EP0099015A1 - Process for manufacturing high-density sintered steel by a simple sintering technique - Google Patents
Process for manufacturing high-density sintered steel by a simple sintering technique Download PDFInfo
- Publication number
- EP0099015A1 EP0099015A1 EP83106223A EP83106223A EP0099015A1 EP 0099015 A1 EP0099015 A1 EP 0099015A1 EP 83106223 A EP83106223 A EP 83106223A EP 83106223 A EP83106223 A EP 83106223A EP 0099015 A1 EP0099015 A1 EP 0099015A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- layer
- iron
- alloy
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005245 sintering Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 29
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 10
- 239000010959 steel Substances 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 230000008569 process Effects 0.000 title claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000000843 powder Substances 0.000 claims abstract description 34
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 25
- 239000000956 alloy Substances 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 13
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 7
- 239000010439 graphite Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 238000009792 diffusion process Methods 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- SHXJBKVHXUNDLB-UHFFFAOYSA-N [Si].[P].[Fe] Chemical compound [Si].[P].[Fe] SHXJBKVHXUNDLB-UHFFFAOYSA-N 0.000 claims 1
- 229910000905 alloy phase Inorganic materials 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 abstract description 3
- 239000007790 solid phase Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 239000008187 granular material Substances 0.000 abstract 4
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000012071 phase Substances 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000011148 porous material Substances 0.000 description 6
- 229910000997 High-speed steel Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910006367 Si—P Inorganic materials 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0264—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
- C22C33/0271—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5% with only C, Mn, Si, P, S, As as alloying elements, e.g. carbon steel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
Definitions
- the invention relates to a method for producing sintered steel according to the preamble of the main claim.
- the strength properties of sintered steels, apart from their composition, are essentially determined by the space they fill.
- the pore shape is also important.
- Sintered steels with a space filling of ⁇ 94% and rounded pores are desirable.
- the most economical way to achieve this goal is the so-called single sintering technique, in which the pressing and sintering is carried out only once.
- the simple sintering technique customary today the sintering of the powder particles takes place essentially by solid phase diffusion, it being possible for it to be supported by the appearance of liquid phases. In the case of two- or three-substance systems, this generally leads to a space filling of around 92%.
- the simple sintering technique with the appearance of liquid phases is used today in the production of components from high-speed steel powders.
- high-speed steels sintered densities of at least 97% are achieved, but the starting powders have very complicated compositions since they consist of at least five alloy components.
- the particles of the starting powder have a completely homogeneous composition since the alloy is made before pressing and sintering.
- each powder particle is in a solid and in a liquid state of aggregation within a certain temperature range, which leads to the fact that the proportion of pores can be reduced to ü 3%, but the temperature range is in which this phenomenon is used for the purpose of compression can be exploited by sintering, with 2 to 3 0C very closely, which places very high demands on the temperature constancy during the sintering process and is one reason that the sintering process for the high-speed steel powders must be carried out in a vacuum.
- This is done by two-phase sealing sintering, but in the process according to the invention an inhomogeneous starting powder containing several components is used which, without reactions of the components with one another, is only present in one aggregate state during the entire sintering process.
- the two-phase state is achieved during the sintering by reactions of two or more starting components, an initially non-existing new phase being formed, which is then simultaneously present in the solid and liquid physical state.
- the distribution of these components in the compact must be such that the reactions occur during sintering at as many locations in the compact as possible. Furthermore, the two-phase state must be maintained as long as possible so that the pores can largely migrate outwards.
- the composition of the starting powder must be chosen so that the component, which occurs simultaneously in the solid and in the liquid state, is present in sufficient quantity.
- the temperature range during sintering is not so critical, since a range of approximately 30 ° C. is available here.
- the sintering process does not need to be carried out in a vacuum, but rather is preferably sintered under hydrogen.
- the sintering temperature of the high-speed steel powders is relatively high at more than 1250 ° C.
- the process according to the invention has proven particularly useful, for example, in the production of the technically interesting Fe-Si-P sintered alloy, which basically has the advantage that silicon and phosphorus are inexpensive, readily available elements which pose very little difficulty in the eventual reprocessing of sintered steel parts .
