 1984-09-06 Richard Wolf Gmbh, 7134 Knittlingen Dilatator zum aufweiten von einstichkanaelen der niere
KR100213554B1 (ko) 1989-11-28 1999-08-02 제이슨 오토 가도시 태아용 탐침
US5301658A (en) * 1992-04-27 1994-04-12 Loma Linda University Medical Center Membrane endoscopic retractor
DE9208414U1 (de) * 1992-06-24 1992-09-10 Haindl, Hans, Dipl.-Ing. Dr.med., 3015 Wennigsen Anästhesiebesteck
US5377667A (en) * 1992-12-03 1995-01-03 Michael T. Patton Speculum for dilating a body cavity
FR2701379B1 (fr) * 1993-02-15 1995-04-07 Jean Destandau Dispositif endoscopique pour le traitement chirurgical intracanalaire des hernies discales.
US5562694A (en) * 1994-10-11 1996-10-08 Lasersurge, Inc. Morcellator
US5582190A (en) * 1994-10-25 1996-12-10 Andrew B. Slavin Arthroscopic surgical device and method for evaluating and relieving the symptoms of temporomandibular joint disorders
US5759150A (en) * 1995-07-07 1998-06-02 Olympus Optical Co., Ltd. System for evulsing subcutaneous tissue
US5749889A (en) * 1996-02-13 1998-05-12 Imagyn Medical, Inc. Method and apparatus for performing biopsy
DE19605615A1 (de) * 1996-02-15 1997-08-21 Wolf Gmbh Richard Instrument zum Aufweiten von nicht ausreichend präformierten körperinneren Hohlräumen innerhalb anatomischer Strukturen
US5843000A (en) * 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
US5762613A (en) * 1996-05-07 1998-06-09 Spectrascience, Inc. Optical biopsy forceps
US6201989B1 (en) 1997-03-13 2001-03-13 Biomax Technologies Inc. Methods and apparatus for detecting the rejection of transplanted tissue
DE19740576A1 (de) * 1997-09-15 1999-04-01 Fachhochschule Jena Chirurgischer Retraktor
US6066102A (en) 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6174291B1 (en) 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
DE19813781C2 (de) 1998-03-27 2000-06-29 Storz Karl Gmbh & Co Kg Chirurgisches Instrument mit einem durchgehenden Hohlkanal für ein zweites Instrument
US6187000B1 (en) 1998-08-20 2001-02-13 Endius Incorporated Cannula for receiving surgical instruments
JP3596340B2 (ja) * 1999-03-18 2004-12-02 株式会社日立製作所 手術用挿入装置
DE19926555A1 (de) * 1999-06-11 2000-12-28 Storz Karl Gmbh & Co Kg Medizinisches Greifinstrument sowie Verfahren zur Verwendung dieses Greifinstruments
US7985247B2 (en) * 2000-08-01 2011-07-26 Zimmer Spine, Inc. Methods and apparatuses for treating the spine through an access device
US7056321B2 (en) 2000-08-01 2006-06-06 Endius, Incorporated Method of securing vertebrae
US7261688B2 (en) * 2002-04-05 2007-08-28 Warsaw Orthopedic, Inc. Devices and methods for percutaneous tissue retraction and surgery
US7056329B2 (en) 2002-10-23 2006-06-06 Intellimed Surgical Solutions, Llc Laparoscopic direct vision dissecting port
EP1553882B1 (fr) * 2002-10-23 2009-04-29 Intellimed Surgical Solutions LLC. Dissecteur de site a orifice pour vision directe
US20040093000A1 (en) * 2002-10-23 2004-05-13 Stephen Kerr Direct vision port site dissector
DE10349825B3 (de) * 2003-10-24 2005-07-14 Karl Storz Gmbh & Co. Kg Medizinisches Instrument
CA2741187A1 (fr) 2008-10-20 2010-04-29 Spine View, Inc. Systeme de canule a retracteur destine a l'acces et a la visualisation de la colonne vertebrale, et procedes associes
JP2016135160A (ja) * 2013-05-16 2016-07-28 アドバンストヘルスケア株式会社 トロカールおよびポート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US765879A (en) * 1904-05-13 1904-07-26 Wilber A K Campbell Dilator.
US1624716A (en) * 1927-02-17 1927-04-12 Cerbo Ferdinando Urethroscope
US2483233A (en) * 1948-06-07 1949-09-27 Price Johnnie Porter Speculum
US2621651A (en) * 1949-06-02 1952-12-16 American Cystoscope Makers Inc Instrument for dilating and examining the esophagus
US3799151A (en) * 1970-12-21 1974-03-26 Olympus Optical Co Controllably bendable tube of an endoscope
US4146019A (en) * 1976-09-30 1979-03-27 University Of Southern California Multichannel endoscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8303189A1 *

Also Published As

Publication number Publication date
DE3337016T1 (de) 1984-12-13
JPS59500004U (fr) 1984-03-22
GB8328176D0 (en) 1983-11-23
GB2125702A (en) 1984-03-14
WO1983003189A1 (fr) 1983-09-29

Similar Documents

Publication Publication Date Title
EP0103631A1 (fr) Dispositif pour chirurgie interne
US5242439A (en) Means for inserting instrumentation for a percutaneous diskectomy using a laser
US5084043A (en) Method for performing a percutaneous diskectomy using a laser
CA2327268C (fr) Instrument d'endoscopie comportant un canal de travail
US6500113B2 (en) Debris aspirating resectoscope
EP0684016B1 (fr) Trocart avec optique
EP0910284B1 (fr) Pince a biopsie munie d'un dispositif optique
JP3220165B2 (ja) 光学的生検鉗子及び組織の診断方法
EP0904002B1 (fr) Instrument chirurgical dote d'une optique de visualisation et d'une sonde atraumatique
US6840909B2 (en) Apparatus and method for intraductal cytology
US4945895A (en) Remote fiber optic medical procedure and device
US5976077A (en) Surgical endoscopic instrument
EP0438242A1 (fr) Discectomie percutanée utilisant un laser
Dretler et al. Semirigid ureteroscopy: a new genre
US20140336456A1 (en) Method and apparatus for steerable, rotatable, microendoscope with tool for cutting, coagulating, desiccating and fulgurating tissue
CA2391917A1 (fr) Procedes et appareil pour enlever les veines
EP0642764A1 (fr) Trocart avec optique
JP2002505904A (ja) 光学的生検鉗子システム及び組織標本採取方法
KR20000023753A (ko) 동맥 내막 절제 수술기구 및 방법
EP0439262A1 (fr) Discectomie percutanée utilisant un laser
US20060058703A1 (en) Optical biopsy instrument
US20110105838A1 (en) Suction device for endoscopic instruments and method
US5527327A (en) Valvulotome
JPH11123197A (ja) 吸引生検具
WO1995020341A1 (fr) Endoscope avec instrument inserable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19831025

AK Designated contracting states

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19850312

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ASH, STEPHEN R.

Inventor name: LOEB, MARVIN P.