EP0100274B1 - Matching and isolatung arrangement with ferrite circulator - Google Patents

Matching and isolatung arrangement with ferrite circulator Download PDF

Info

Publication number
EP0100274B1
EP0100274B1 EP19830401483 EP83401483A EP0100274B1 EP 0100274 B1 EP0100274 B1 EP 0100274B1 EP 19830401483 EP19830401483 EP 19830401483 EP 83401483 A EP83401483 A EP 83401483A EP 0100274 B1 EP0100274 B1 EP 0100274B1
Authority
EP
European Patent Office
Prior art keywords
circuit
circulator
impedance
ferrite
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830401483
Other languages
German (de)
French (fr)
Other versions
EP0100274A1 (en
Inventor
Claude Van Kerrebroeck
Manuel Modrego-Pena
François Jung
Jean-Pierre Manteaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Thomson Faisceaux Hertziens SA
Original Assignee
Alcatel Thomson Faisceaux Hertziens SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Thomson Faisceaux Hertziens SA filed Critical Alcatel Thomson Faisceaux Hertziens SA
Publication of EP0100274A1 publication Critical patent/EP0100274A1/en
Application granted granted Critical
Publication of EP0100274B1 publication Critical patent/EP0100274B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators

Definitions

  • the present invention relates to an adaptation and isolation device, comprising a ferrite circulator, for coupling a circuit to be adapted to a connection point, the circuit to be adapted being assimilable, from the point of view of its impedance, to a series resonant circuit.
  • Broadband adaptation devices for microwave circuits are based on the use of resonators which make it possible, in the case where the circuit to be adapted is not comparable to a parallel resonant circuit, to achieve the combined impedance of that of the circuit to be adapted in order to obtain a wide band of operating frequencies.
  • a circulator between the microwave circuit with its adaptation device and the access considered with the aim of achieving insulation or improving the standing wave ratio (R.O.S.).
  • connection between the circulator and the microwave circuit to be adapted is made, in a conventional manner, by switching to a standardized characteristic impedance (50 ohms for example); this leads to the need for two adaptation devices, one for the circuit to be adapted, and, consequently, a reduction in bandwidth.
  • the object of the present invention is to avoid drawbacks due to the use of the two adaptation devices.
  • a German patent application DE-A-3 034 034 describes an insulator comprising a circulator.
  • the coupling element chosen is a series oscillating circuit whose impedance added to that of the dissipative load is as close as possible to the combined impedance of the circulator; this series oscillating circuit replaces the impedance transformer, type ⁇ I4, which is usually used to carry out the adaptation and which is usually part of the circulator.
  • a circuit of this type comprises a central conductor arranged on an alumina substrate which itself is located between two conductive ground planes Circulators are introduced by placing a ferrite disc on each side of the ceramic and adding a magnetic circuit to polarize the ferrite.
  • the invention for its part, relates to an adaptation and isolation device for coupling a circuit to be adapted to a connection point comprising a ferrite circulator with three branches formed by a metal plate comprising a resonator disc around which are arranged the three branches at 120 ° from each other, the first branch being connected to this connection point, the second branch being connected to a bias resistor, the third branch being connected to the circuit to be adapted, characterized in that said plate metal is arranged inside a structure formed by two ground planes located on either side thereof, in that the first and second branches,.
  • the invention leads, not to replace an impedance transformer of type ⁇ I4 (which is part of the circulator) by a series oscillating circuit (added to the circulator), but to suppress the adaptation circuit of the parallel circuit type, usually used to couple a circuit to be adapted to a circulator; the circuit to be adapted is thus connected directly to the circulator without any element replacing the adaptation circuit.
  • Figure 1 is shown schematically the impedance of a circuit to be adapted in the most general case, that is to say in the case where this impedance is comparable to that of a resonant circuit series R1-L- C1. If the central working frequency, FO, of the circuit to be adapted is different from its resonant frequency, an impedance is added, in series with the circuit to be adapted to make these two frequencies equal; in the case of FIG. 1 this impedance is obtained by an inductor L'1.
  • the impedance, at the pulsation ⁇ , of the circuit to be adapted in FIG. 1 is: and its overvoltage coefficient
  • FIG. 2 represents a circuit to be adapted, 1, which is connected to a connection point, A, by an adaptation circuit, 10, followed by a circulator, 20 to 23.
  • the adaptation circuit, 10, is constituted, conventionally, using one or more parallel resonant circuits; the elements of this circuit 10 are chosen so that it has a purely ohmic input impedance and of value Zc given throughout the working frequency band, when its output is connected to the input of the circuit to be adapted.
  • the circulator although made up of a single element, has been represented by four blocks so as to distinguish between its different functions: a block, 20, called the switching circuit which relates to the “circulator” function proper in three blocks, 21 to 23, called impedance transformers, connected to each of the three ports of the switching circuit 20 to bring the impedances of the three ports of the circulator to the value Zc, mentioned above.
  • the “circulator” function represented by block 20 makes it possible to isolate the circuit to be adapted 1 from another circuit to be adapted connected downstream from point A, so as to improve the standing wave ratio at point A.
  • the transformers impedance, 21 to 23 have, like the adaptation circuit 10, an impedance adaptation role but, unlike circuit 10, they do not require resonators to play this role since, as it will be indicated later, a circulator presents at its accesses impedances of the type of those of parallel resonant circuits; the impedance transformers 21 to 23 are, most generally, constituted by quarter wave transformers.
  • the impedance transformer 21 is connected to point A, the impedance transformer 22 is connected to the first end of a resistor R whose second end is grounded: as for the impedance transformer 23 it is coupled to the circuit to be adapted 1 by the adaptation circuit 10.
  • FIG. 3 shows how, in the context of the invention, the circuit according to FIG. 2 is modified.
  • the circuit according to FIG. 3 differs from the circuit according to FIG. 2 by the fact that the impedance transformer 23 and the circuit adaptation 10 have been removed and replaced, as the case may be, either by a direct link, or by a simple impedance transformer 3 having no parallel resonant element; this alternative is shown by a drawing of the periphery of block 3 in broken lines.
  • Such an arrangement by removing the impedance transformer 23 and the matching circuit 10 is therefore from its resonator, has a wider bandwidth than the arrangement according to FIG. 2; in addition, due to the reduction in the number of elements, the assembly according to FIG. 3 has less losses than the assembly according to FIG. 2.
  • FIG. 4 represents a parallel resonant circuit, formed of a resistor R2 in parallel on an inductance L2 and a capacitor C2.
  • This figure is the schematic representation of the impedance of an access of a ferrite circulator whose impedance, at the pulsation ⁇ is:
  • FIG. 5 shows, in dashed lines, the periphery C of the assembly formed by the housing of the circulator and the housing of the circuit to be adapted which are placed side by side.
  • FIG. 5 only one part 4 is shown, situated in the middle of the circulator, two resonator connection plugs, 31, 32, and the field effect transistor, 11, of the circuit to be adapted 1 of FIG. 3 .
  • the part 4 constitutes the inner conductive part or ribbon (strip in Anglo-Saxon literature) of a structure of the triplate waveguide type, that is to say of a structure formed by two parallel ground planes and a ribbon arranged parallel to and between the two ground planes. These two ground planes appear in FIG. 6 where they bear the references 61 and 62.
  • the part 4 consists of a metallic plate of silver-plated brass 1.2 mm thick comprising a resonator disc 40, 14 mm in diameter. diameter, drilled with a centering hole, 44; around this disc are arranged three branches, 41, 42, 43, at 120 ° from one another.
  • the branches 41 and 42, of length clearly greater than the branch 43, are soldered to the inner conductor of the coaxial plugs, 31, 32.
  • the gate of the transistor 11 is polarized by means of the circulator; in fact the resistor R which, for the sake of simplification, is connected, in FIG. 3, directly between the circulator and the ground is, in reality, connected by its first end to the circulator (transformer 22 comprising the branch 42) and by its second end to a decoupling circuit; this decoupling circuit behaves as a short circuit at the working frequencies of the circuit to be adapted and as an infinite impedance for the DC bias voltage; this bias voltage is applied to the second end of the resistor R.
  • the decoupling circuit can be produced conventionally by open quarter-wave lines which bring back a short circuit and / or by a capacitor.
  • the impedance transformers 21 and 22 and the switching circuit 20 which constituted the circulator have been discussed.
  • the resonator disc 40 and the branches 41 and 42 correspond respectively to the switching circuit 20 and to the impedance transformers 21 and 22; these impedance transformers are of the quarter wave transformers type, that is to say that the length of the branches is substantially equal to a quarter of the length, in the circulator, of the wave at the average frequency of 3, 9 GHz.
  • the blocks 20, 21 and 22 of FIG. 3 are more precisely to be identified with the association of the elements 40, 41, 42 and the elements between which they are found inserted in the circulator and which will be described using in Figure 6.
  • An insulating cylindrical rod, 45 made of nylon (registered trademark), passes through the holes drilled in the tape 4 (hole 44) and in the ferrite discs, 51, 52, in order to ensure the positioning of these parts one by one. compared to others.
  • a very thin silver foil is placed between the disc 51 and the silica piece 53 on the one hand and the flange 61 on the other hand, to ensure good electrical contact between these elements.
  • Another sheet not shown, ensures good contact between the disc 52 and the silica piece 54 on the one hand and the flange 62 on the other.
  • the housing of the circulator comprises, between the flanges 61 and 62 and the U-shaped iron, 60, a socket 31, fixed to the flanges 61 and 62, by means of screws not shown.
  • This ferrite circulator was manufactured, according to the characteristics to be obtained in order to carry out the adaptation of the circuit to be adapted which was mentioned above; for this, the choice fell first on an existing circulator having characteristics fairly close to those to be obtained, then, after successive tests, the circulator described with the aid of FIGS. 5 and 6 was produced.
  • the invention is not limited to the example described; in this way, in particular, it is possible, in the assembly according to FIG. 3, to remove the impedance transformer 22, that is to say, practically the branch 42 of the ribbon 4 (see FIG. 5) , then it suffices to give R the value presented, at resonance, by the corresponding output of the resonator.
  • the circulator can be used as an adaptation element of a circuit to be adapted, not only on the input of the circuit, as in the example described, but also on the output of the circuit; thus the same circulator can serve as an adaptation element for two circuits to be adapted: a first circuit to be adapted having its output coupled to one of the ports of the circulator and a second circuit to be adapted having its input coupled to another port of the circulator.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Microwave Amplifiers (AREA)