- the two-phase state occurs for alloys up to about 40% Ni above 1450 ° C.
- spherical iron powder was provided with a nickel layer by vapor deposition, the layer thickness of the nickel being chosen so that a gross content of about 5 % Nickel was reached.
- the powder obtained in this way was shaped at a pressure of about 7 Mp / cm 2 into a compact which was then firstly annealed at 1000 ° C. was so that an alloy already formed in the border zone between iron and nickel. The temperature was then raised to approximately 1470 ° C.
- Fe-Si-P alloy is a technically interesting alloy.
- Fe-Si-P there are various two-phase areas that can be used for the production of high-density sintered parts.
- Iron, ferrosilicon, ferrophosphorus and graphite powders were used as starting materials. It has been shown that it is also necessary in this case to provide a diffusion brake between the iron and the alloy powders. Therefore, the iron powder was first coated with graphite powder by mixing the graphite powder with 5 cm 3 per 1000 g of iron powder of a 35% aqueous dextrin solution as a binder and applying it to the iron powder particles.
- the gross carbon content was between 0.05 and 0.3% by weight.
- this powder was subjected to a heat treatment at 700 0 C for one hour. Then a mixture of ferrosilicon and ferrophosphorus was applied in the same way and again a heat treatment was carried out as above.
- the powder now in the form of a panate, was then pressed in the customary manner and sintered in hydrogen at 1150-1180 ° C. for one hour.
- iron, ferrosilicon and ferrophosphorus powders were mixed thoroughly in the customary manner, 0.7% by weight of a synthetic wax being added as a pressing aid in some of the samples. These powder mixtures were then processed as above.
- Panat or mixed powder with wax were pressed at 6.5 to 8.5 M p / cm 2 . After sintering at 1150 ° C. for one hour in hydrogen, sintered densities between 7.25 and 7.40 g / cm 3 resulted.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Die Erfindung geht aus von einem Verfahren zur Herstellung von Sinterstahl nach der Gattung des Hauptanspruchs. Die Festigkeits.eigenschaften von Sinterstählen werden, außer durch die Zusammensetzung, im wesentlichen durch die Raumerfüllung bestimmt. Daneben ist, wegen der Kerbwirkung der Poren, auch die Porenform wichtig. Wünschenswert sind daher Sinterstähle mit einer Raumerfüllung ≧ 94 % und möglichst abgerundeten Poren. Der wirtschaftlichste Weg zur Erreichung dieses Zieles ist die sogenannte Einfachsintertechnik, bei welcher nur ein einziges Mal gepreßt und gesintert wird. Bei der heute üblichen Einfachsintertechnik erfolgt die Versinterung der Pulverteilchen im wesentlichen durch Festphasendiffusion, wobei sie durch das Auftreten flüssiger Phasen unterstützt werden kann. Man kommt dabei im Falle von Zwei- oder Dreistoffsystemen im allgemeinen bis zu einer Raumerfüllung von etwa 92 %.The invention relates to a method for producing sintered steel according to the preamble of the main claim. The strength properties of sintered steels, apart from their composition, are essentially determined by the space they fill. In addition, because of the notch effect of the pores, the pore shape is also important. Sintered steels with a space filling of ≧ 94% and rounded pores are desirable. The most economical way to achieve this goal is the so-called single sintering technique, in which the pressing and sintering is carried out only once. In the simple sintering technique customary today, the sintering of the powder particles takes place essentially by solid phase diffusion, it being possible for it to be supported by the appearance of liquid phases. In the case of two- or three-substance systems, this generally leads to a space filling of around 92%.
Durch die sogenannte Zweifachsintertechnik, bei der auf eine erste Verfahrensfolge Pressen und Sintern eine zweite solche folgt, kann man eine Raumerfüllung von knapp 94 % erreichen. Diese Technik ist aber wesentlich aufwendiger als die Einfachsintertechnik. Die Sinterschmiedetechnik schließlich gestattet zwar eine Verdichtung bis zur Raumerfüllung von 99 % und darüber, sie ist aber sehr aufwendig und in den meisten Fällen unwirtschaftlich.Thanks to the so-called double-sintering technology, in which a first sequence of presses and sintering is followed by a second, a space filling of almost 94% can be achieved. However, this technique is much more complex than the simple sintering technique. Finally, the sinter forging technology allows compression up to 99% and more, but it is very complex and in most cases uneconomical.
Die Einfachsintertechnik mit einem Auftreten flüssiger Phasen, das sogenannte Zweiphasendichtsintern, wird heute bei der Herstellung von Bauteilen aus Schnellstahlpulvern angewendet. Bei diesen Schnellstählen erreicht man zwar Sinterdichten von mindestens 97 %, jedoch weisen die Ausgangspulver sehr komplizierte Zusammensetzungen auf, da sie aus mindestens fünf Legierungskomponenten bestehen. Die Teilchen des Ausgangspulvers haben eine völlig homogene Zusammensetzung, da die Legierung vor dem Pressen und Sintern hergestellt wird. Während des Sinterns befindet sich innerhalb eines bestimmten Temperaturbereiches jedes Pulverteilchen gleichzeitig im festen und im flüssigen Aggregatzustand, was zwar dazu führt, daß sich der Anteil der Poren auf ü 3 % erniedrigen läßt, jedoch ist der Temperaturbereich, in dem dieses Phänomen zum Zwecke des Verdichtens durch Sintern ausgenutzt werden kann, mit 2 bis 3 0C sehr eng, was sehr hohe Anforderungen an die Temperaturkonstanz während des Sinterprozesses stellt und mit ein Grund dafür ist, daß der Sinterprozeß bei den Schnellstahlpulvern im Vakuum durchgeführt werden muß.The simple sintering technique with the appearance of liquid phases, the so-called two-phase sealing sintering, is used today in the production of components from high-speed steel powders. With these high-speed steels, sintered densities of at least 97% are achieved, but the starting powders have very complicated compositions since they consist of at least five alloy components. The particles of the starting powder have a completely homogeneous composition since the alloy is made before pressing and sintering. During sintering, each powder particle is in a solid and in a liquid state of aggregation within a certain temperature range, which leads to the fact that the proportion of pores can be reduced to ü 3%, but the temperature range is in which this phenomenon is used for the purpose of compression can be exploited by sintering, with 2 to 3 0C very closely, which places very high demands on the temperature constancy during the sintering process and is one reason that the sintering process for the high-speed steel powders must be carried out in a vacuum.
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat gegenüber den normalen Sinterstählen, die durch Mischen der Elementpulver im allgemeinen als Zwei- oder Dreistoffsystem hergestellt werden, den Vorteil, daß es mit ihm gelingt, einen Sinterstahl durch einfache Sintertechnik auf eine Raumerfüllung = 94 % zu bringen. Dies erfolgt durch das Zweiphasendichtsintern, wobei aber bei dem erfindungsgemäßen Verfahren ein inhomogenes, mehrere Komponenten enthaltendes Ausgangspulver benutzt wird, das, ohne Reaktionen der Komponenten untereinander, während des ganzen Sintervorgangs gleichzeitig nur in einem Aggregatzustand vorliegt. Der Zweiphasenzustand wird während des Sinterns durch Reaktionen zweier oder mehrerer Ausgangskomponenten erreicht, wobei sich eine ursprünglich nicht vorhandene neue Phase bildet, die dann gleichzeitig im festen und flüssigen Aggregatzustand vorliegt. Die Verteilung dieser Komponenten im Preßkörper muß so sein, daß die Reaktionen während des Sinterns an möglichst vielen Stellen im Preßkörper auftreten. Weiterhin muß der Zweiphasenzustand möglichst lange aufrechterhalten bleiben, damit die Poren weitgehend nach außen wandern können. Die Zusammensetzung der Ausgangspulver muß so gewählt werden, daß die Komponente, die gleichzeitig im festen und im flüssigen Aggregatzustand auftritt, in ausreichender Menge vorhanden ist.The method according to the invention with the characterizing features of the main claim has the advantage over the normal sintered steels, which are generally produced by mixing the element powders as a two- or three-material system, that a sintered steel can be achieved with a simple sintering technique on a spacer filling = bring 94%. This is done by two-phase sealing sintering, but in the process according to the invention an inhomogeneous starting powder containing several components is used which, without reactions of the components with one another, is only present in one aggregate state during the entire sintering process. The two-phase state is achieved during the sintering by reactions of two or more starting components, an initially non-existing new phase being formed, which is then simultaneously present in the solid and liquid physical state. The distribution of these components in the compact must be such that the reactions occur during sintering at as many locations in the compact as possible. Furthermore, the two-phase state must be maintained as long as possible so that the pores can largely migrate outwards. The composition of the starting powder must be chosen so that the component, which occurs simultaneously in the solid and in the liquid state, is present in sufficient quantity.