Description

La présente invention se rapporte à un dispositif d'adaptation et d'isolement, comportant un circulateur à ferrites, pour coupler un circuit à adapter à un point de branchement, le circuit à adapter étant assimilable, du point de vue de son impédance, à un circuit résonnant série.The present invention relates to an adaptation and isolation device, comprising a ferrite circulator, for coupling a circuit to be adapted to a connection point, the circuit to be adapted being assimilable, from the point of view of its impedance, to a series resonant circuit.

Les dispositifs d'adaptation à large bande pour circuits micro-ondes sont basés sur l'utilisation de résonateurs qui permettent, dans le cas où le circuit à adapter n'est pas assimilable à un circuit résonnant parallèle, de réaliser l'impédance conjuguée de celle du circuit à adapter afin d'obtenir une large bande de fréquences de fonctionnement. De plus il est connu d'utiliser un circulateur entre le circuit micro-ondes avec son dispositif d'adaptation et l'accès considéré, dans le but de réaliser une isolation ou d'améliorer le rapport d'ondes stationnaires (R.O.S.). La liaison entre le circulateur et le circuit micro-ondes à adapter se fait, de manière classique, par un passage à une impédance caractéristique normalisée (50 ohms par exemple); ceci entraîne la nécessité de deux dispositifs d'adaptation, un pour le circuit à adapter, et, par conséquent, une réduction de la bande passante.Broadband adaptation devices for microwave circuits are based on the use of resonators which make it possible, in the case where the circuit to be adapted is not comparable to a parallel resonant circuit, to achieve the combined impedance of that of the circuit to be adapted in order to obtain a wide band of operating frequencies. In addition, it is known to use a circulator between the microwave circuit with its adaptation device and the access considered, with the aim of achieving insulation or improving the standing wave ratio (R.O.S.). The connection between the circulator and the microwave circuit to be adapted is made, in a conventional manner, by switching to a standardized characteristic impedance (50 ohms for example); this leads to the need for two adaptation devices, one for the circuit to be adapted, and, consequently, a reduction in bandwidth.

La présente invention a pour but d'éviter des inconvénients dus à l'emploi des deux dispositifs d'adaptation.The object of the present invention is to avoid drawbacks due to the use of the two adaptation devices.

Ceci est obtenu en réalisant le dispositif d'adaptation du circuit à adapter à partir du circulateur à ferrites.This is obtained by making the circuit adaptation device to be adapted from the ferrite circulator.

Une demande de brevet allemand DE-A-3 034 034 décrit un isolateur comportant un circulateur. Dans cet isolateur, afin d'adapter au mieux celle des trois entrées du circulateur proprement dit (correspondant à la fonction d'aiguillage) sur laquelle une charge dissipative est couplée, l'élément de couplage choisi est un circuit oscillant série dont l'impédance ajoutée à celle de la charge dissipative est aussi proche que possible de l'impédance conjuguée du circulateur; ce circuit oscillant série remplace le transformateur d'impédance, de type λI4, qui est habituellement employé pour effectuer l'adaptation et qui fait habituellement partie du circulateur.A German patent application DE-A-3 034 034 describes an insulator comprising a circulator. In this isolator, in order to best adapt that of the three inputs of the circulator itself (corresponding to the switching function) on which a dissipative load is coupled, the coupling element chosen is a series oscillating circuit whose impedance added to that of the dissipative load is as close as possible to the combined impedance of the circulator; this series oscillating circuit replaces the impedance transformer, type λI4, which is usually used to carry out the adaptation and which is usually part of the circulator.