Gegenüber den obenerwähnten Schnellstahlpulvern ergibt sich der Vorteil, daß der Temperaturbereich während des Sinterns nicht so kritisch ist, da hier ein Bereich von ca. 30 0C zur Verfügung steht. Außerdem braucht der Sinterprozeß nicht im Vakuum durchgeführt zu werden, hier wird vielmehr vorzugsweise unter Wasserstoff gesintert. Außerdem liegt die Sintertemperatur bei den Schnellstahlpulvern mit mehr als 1250 0C verhältnismäßig hoch.Compared to the above-mentioned high-speed steel powders, there is the advantage that the temperature range during sintering is not so critical, since a range of approximately 30 ° C. is available here. In addition, the sintering process does not need to be carried out in a vacuum, but rather is preferably sintered under hydrogen. In addition, the sintering temperature of the high-speed steel powders is relatively high at more than 1250 ° C.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich. Besonders vorteilhaft ist es, das Ausgangspulver auf die Weise herzustellen, daß man die Pulverteilchen des Hauptbestandteils Eisen mit einer oder mehreren Schichten der Legierungskomponenten überzieht, daß man dieses Pulver dann preßt und anschließend sintert, wie es unten anhand von Beispielen noch genauer beschrieben wird. Dabei ist es im allgemeinen notwendig, dafür Sorge zu tragen, daß die als Schicht aufgebrachten Legierungskomponenten während des Sinterns nicht zu schnell in das Eisen hineindiffundieren. Dies kann zum einen dadurch geschehen, daß man ein Eisenpulver mit einem geringen Kohlenstoffanteil verwendet oder daß man als erste Schicht auf die Eisenpulverteilchen eine Graphitschicht als Diffusionsbremse aufbringt. Das erfindungsgemäße Verfahren hat sich beispielsweise besonders bewährt bei der Herstellung der technisch interessanten Fe-Si-P-Sinterlegierung, die grundsätzlich den Vorteil hat, daß Silicium und Phosphor preiswerte, leicht verfügbare Elemente sind, die bei einer eventuellen Wiederaufbereitung von Sinterstahlteilen sehr wenig Schwierigkeiten bereiten.Advantageous further developments and improvements of the method specified in the main claim are possible through the measures listed in the subclaims. It is particularly advantageous to use the starting powder in this way to produce that the powder particles of the main component iron are coated with one or more layers of the alloy components, that this powder is then pressed and then sintered, as will be described in more detail below with the aid of examples. It is generally necessary to ensure that the alloy components applied as a layer do not diffuse too quickly into the iron during sintering. This can be done either by using an iron powder with a low carbon content or by applying a graphite layer as a diffusion brake to the iron powder particles as the first layer. The process according to the invention has proven particularly useful, for example, in the production of the technically interesting Fe-Si-P sintered alloy, which basically has the advantage that silicon and phosphorus are inexpensive, readily available elements which pose very little difficulty in the eventual reprocessing of sintered steel parts .
Im System Eisen-Nickel tritt für Legierungen bis etwa 40 % Ni oberhalb 14500 C der Zweiphasenzustand auf. Um eine Fe-Ni-Legierung mit etwa 5 % Ni und einer Raumerfüllung von ≧ 94 % durch Einfachsintertechnik herstellen zu können, wurde sphärisches Eisenpulver durch Aufdampfen mit einer Nickelschicht versehen, wobei die Schichtdicke des Nickels so gewählt wurde, daß ein Bruttogehalt von etwa 5 % Nickel erreicht wurde. Das so erhaltene Pulver wurde mit einem Druck von etwa 7 Mp/cm2 zu einem Preßkörper geformt, der dann zunächst bei 1000 °C getempert wurde, so daß sich in der Grenzzone zwischen Eisen und Nickel schon eine Legierung bildete. Danach wurde die Temperatur auf ca. 1470 °C erhöht. Es stellte sich jedoch heraus, daß dieser Zweiphasenzustand nicht ausreichend lange erhalten blieb, da das Nickel zu schnell in das Eisen eindiffundierte und das Zweiphasengebiet daher zu schnell wieder verlassen wurde. Die Poren hatten in diesem Falle zu wenig Zeit, um nach außen zu wandern. Diese Schwierigkeit konnte jedoch dadurch überwunden werden, daß man ein Eisenpulver verwendete, das etwa 0,2 Gew.-% Kohlenstoff enthielt, wodurch die Nickel-Diffusion in ausreichendem Maße verzögert wurde. Bei den so hergestellten Sinterteilen wurden Sinterdichten zwischen 7,4 und 7,5 g/cm3 erzielt, was einer Verdichtung auf > 94 % entspricht und auf das gleichzeitige und ausreichend lange Vorhandensein einer Fe-Ni-Phase im festen und im flüssigen Zustand zurückzuführen ist.In the iron-nickel system, the two-phase state occurs for alloys up to about 40% Ni above 1450 ° C. In order to be able to produce an Fe-Ni alloy with about 5% Ni and a space filling of ≧ 94% by simple sintering technology, spherical iron powder was provided with a nickel layer by vapor deposition, the layer thickness of the nickel being chosen so that a gross content of about 5 % Nickel was reached. The powder obtained in this way was shaped at a pressure of about 7 Mp / cm 2 into a compact which was then firstly annealed at 1000 ° C. was so that an alloy already formed in the border zone between iron and nickel. The temperature was then raised to approximately 1470 ° C. However, it turned out that this two-phase state did not last long enough, since the nickel diffused into the iron too quickly and the two-phase region was therefore left too quickly. In this case, the pores did not have enough time to migrate outwards. However, this difficulty could be overcome by using an iron powder containing about 0.2% by weight of carbon, which sufficiently delayed the nickel diffusion. In the sintered parts produced in this way, sintered densities between 7.4 and 7.5 g / cm 3 were achieved, which corresponds to a compression to> 94% and to be attributed to the simultaneous and sufficiently long presence of an Fe-Ni phase in the solid and in the liquid state is.
Es wurde oben schon angedeutet, daß die Fe-Si-P-Legierung eine technisch interessante Legierung darstellt. Im ternären System Fe-Si-P gibt es verschiedene Zweiphasengebiete, die man für die Herstellung hochdichter Sinterteile ausnutzen kann. Als Ausgangsstoffe wurden Eisen-, Ferrosilicium-, Ferrophosphor- und Graphitpulver verwendet. Es hat sich nämlich gezeigt, daß es auch in diesem Falle notwendig ist, eine Diffusionsbremse zwischen dem Eisen und den Legierungspulvern vorzusehen. Daher wurde das Eisenpulver zunächst mit Graphitpulver überzogen, indem das Graphitpulver mit 5 cm3 auf 1000 g Eisenpulver einer 35 %igen wäßrigen Dextrinlösung als Bindemittel vermischt und auf die Eisenpulverteilchen aufgebracht wurde. Dabei lag der Brutto-Kohlenstoffgehalt zwischen 0,05 und 0,3 Gew.-%. Um eine bessere Haftung des Graphits am Eisen zu erreichen, wurde dieses Pulver einer einstündigen Wärmebehandlung bei 700 0C unterzogen. Dann wurde in gleicher Weise eine Mischung aus Ferrosilicium und Ferrophosphor aufgebracht und wiederum eine Wärmebehandlung wie oben durchgeführt. Danach wurde das nunmehr in Form eines Panates vorliegende Pulver in üblicher Weise gepreßt und eine Stunde bei 1150 - 1180 °C in Wasserstoff gesintert. - Alternativ wurden Eisen-, Ferrosilicium- und Ferrophosphorpulver in der üblichen Weise sorgfältig gemischt, wobei bei einem Teil der Proben noch 0,7 Gew.