Un article paru dans IEEE transactions on Elec- tron device, vol. ED-15, N° 9, de septembre 1968 intitulé «Integrated microwave power distribution network" décrit l'utilisation de circulateurs en tant qu'éléments de circuit dans des circuits micro-ondes intégrés. Un circuit de ce type comprend un conducteur central disposé sur un substrat en alumine qui lui-même est situé entre deux plans de masse conducteurs. Des circulateurs sont introduits en disposant un disque de ferrite de chaque côté de la céramique et en ajoutant un circuit magnétique pour polariser la ferrite.An article published in IEEE transactions on Electron device, vol. ED-15, No. 9, of September 1968 entitled "Integrated microwave power distribution network " describes the use of circulators as circuit elements in integrated microwave circuits. A circuit of this type comprises a central conductor arranged on an alumina substrate which itself is located between two conductive ground planes Circulators are introduced by placing a ferrite disc on each side of the ceramic and adding a magnetic circuit to polarize the ferrite.

L'invention, quant à elle, concerne un dispositif d'adaptation et d'isolement pour coupler un circuit à adapter à un point de branchement comprenant un circulateur à ferrite à trois branches formé d'une plaque métallique comportant un disque résonateur autour duquel sont disposés les trois branches à 120° les unes des autres, la première branche étant reliée à ce point de branchement, la seconde branche étant reliée à une résistance de polarisation, la troisième branche étant reliée au circuit à adapter, caractérisé en ce que ladite plaque métallique est disposée à l'intérieur d'une structure formée de deux plans de masses situés de part et d'autre de celle-ci, en ce que la première et la seconde branches, de. longueur sensiblement égale au quart de la longueur, dans le circulateur, de l'onde à une fréquence moyenne, ont une longueur nettement supérieure à celle de la troisième branche qui n'est là qu'à titre de repérage pour le branchement au circuit à adapter et en ce que le circulateur est selectionné pour que la partie réelle de l'impédance de sa troisième branche soit égale à la partie réelle de l'impédance du circuit à adapter et pour que les coefficients de surtension desdites impédances soient les mêmes.The invention, for its part, relates to an adaptation and isolation device for coupling a circuit to be adapted to a connection point comprising a ferrite circulator with three branches formed by a metal plate comprising a resonator disc around which are arranged the three branches at 120 ° from each other, the first branch being connected to this connection point, the second branch being connected to a bias resistor, the third branch being connected to the circuit to be adapted, characterized in that said plate metal is arranged inside a structure formed by two ground planes located on either side thereof, in that the first and second branches,. length substantially equal to a quarter of the length, in the circulator, of the wave at an average frequency, have a length significantly greater than that of the third branch which is only there for identification for connection to the circuit to adapt and in that the circulator is selected so that the real part of the impedance of its third branch is equal to the real part of the impedance of the circuit to be adapted and so that the overvoltage coefficients of said impedances are the same.

Ainsi l'invention, conduit, non pas à remplacer un transformateur d'impédance de type λI4 (qui fait partie du circulateur) par un circuit oscillant série (ajouté au circulateur), mais à supprimer le circuit d'adaptation du type circuit parallèle, habituellement employé pour coupler un circuit à adapter à un circulateur; le circuit à adapter est ainsi branché directement sur le circulateur sans élément en remplacement du circuit d'adaptation.Thus, the invention leads, not to replace an impedance transformer of type λI4 (which is part of the circulator) by a series oscillating circuit (added to the circulator), but to suppress the adaptation circuit of the parallel circuit type, usually used to couple a circuit to be adapted to a circulator; the circuit to be adapted is thus connected directly to the circulator without any element replacing the adaptation circuit.

La présente invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description ci-après et des figures s'y rapportant qui représentent:

  • - les figures 1 et 4 des impédances représentatives de circuits,
  • - les figures 2 et 3 des montages relatifs respectivement à l'art antérieur et à l'invention,
  • - les figures 5 et 6 des vues montrant un circulateur à ferrites utilisé dans le montage selon la figure 3.
The present invention will be better understood and other characteristics will appear with the aid of the description below and of the figures relating thereto which represent:
  • - Figures 1 and 4 of the representative impedances of circuits,
  • FIGS. 2 and 3 of the arrangements relating respectively to the prior art and to the invention,
  • - Figures 5 and 6 of the views showing a ferrite circulator used in the assembly according to Figure 3.

Sur les différentes figures les éléments correspondants portent les mêmes repères.In the various figures, the corresponding elements bear the same references.

Dans ce qui suit il va être question d'un circuit à adapter; il s'agira d'un circuit micro-ondes du genre amplificateur, filtre, mélangeur... etc.In what follows there will be a question of a circuit to be adapted; it will be a microwave circuit of the amplifier, filter, mixer type, etc.

Sur la figure 1 est représentée schématiquement l'impédance d'un circuit à adapter dans le cas le plus général, c'est-à-dire dans le cas où cette impédance est assimilable à celle d'un circuit résonnant série R1-L-C1. Si la fréquence centrale de travail, FO, du circuit à adapter est différente de sa fréquence de résonance, une impédance est ajoutée, en série avec le circuit à adapter pour rendre ces deux fréquences égales; dans le cas de la figure 1 cette impédance est obtenue par une inductance L'1. Dans ce qui suit et dans les revendications cette impédance, à ajouter éventuellement, sera considérée comme faisant partie du circuit à adapter et ce dernier sera considéré comme un circuit résonnant série formé des éléments R1-L1-C1 avec L1 = L + L'1; et la pulsation co., correspondant à la fréquence centrale de travail, est telle que: L1.C1.ω2 o = 1.In Figure 1 is shown schematically the impedance of a circuit to be adapted in the most general case, that is to say in the case where this impedance is comparable to that of a resonant circuit series R1-L- C1. If the central working frequency, FO, of the circuit to be adapted is different from its resonant frequency, an impedance is added, in series with the circuit to be adapted to make these two frequencies equal; in the case of FIG. 1 this impedance is obtained by an inductor L'1. In what follows and in the claims this impedance, to be added optionally, will be considered as part of the circuit to be adapted and the latter will be considered as a series resonant circuit formed of the elements R1-L1-C1 with L1 = L + L'1 ; and the pulsation co., corresponding to the central working frequency, is such that: L1.C1.ω 2 o = 1.

L'impédance, à la pulsation ω, du circuit à adapter de la figure 1 est:

Figure imgb0001
et son coéfficient de surtension
Figure imgb0002
The impedance, at the pulsation ω, of the circuit to be adapted in FIG. 1 is:
Figure imgb0001
and its overvoltage coefficient
Figure imgb0002

Lorsqu'un circuit à adapter, du type de celui dont il a été question ci-avant, doit être couplé à un point de branchement à travers un circuit d'isolement, il est connu d'utiliser pour cela un circulateur à ferrites dans un montage représenté schématiquement sur la figure 2.When a circuit to be adapted, of the type discussed above, must be coupled to a connection point through an isolation circuit, it is known to use a ferrite circulator for this purpose. assembly schematically shown in Figure 2.

La figure 2 représente un circuit à adapter, 1, qui est relié à un point de branchement, A, par un circuit d'adaptation, 10, suivi d'un circulateur, 20 à 23. Le circuit d'adaptation, 10, est constitué, de façon classique, à l'aide d'un ou de plusieurs circuits résonnants parallèles; les éléments de ce circuit 10 sont choisis de telle sorte qu'il présente une impédance d'entrée purement ohmique et de valeur Zc donnée dans toute la bande de fréquences de travail, lorsque sa sortie est reliée à l'entrée du circuit à adapter. Le circulateur, bien que constitué d'un seul élément, a été représenté par quatre blocs de manière à distinguer entre ses différentes fonctions: un bloc, 20, appelé circuit d'aiguillage qui concerne la fonction «circulateur» proprement dite en trois blocs, 21 à 23, appelés transformateurs d'impédance, branchés sur chacun des trois accès du circuit d'aiguillage 20 pour ramener à la valeur Zc, ci-avant mentionnée, les impédances des trois accès du circulateur. La fonction «circulateur» représentée par le bloc 20, permet d'isoler le circuit à adapter 1 d'un autre circuit à adapter branché en aval du point A, de manière à améliorer le rapport d'ondes stationnaires au point A. Les transformateurs d'impédance, 21 à 23, ont, comme le circuit d'adaptation 10, un rôle d'adaptation d'impédance mais, au contraire du circuit 10, ils ne nécessitent pas de résonateurs pour jouer ce rôle étant donné que, comme il sera indiqué plus loin, un circulateur présente à ses accès des impédances du type de celles des circuits résonnants parallèles; les transformateurs d'impédance 21 à 23 sont, le plus généralement, constitués par des transformateurs quart d'onde. Le transformateur d'impédance 21 est relié au point A, le transformateur d'impédance 22 est relié à la première extrémité d'une résistance R dont la seconde extrémité est à la masse: quant au transformateur d'impédance 23 il est couplé au circuit à adapter 1 par le circuit d'adaptation 10.FIG. 2 represents a circuit to be adapted, 1, which is connected to a connection point, A, by an adaptation circuit, 10, followed by a circulator, 20 to 23. The adaptation circuit, 10, is constituted, conventionally, using one or more parallel resonant circuits; the elements of this circuit 10 are chosen so that it has a purely ohmic input impedance and of value Zc given throughout the working frequency band, when its output is connected to the input of the circuit to be adapted. The circulator, although made up of a single element, has been represented by four blocks so as to distinguish between its different functions: a block, 20, called the switching circuit which relates to the “circulator” function proper in three blocks, 21 to 23, called impedance transformers, connected to each of the three ports of the switching circuit 20 to bring the impedances of the three ports of the circulator to the value Zc, mentioned above. The “circulator” function represented by block 20 makes it possible to isolate the circuit to be adapted 1 from another circuit to be adapted connected downstream from point A, so as to improve the standing wave ratio at point A. The transformers impedance, 21 to 23, have, like the adaptation circuit 10, an impedance adaptation role but, unlike circuit 10, they do not require resonators to play this role since, as it will be indicated later, a circulator presents at its accesses impedances of the type of those of parallel resonant circuits; the impedance transformers 21 to 23 are, most generally, constituted by quarter wave transformers. The impedance transformer 21 is connected to point A, the impedance transformer 22 is connected to the first end of a resistor R whose second end is grounded: as for the impedance transformer 23 it is coupled to the circuit to be adapted 1 by the adaptation circuit 10.

La figure 3 montre comment, dans le cadre de l'invention, est modifié le montage selon la figure 2. Le montage selon la figure 3 se distingue du montage selon la figure 2 par le fait que le transformateur d'impédance 23 et le circuit d'adaptation 10 ont été supprimés et remplacés, selon les cas, soit par une liaison directe, soit par un simple transformateur d'impédance 3 ne comportant pas d'élément résonnant parallèle; cette alternative est figurée par un dessin du pourtour du bloc 3 en traits interrompus. Un tel montage, par la suppression du transformateur d'impédance 23 et du circuit d'adaptation 10 est donc de son résonateur, a une bande passante plus large que le montage selon la figure 2; de plus, du fait de la diminution du nombre des éléments, le montage selon la figure 3 présente moins de pertes que le montage suivant la figure 2.FIG. 3 shows how, in the context of the invention, the circuit according to FIG. 2 is modified. The circuit according to FIG. 3 differs from the circuit according to FIG. 2 by the fact that the impedance transformer 23 and the circuit adaptation 10 have been removed and replaced, as the case may be, either by a direct link, or by a simple impedance transformer 3 having no parallel resonant element; this alternative is shown by a drawing of the periphery of block 3 in broken lines. Such an arrangement, by removing the impedance transformer 23 and the matching circuit 10 is therefore from its resonator, has a wider bandwidth than the arrangement according to FIG. 2; in addition, due to the reduction in the number of elements, the assembly according to FIG. 3 has less losses than the assembly according to FIG. 2.

Dans la suite de la description il va être montré pouquoi le montage selon la figure 3 est possible.In the following description, it will be shown why the assembly according to FIG. 3 is possible.

Pour un circulateur à ferrites il est connu (voir en particulier l'article: Operation of the ferrite junction circulator, paru dans IEEE Transactions on microwave theory and thechniques, de janvier 1965, pages 15 à 27), et les mesures premettent de le vérifier, que les impédances des accès sont assimilables à celles de circuits résonnants parallèles.For a ferrite circulator it is known (see in particular the article: Operation of the ferrite junction circulator, published in IEEE Transactions on microwave theory and thechniques, from January 1965, pages 15 to 27), and the measurements allow us to verify it , that the impedances of the accesses are comparable to those of parallel resonant circuits.

La figure 4 représente un circuit résonnant parallèle, formé d'une résistance R2 en parallèle sur une inductance L2 et un condensateur C2.FIG. 4 represents a parallel resonant circuit, formed of a resistor R2 in parallel on an inductance L2 and a capacitor C2.

Cette figure est la représentation schématique de l'impédance d'un accès d'un circulateur à ferrites dont l'impédance, à la pulsation ω est:

Figure imgb0003
This figure is the schematic representation of the impedance of an access of a ferrite circulator whose impedance, at the pulsation ω is:
Figure imgb0003

Le coéfficient de surtension du circuit résonnant selon la figure 4 est:

Figure imgb0004
où 0>0 est la pulsation de résonance du circulateur et est telle que L2.C2.ω2 o = 1.The overvoltage coefficient of the resonant circuit according to Figure 4 is:
Figure imgb0004
where 0> 0 is the resonance pulse of the circulator and is such that L2.C2.ω 2 o = 1.