-% eines synthetischen Wachses als Preßhilfsmittel zugesetzt wurde. Diese Pulvermischungen wurden dann wie oben weiterverarbeitet.It has already been indicated above that the Fe-Si-P alloy is a technically interesting alloy. In the ternary system Fe-Si-P there are various two-phase areas that can be used for the production of high-density sintered parts. Iron, ferrosilicon, ferrophosphorus and graphite powders were used as starting materials. It has been shown that it is also necessary in this case to provide a diffusion brake between the iron and the alloy powders. Therefore, the iron powder was first coated with graphite powder by mixing the graphite powder with 5 cm 3 per 1000 g of iron powder of a 35% aqueous dextrin solution as a binder and applying it to the iron powder particles. The gross carbon content was between 0.05 and 0.3% by weight. To ensure better adhesion of graphite to iron reached, this powder was subjected to a heat treatment at 700 0 C for one hour. Then a mixture of ferrosilicon and ferrophosphorus was applied in the same way and again a heat treatment was carried out as above. The powder, now in the form of a panate, was then pressed in the customary manner and sintered in hydrogen at 1150-1180 ° C. for one hour. - Alternatively, iron, ferrosilicon and ferrophosphorus powders were mixed thoroughly in the customary manner, 0.7% by weight of a synthetic wax being added as a pressing aid in some of the samples. These powder mixtures were then processed as above.
Bei der Prüfung der Eigenschaften der auf diese Weise hergestellten Probekörper zeigten die aus Panatpulver und aus Mischpulver mit Wachszusatz hergestellten Proben weitgehend die gleichen Ergebnisse, während bei den Mischpulvern ohne Wachszusatz, besonders bei hohen Preßdrücken und Sintertemperaturen, große Streuungen der Eigenschaftswerte auftraten.When testing the properties of the test specimens produced in this way, the samples produced from panat powder and from mixed powder with added wax largely showed the same results, while in the case of mixed powders without added wax, there were large variations in the property values, particularly at high pressing pressures and sintering temperatures.
Bei Preßdrücken zwischen 6,5 und 8,5 Mp/cm2 wurden Sinterdichten zwischen 7,25 und 7, 40 g/cm3 erreicht. Dies entspricht Werten für die Raumerfüllung von 94 bis 96 %. In diesem Dichtebereich sind die Festigkeitseigenschaften sowie die Maßänderungen (Schwindungen) während des Sinterns nahezu unabhängig von der Dichte.Sintering densities between 7.25 and 7.40 g / cm 3 were achieved at pressures between 6.5 and 8.5 Mp / cm 2 . This corresponds to 94 to 96% room filling values. In this density range, the strength properties and the dimensional changes (shrinkage) during sintering are almost independent of the density.
Bei den oben beschriebenen Versuchen wurden die Komponenten in solchen Mengen eingesetzt, daß die Anteile der einzelnen Komponenten in den Legierungen in folgenden Bereichen lagen:
- P 0,8 bis 1,4 Gew.-%
- Si 1,0 bis 2,0 Gew.-%
- C 0,05 bis 0,3 Gew.-% (bei Panat)
- Fe Rest
- P 0.8 to 1.4% by weight
- Si 1.0 to 2.0% by weight
- C 0.05 to 0.3% by weight (for Panat)
- Fe rest
Eine bezüglich ihrer Eigenschaften besonders günstige Legierung hat die folgende Zusammensetzung:
- P 1,0 Gew.-%
- Si 1,75 Gew.-%
- C 0,06 Gew.-% (bei Panat)
- Fe Rest
- P 1.0% by weight
- Si 1.75% by weight
- C 0.06% by weight (for Panat)
- Fe rest
Panat bzw. Mischpulver mit Wachs wurden mit 6,5 bis 8,5 Mp/cm2 gepreßt. Nach einer Sinterung bei 1150 °C, eine Stunde in Wasserstoff ergaben sich Sinterdichten zwischen 7,25 und 7, 40 g/cm3.Panat or mixed powder with wax were pressed at 6.5 to 8.5 M p / cm 2 . After sintering at 1150 ° C. for one hour in hydrogen, sintered densities between 7.25 and 7.40 g / cm 3 resulted.