Quand un circulateur est utilisé dans un montage, comme dispositif d'isolement pour un circuit micro-ondes, sa fréquence de résonance est choisie, pour des raisons de largeur de bande de fréquences de fonctionnement, égale ou du moins aussi proche que possible de la fréquence centrale de travail et donc de la fréquence de résonance du circuit micro-ondes; c'est pourquoi dans la forme L1.C2.ω2 o = 1 relative du circuit à adapter de la figure 1 et dans la formule L2.C2.ω2 o = 1, la pulsation de résonance est, dans les deux cas, représentée par wo.When a circulator is used in an assembly, as an isolation device for a microwave circuit, its resonant frequency is chosen, for reasons of operating frequency bandwidth, equal or at least as close as possible to the central working frequency and therefore the resonance frequency of the microwave circuit; this is why in the form L1.C2.ω 2 o = 1 relative of the circuit to be adapted of figure 1 and in the formula L2.C2.ω 2 o = 1, the resonance pulsation is, in both cases, represented by w o .

Pour que le circuit résonnant parallèle selon la figure 4 puisse constituer un circuit d'adaptation pour le circuit résonnant série selon la figure 1, c'est-à-dire pour que le schéma de la figure 2 puisse être remplacé par le schéma de la figure 3 avec une liaison sans transformateur d'impédance entre les circuits 20 et 1, il faut que l'impédance Z2 du circuit résonnant parallèle soit égale au conjugué de l'impédance Z1, c'est-à-dire que

Figure imgb0005
en remplaçant dans cette équation, C1 et L2 par leurs valeurs tirées des formules
Figure imgb0006
il vient, en faisant l'égalité entre les parties réelles d'une part et les parties imaginaires d'autre part
Figure imgb0007
Figure imgb0008
pour ω = ωo la relation (5) entraîne:
Figure imgb0009
pour ω différent de ωo la relation (6) entraîne:
Figure imgb0010
ce qui donne en multipliant par
Figure imgb0011
:
Figure imgb0012
ce qui peut s'écrire, compte tenu des formules (2) et (4)
Figure imgb0013
So that the parallel resonant circuit according to FIG. 4 can constitute an adaptation circuit for the series resonant circuit according to FIG. 1, that is to say so that the diagram of FIG. 2 can be replaced by the diagram of the FIG. 3 with a link without impedance transformer between circuits 20 and 1, the impedance Z2 of the parallel resonant circuit must be equal to the conjugate of impedance Z1, that is to say that
Figure imgb0005
replacing in this equation, C1 and L2 by their values taken from formulas
Figure imgb0006
it comes, by making the equality between the real parts on the one hand and the imaginary parts on the other hand
Figure imgb0007
Figure imgb0008
for ω = ω o equation (5) leads to:
Figure imgb0009
for different ω ω o of the equation (6) leads to:
Figure imgb0010
which gives by multiplying by
Figure imgb0011
:
Figure imgb0012
what can be written, given formulas (2) and (4)
Figure imgb0013

Connaissant les valeurs de R1 et de Q1, à la pulsation de résonance ωo, d'un circuit à adapter, il est toujours possible de réaliser un circulateur dont la pulsation de résonance, le coefficient de surtension et l'impédance à la résonance sont respectivement égaux, ou du moins proches, de wo, Q1 et R1. Ainsi il est possible de réaliser l'adaptation optimale en large bande entre le circulateur et le circuit micro-ondes.Knowing the values of R1 and Q1, at the resonant pulsation ω o , of a circuit to be adapted, it is always possible to produce a circulator whose resonant pulsation, overvoltage coefficient and impedance at resonance are respectively equal, or at least close, to w o , Q1 and R1. Thus it is possible to achieve the optimal broadband adaptation between the circulator and the microwave circuit.

Il est à noter que si la résistance R2 du circulateur est nettement différente de la résistance R1 du circuit à adapter, il est possible d'effectuer une adaptation par un transformateur d'impédance, sans élément résonnant parallèle, monté comme le transformateur d'impédance 3 de la figure 3. L'ensemble constitué par le transformateur d'impédance 3 associé au circuit à adapter, 1, a toujours la même pulsation de résonance ωo que le circuit à adapter 1 et sa résistance est déterminée pour être égale à R2; par ailleurs son coefficient de surtension à la pulsation ωo n'est plus égal à Q1 mais est modifié par le transformateur d'impédance, 3, il faut donc que le circulateur ait été choisi de telle sorte que son coefficient de surtension à la résonance, Q2, soit aussi proche que possible du coefficient de surtension de l'ensemble «circuit 1 et transformateur 3".It should be noted that if the resistance R2 of the circulator is clearly different from the resistance R1 of the circuit to be adapted, it is possible to carry out an adaptation by an impedance transformer, without parallel resonant element, mounted like the impedance transformer 3 of FIG. 3. The assembly constituted by the impedance transformer 3 associated with the circuit to be adapted, 1, always has the same resonant pulsation ω o as the circuit to be adapted 1 and its resistance is determined to be equal to R2 ; moreover its pulse overvoltage coefficient ω o is no longer equal to Q1 but is modified by the impedance transformer, 3, it is therefore necessary that the circulator has been chosen so that its overvoltage coefficient at resonance , Q2, is as close as possible to the overvoltage coefficient of the "circuit 1 and transformer 3 " assembly.

Un exemple de réalisation d'un circulateur destiné à un montage selon la figure 3, avec liaison directe, sans le transformateur 3, entre le circuit à adapter 1 et le circuit d'aiguillage 20, va être décrit ci-après à l'aide des figures 5 et 6. Le circuit à adapter était un circuit utilisant un transistor à effet de champ à l'arséniure de gallium, travaillant dans la gamme de fréquences 3,6-4,2 GHz et présentant les caractéristiques ci-après:

  • - fréquence de résonance: FO = 3,9 GHz
  • - coefficient de surtension: Q1 = 3,15
  • - impédance à la résonance: R1 = 15 ohms
An exemplary embodiment of a circulator intended for mounting according to FIG. 3, with direct connection, without the transformer 3, between the circuit to be adapted 1 and the switching circuit 20, will be described below using Figures 5 and 6. The circuit to be adapted was a circuit using a gallium arsenide field effect transistor, working in the frequency range 3.6-4.2 GHz and having the following characteristics:
  • - resonance frequency: FO = 3.9 GHz
  • - overvoltage coefficient: Q1 = 3.15
  • - resonance impedance: R1 = 15 ohms

Le but de l'adaptation de ce circuit était l'obtention du minimum de facteur de bruit du transistor à effet de champ.The purpose of adapting this circuit was to obtain the minimum noise factor of the field effect transistor.

Le circulateur réalisé (figures 5 et 6) possède les caractéristiques suivantes:

  • - fréquence de résonance: FO = 3,9 GHz
  • -coefficient de surtension: Q2 = 2,12
  • - impédance à la résonance: R2 = 15 ohms.
The circulator produced (Figures 5 and 6) has the following characteristics:
  • - resonance frequency: FO = 3.9 GHz
  • - overvoltage coefficient: Q2 = 2.12
  • - impedance at resonance: R2 = 15 ohms.

Il est à remarquer que le circulateur selon les figures 5 et 6 ne satisfait pas parfaitement la condition Q2 = Q1; toutefois les mesures ont montré que, dans la gamme des fréquences de travail (3,6-4,2 GHz), l'écart entre l'impédance optimale qui permet d'obtenir le minimum de facteur de bruit et l'impédance réalisée par le circúlateur, reste faible et que le facteur de bruit obtenu est pratiquement minimum.It should be noted that the circulator according to FIGS. 5 and 6 does not perfectly satisfy the condition Q2 = Q1; however, the measurements have shown that, in the range of working frequencies (3.6-4.2 GHz), the difference between the optimal impedance which makes it possible to obtain the minimum noise factor and the impedance achieved by the circulator remains low and the noise factor obtained is practically minimum.

La figure 5 montre, en traits interrompus, le pourtour C de l'ensemble constitué par le boîtier du circulateur et le boîtier du circuit à adapter qui sont accolés. Sur la figure 5 n'ont été représentés qu'une pièce 4 située au milieu du circulateur, deux fiches de raccordement du résonateur, 31, 32, et le transistor à effet de champ, 11, du circuit à adapter 1 de la figure 3.FIG. 5 shows, in dashed lines, the periphery C of the assembly formed by the housing of the circulator and the housing of the circuit to be adapted which are placed side by side. In FIG. 5, only one part 4 is shown, situated in the middle of the circulator, two resonator connection plugs, 31, 32, and the field effect transistor, 11, of the circuit to be adapted 1 of FIG. 3 .

La pièce 4 constitue la partie conducteur intérieure ou ruban (strip dans la littérature anglo- saxonne) d'une structure de type guide d'ondes triplaque, c'est-à-dire d'une structure formée de deux plans de masse parallèles et d'un ruban disposé parallèlement aux deux plans de masse et entre eux. Ces deux plans de masse apparaissent sur la figure 6 où ils portent les repères 61 et 62. La pièce 4 est constituée d'une plaque métallique en laiton argenté de 1,2 mm d'épaisseur comportant un disque résonateur 40, de 14 mm de diamètre, percé d'un trou de centrage, 44; autour de ce disque sont disposées trois branches, 41,42, 43, à 120° les unes des autres. Les branches 41 et 42, de longueur nettement supérieure à la branche 43, sont soudées au conducteur intérieur des fiches coaxiales, 31, 32. Ces fiches, d'impédance caractéristique égale à 50 ohms, permettent le raccordement au point A et à la résistance R (figure 3); leur conducteur extérieur relié au boîtier du circulateur, n'a pas été représenté sur la figure 5. La branche 43, qui n'est en fait là qu'à titre de repérage pour le branchement, est soudée sur l'extrémité de la connexion de grille, G, du transistor à effet de champ, 11, du circuit à adapter; la longueur de la connexion de grille du transistor 11, c'est-à-dire la longueur de la connexion entre le boîtier du transistor, et le disque 40, détermine l'inductance L'1 dont il a été question lors de la description de la figure 1; par souci de simplification et parce que cela n'apporterait rien à la compréhension de l'invention, les éléments connectés au drain, D, du transistor 11 n'ont pas été représentés; quant à la source du transistor 11, elle comporte deux connexions de sorties, S1 et S2, qui sont toutes les deux soudées sur le boîtier du circuit à adapter.The part 4 constitutes the inner conductive part or ribbon (strip in Anglo-Saxon literature) of a structure of the triplate waveguide type, that is to say of a structure formed by two parallel ground planes and a ribbon arranged parallel to and between the two ground planes. These two ground planes appear in FIG. 6 where they bear the references 61 and 62. The part 4 consists of a metallic plate of silver-plated brass 1.2 mm thick comprising a resonator disc 40, 14 mm in diameter. diameter, drilled with a centering hole, 44; around this disc are arranged three branches, 41, 42, 43, at 120 ° from one another. The branches 41 and 42, of length clearly greater than the branch 43, are soldered to the inner conductor of the coaxial plugs, 31, 32. These plugs, of characteristic impedance equal to 50 ohms, allow connection to point A and to the resistance R (Figure 3); their external conductor connected to the housing of the circulator, has not been shown in FIG. 5. The branch 43, which is in fact there only for identification for connection, is welded to the end of the connection gate, G, of the field effect transistor, 11, of the circuit to be adapted; the length of the gate connection of the transistor 11, that is to say the length of the connection between the housing of the transistor, and the disc 40, determines the inductance L'1 which was mentioned during the description of Figure 1; for the sake of simplification and because this would not bring anything to the understanding of the invention, the connected elements to the drain, D, of transistor 11 have not been shown; as for the source of transistor 11, it comprises two output connections, S1 and S2, which are both soldered to the housing of the circuit to be adapted.

Il est à noter que, dans la réalisation décrite, la polarisation de la grille du transistor 11 se fait par l'intermédiaire du circulateur; en effet la résistance R qui, par souci de simplification, est branchée, sur la figure 3, directement entre le circulateur et la masse est, en réalité, reliée par sa première extrémité au circulateur (transformateur 22 comportant la branche 42) et par sa seconde extrémité à un circuit de découplage; ce circuit de découplage se comporte comme un court-circuit aux fréquences de travail du circuit à adapter et comme une impédance infinie pour la tension continue de polarisation; cette tension de polarisation est appliquée sur la seconde extrémité de la résistance R. Le circuit de découplage peut être réalisé de manière classique par des lignes quart d'onde ouvertes qui ramènent un court-circuit et/ou par un condensateur.It should be noted that, in the embodiment described, the gate of the transistor 11 is polarized by means of the circulator; in fact the resistor R which, for the sake of simplification, is connected, in FIG. 3, directly between the circulator and the ground is, in reality, connected by its first end to the circulator (transformer 22 comprising the branch 42) and by its second end to a decoupling circuit; this decoupling circuit behaves as a short circuit at the working frequencies of the circuit to be adapted and as an infinite impedance for the DC bias voltage; this bias voltage is applied to the second end of the resistor R. The decoupling circuit can be produced conventionally by open quarter-wave lines which bring back a short circuit and / or by a capacitor.

Dans la figure 3 il a été question des transformateurs d'impédance 21 et 22 et du circuit d'aiguillage 20 qui constituaient le circulateur. Sur la figure 4 le disque résonateur 40 et les branches 41 et 42 correspondent respectivement au circuit d'aiguillage 20 et aux transformateurs d'impédance 21 et 22; ces transformateurs d'impédance sont du type transformateurs quart d'onde, c'est-à-dire que la longueur des branches est sensiblement égale au quart de la longueur, dans le circulateur, de l'onde à la fréquence moyenne de 3,9 GHz. En fait les blocs 20, 21 et 22 de la figure 3 sont plus exactement à identifier avec l'association des éléments 40,41, 42 et des éléments entre lesquels ils EVë trouvent insérés dans le circulateur et qui vont être décrits à l'aide de la figure 6.In FIG. 3, the impedance transformers 21 and 22 and the switching circuit 20 which constituted the circulator have been discussed. In FIG. 4 the resonator disc 40 and the branches 41 and 42 correspond respectively to the switching circuit 20 and to the impedance transformers 21 and 22; these impedance transformers are of the quarter wave transformers type, that is to say that the length of the branches is substantially equal to a quarter of the length, in the circulator, of the wave at the average frequency of 3, 9 GHz. In fact, the blocks 20, 21 and 22 of FIG. 3 are more precisely to be identified with the association of the elements 40, 41, 42 and the elements between which they are found inserted in the circulator and which will be described using in Figure 6.

La figure 6 est une vue en coupe, selon l'axe XX (figure 5) du circulateur. Cette vue montre que, de part et d'autre du ruban 4, sont disposées deux structures symétriques par rapport au ruban et qui comportent, à partir du ruban:

  • - un disque de ferrite 51, 52 dont le diamètre est sensiblement égal au diamètre du disque résonateur 40 (figure 5) et une pièce en silice, 53, 54, qui recouvre presque toute la partie du ruban 4 extérieure au disque 40 (figure 5); les pièces 51 à 54 ont une épaisseur de 2,1 mm; le disque de ferrite 51, 52 est percé d'un trou en son centre,
  • - un flasque en aluminium, 61, 62, constituant l'un des plans de masse mentionnés plus avant et qui comporte, dans sa face opposée au ruban 4, un creux en forme de cuvette circulaire disposée en regard des disques de ferrite 51, 52
  • - dans le creux en forme de cuvette: une lame d'air 71, 72, une rondelle en acier doux de 0,5 mm d'épaisseur, 81, 82, et un aimant permanent, 91, 92, de 1,5 mm d'épaisseur; le circuit magnétique formé avec les deux aimants 91, 92 fournit un champ de 400 gauss,
  • - une barre d'un fer en U, 60; ce fer en U recouvre, respectivement par ses deux barres en regard, les deux aimants 91, 92 afin de refermer leurs lignes de champ; ce fer en U est réalisé avec une bande d'acier doux de 1 mm d'épaisseur et 17 mm de largeur.
Figure 6 is a sectional view along the axis XX (Figure 5) of the circulator. This view shows that, on either side of the ribbon 4, are arranged two symmetrical structures with respect to the ribbon and which comprise, from the ribbon:
  • - A ferrite disc 51, 52 whose diameter is substantially equal to the diameter of the resonator disc 40 (Figure 5) and a piece of silica, 53, 54, which covers almost the entire portion of the tape 4 external to the disc 40 (Figure 5 ); parts 51 to 54 have a thickness of 2.1 mm; the ferrite disc 51, 52 is pierced with a hole in its center,
  • - An aluminum flange, 61, 62, constituting one of the ground planes mentioned above and which comprises, in its face opposite to the strip 4, a hollow in the form of a circular bowl arranged opposite the ferrite discs 51, 52
  • - in the bowl-shaped hollow: an air knife 71, 72, a mild steel washer 0.5 mm thick, 81, 82, and a permanent magnet, 91, 92, 1.5 mm thick; the magnetic circuit formed with the two magnets 91, 92 provides a field of 400 gauss,
  • - a bar of a U-shaped iron, 60; this U-shaped iron covers, respectively by its two facing bars, the two magnets 91, 92 in order to close their field lines; this U-shaped iron is made with a strip of mild steel 1 mm thick and 17 mm wide.

Une tige cylindrique isolante, 45, réalisée en nylon (marque déposée), traverse les trous percés dans le ruban 4 (trou 44) et dans les disques en ferrites, 51, 52, afin d'assurer le positionnement de ces pièces les unes par rapport aux autres.An insulating cylindrical rod, 45, made of nylon (registered trademark), passes through the holes drilled in the tape 4 (hole 44) and in the ferrite discs, 51, 52, in order to ensure the positioning of these parts one by one. compared to others.

Une feuille d'argent très mince, non représentée sur la figure 6, est disposée entre le disque 51 et la pièce en silice 53 d'une part et le flasque 61 d'autre part, pour assurer un bon contact électrique entre ces éléments. Une autre feuille, non représentée, assure un bon contact entre le disque 52 et la pièce en silice 54 d'une part et le flasque 62 d'autre part.A very thin silver foil, not shown in FIG. 6, is placed between the disc 51 and the silica piece 53 on the one hand and the flange 61 on the other hand, to ensure good electrical contact between these elements. Another sheet, not shown, ensures good contact between the disc 52 and the silica piece 54 on the one hand and the flange 62 on the other.

Le boîtier du circulateur comporte, entre les flasques 61 et 62 et le fer en U, 60, une prise 31, fixée sur les flasques 61 et 62, au moyen de vis non représentées.The housing of the circulator comprises, between the flanges 61 and 62 and the U-shaped iron, 60, a socket 31, fixed to the flanges 61 and 62, by means of screws not shown.

Ce circulateur à ferrite a été fabriqué, en fonction des caractéristiques à obtenir pour réaliser l'adaptation du circuit à adapter dont il a été question ci-avant; pour cela le choix s'est porté d'abord sur un circulateur existant présentant des caractéristiques assez proches de celles à obtenir puis, après des essais successifs, le circulateur décrit à l'aide des figures 5 et 6 a été réalisé.This ferrite circulator was manufactured, according to the characteristics to be obtained in order to carry out the adaptation of the circuit to be adapted which was mentioned above; for this, the choice fell first on an existing circulator having characteristics fairly close to those to be obtained, then, after successive tests, the circulator described with the aid of FIGS. 5 and 6 was produced.

Il est à noter que l'invention n'est pas limitée à l'exemple décrit; c'est ainsi, en particulier, qu'il est possible, dans le montage selon la figure 3, de supprimer le transformateur d'impédance 22 c'est-à-dire, pratiquement la branche 42 du ruban 4 (voir figure 5), il suffit alors de donner à R la valeur présentée, à la résonance, par la sortie correspondante du résonateur.It should be noted that the invention is not limited to the example described; in this way, in particular, it is possible, in the assembly according to FIG. 3, to remove the impedance transformer 22, that is to say, practically the branch 42 of the ribbon 4 (see FIG. 5) , then it suffices to give R the value presented, at resonance, by the corresponding output of the resonator.

Il est également à noter que le circulateur peut être utilisé comme élément d'adaptation d'un circuit à adapter, non seulement sur l'entrée du circuit, comme dans l'exemple décrit, mais aussi sur la sortie du circuit; ainsi un même circulateur peut servir d'élément d'adaptation pour deux circuits à adapter: un premier circuit à adapter ayant sa sortie couplée à l'un des accès du circulateur et un second circuit à adapter ayant son entrée couplée à un autre accès du circulateur.It should also be noted that the circulator can be used as an adaptation element of a circuit to be adapted, not only on the input of the circuit, as in the example described, but also on the output of the circuit; thus the same circulator can serve as an adaptation element for two circuits to be adapted: a first circuit to be adapted having its output coupled to one of the ports of the circulator and a second circuit to be adapted having its input coupled to another port of the circulator.

Claims (2)

1. A matching and isolating device for coupling a circuit to be matched (1) to a connection point (A), the device comprising a ferrite circulator having three branches (41, 42, 43) made of a metal plate comprising a resonator disk, the three branches being disposed there around at a mutual angular distance of 120°, the first branch being connected to this connection point (A), the second branch to a biassing resistor (R), the third branch to the circuit to be matched, characterized in that said metal plate is disposed inside a structure constituted by two ground planes situated on either side of the plate, that the lengths of the first and of the second branches (41, 42) are substantially equal to a quarter wavelength in the circulator at a mean frequency, and that this length is substantially greater than that of the third branch (43) which is shown only by way of indication for purposes of connection to the circuit to be matched, and that the circulator is selected in such a way that the real part of the impedance of its third branch is equal to the real part of the impedance of the circuit to be matched and that the Q factors of said impedances are the same.
2. A device according to claim 1, characterized in that the circulator comprises on either side of a strip (4) two symmetric structures with respect to this strip (4), these structures including:
- a ferrite disk (51, 52) having a diameter which is substantially equal to the diameter of the re- sonantor disk (40), and a silica component (53, 54) which covers nearly the whole strip portion outside the disk (40), the ferrite disk (51, 52) being pierced by a central hole;
- an aluminium plate (61, 62) constituting a ground plane and comprising in its surface remote from the strip (4) a recess of a circular cup-shape disposed opposite to the ferrite disks (51, 52);
- an air layer (71, 72), a washer (81, 82) and a permanent magnet (91, 92) situated in the cup- shaped recess;
- a U-shaped profile (60), the two facing legs of which cover respectively the two magnets (91, 92);
- an insulating cylindrical rod (45) passing through the holes in the strip (4) and in the ferrite disks (51, 52) in order to secure the components to one another.
EP19830401483 1982-07-27 1983-07-19 Matching and isolatung arrangement with ferrite circulator Expired EP0100274B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8213105 1982-07-27
FR8213105A FR2531272B1 (en) 1982-07-27 1982-07-27 ADAPTATION AND ISOLATION DEVICE COMPRISING A FERRITE CIRCULATOR

Publications (2)

Publication Number Publication Date
EP0100274A1 EP0100274A1 (en) 1984-02-08
EP0100274B1 true EP0100274B1 (en) 1989-03-22

Family

ID=9276361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830401483 Expired EP0100274B1 (en) 1982-07-27 1983-07-19 Matching and isolatung arrangement with ferrite circulator

Country Status (5)

Country Link
EP (1) EP0100274B1 (en)
JP (1) JPS5941901A (en)
CA (1) CA1212731A (en)
DE (1) DE3379494D1 (en)
FR (1) FR2531272B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116259944B (en) * 2023-02-22 2024-01-30 东南大学 Circulator based on principle of space-time symmetry

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651430A (en) * 1964-10-06 1972-03-21 Fujitsu Ltd Strip-line circulator having movable compensating stub strip overlying central strip-line conductors
DE2253175A1 (en) * 1972-10-30 1974-05-09 Siemens Ag CIRCULATOR WITH CONNECTING ARMS TRAINED IN MIC TECHNOLOGY
US3935548A (en) * 1974-06-04 1976-01-27 The Washington University Wide-band microwave circulator
DE3034034C2 (en) * 1980-09-10 1985-07-18 Siemens AG, 1000 Berlin und 8000 München Y-circulator in stripline construction

Also Published As

Publication number Publication date
CA1212731A (en) 1986-10-14
JPS5941901A (en) 1984-03-08
FR2531272A1 (en) 1984-02-03
EP0100274A1 (en) 1984-02-08
FR2531272B1 (en) 1985-09-13
DE3379494D1 (en) 1989-04-27

Similar Documents

Publication Publication Date Title
FR2937481A1 (en) ELECTRONIC SWITCHING DEVICE FOR HIGH FREQUENCY SIGNALS
EP0084311B1 (en) Protection device for a coaxial cable against low frequency, high power parasitic impulses
EP0446107B1 (en) Transmission system for electrical energy, in the microwave field, with gyromagnetic effect, such as a circulator, isolator or filter
EP0127526B1 (en) Magnetostatic wave filter device
EP0100274B1 (en) Matching and isolatung arrangement with ferrite circulator
EP0015610B1 (en) Microwave image-frequency reflecting filter and microwave receiver comprising such a filter
EP0023873A1 (en) Passive power limiter using semiconductors realised in a striplike configuration, and microwave circuit using such a limiter
FR2671912A1 (en) Ferrite device, particularly a circulator, for high-frequency systems, in particular UHF systems
FR2806534A1 (en) NON-RECIPROCAL CIRCUIT DEVICE AND HIGH FREQUENCY CIRCUIT APPARATUS INCORPORATING THE SAME
FR2653615A1 (en) FILTER CELL AND CORRESPONDING FILTER.
FR2802737A1 (en) HIGH FREQUENCY COMPOSITE COMPONENT AND MOBILE TELECOMMUNICATIONS APPARATUS INCORPORATING THE SAME
EP0223673A1 (en) Coupling device between an electromagnetic surface wave transmission line and an external microstrip transmission line
EP0073165B1 (en) Microwave switch
EP0625823B1 (en) Hyperfrequency semiconductor device with stabilizing means
EP0109895B1 (en) Coaxial high-frequency termination, isolator in the triplate technique embodying such a termination, and use of such an isolator
EP3605734B1 (en) Antenna device comprising at least two antennas and electrical connection on a same substrate
EP0021523B1 (en) Bandstop filter for a microwave transmission line and polarisation circuit for a microwave transistor comprising this filter
FR2805085A1 (en) NON-RECIPROCAL CIRCUIT DEVICE AND TELECOMMUNICATIONS DEVICE USING THE SAME
FR2528239A1 (en) HYPERFREQUENCY ELECTROMAGNETIC WAVE MIXER
FR2616973A1 (en) MICROWAVE TRANSMISSION LINE WITH TWO COPLANAR CONDUCTORS
FR2828337A1 (en) Hyperfrequency resonant circuit with a resonant micro-strip line element and an earth and a composite element of alternating ferromagnetic and insulating layers between the element and the earth
EP0430136A1 (en) Band elimination filter for microwave waveguide
FR2499786A1 (en) Wide stop band UHF filter - has quarter wave transformer which is in exact tune for given frequency set in middle of attenuation band
EP3301751A1 (en) Electronic device with insulated antenna
EP0689261A1 (en) Protection device against transient disturbances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19840628

17Q First examination report despatched

Effective date: 19860422

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL THOMSON FAISCEAUX HERTZIENS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 3379494

Country of ref document: DE

Date of ref document: 19890427

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900601

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900613

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900626

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900731

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910731

BERE Be: lapsed

Owner name: ALCATEL THOMSON FAISCEAUX HERTZIENS

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401