Die wichtigsten Eigenschaften dieser Legierung sind:
- Bruchfestigkeit Rm = 570 bis 600 N/mm2
- 0,2 %-Dehngrenzen Rp0,2 (zyklisch) = Rp0,2 (zügig) = 500 bis 550 N/mm2
- Dauerschwingfestigkeit σD = 250 N/mm2 bei αk = 1
- (Biegung) σD = 140 bis 160 N/mm2 bei αk = 3,2.
- Breaking strength R m = 570 to 600 N / mm 2
- 0.2% proof stress R p0.2 (cyclic) = R p0.2 (brisk) = 500 to 550 N / mm 2
- Fatigue strength σ D = 250 N / mm 2 at α k = 1
- (Bending) σ D = 140 to 160 N / mm2 at α k = 3.2.
Die Vorteile dieser nach dem erfindungsgenäßen Verfahren hergestellten Sinterlegierung seien im folgenden nochmals zusammengefaßt:
- - Billige und leicht verfügbare Legierungselemente
- - Durch Einfachsintertechnik Raumerfüllung ≧ 94 %
- - Hohe Werte der mechanischen Eigenschaften bei niedriger Sintertemperatur von etwa 1150 °C
- - Im Dichtebereich 7,25 bis 7,4 weitgehende Unabhängigkeit der Festigkeit und der Maßänderung von der Dichte
- - Dauerschwingfestigkeit im gekerbten Zustand entspricht derjenigen von gekerbten Walzstählen, die im Bereich von 160 bis 180 N/mm2 liegt
- - Trotz des hohen Si- und P-Gehaltes, der laut Phasendiagramm zu einer Abschnürrung des α-Bereiches führt, ist die Legierung in technisch verwertbarem Maße härtbar.
- - Cheap and readily available alloying elements
- - Space filling ≧ 94% thanks to simple sintering technology
- - High mechanical properties at a low sintering temperature of around 1150 ° C
- - In the density range 7.25 to 7.4, the strength and dimensional change are largely independent of the density
- - The fatigue strength in the notched state corresponds to that of notched rolled steels, which is in the range of 160 to 180 N / mm 2
- - Despite the high Si and P content, which according to the phase diagram leads to a constriction of the α range, the alloy is hardenable to a technically usable degree.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3226257 | 1982-07-14 | ||
DE19823226257 DE3226257A1 (en) | 1982-07-14 | 1982-07-14 | METHOD FOR PRODUCING SINTER STEEL HIGH ROOM FILLING BY SIMPLE INTER TECHNOLOGY |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0099015A1 true EP0099015A1 (en) | 1984-01-25 |
EP0099015B1 EP0099015B1 (en) | 1986-10-08 |
Family
ID=6168369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83106223A Expired EP0099015B1 (en) | 1982-07-14 | 1983-06-25 | Process for manufacturing high-density sintered steel by a simple sintering technique |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0099015B1 (en) |
JP (1) | JPS5923841A (en) |
DE (2) | DE3226257A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0234099A2 (en) * | 1986-02-25 | 1987-09-02 | Crucible Materials Corporation | Powder metallurgy high speed tool steel article and method of manufacture |
EP0564778A1 (en) * | 1992-03-07 | 1993-10-13 | Grundfos A/S | Material for sintering |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB538227A (en) * | 1939-12-12 | 1941-07-25 | William Arthur Oubridge | Improvements in or relating to the manufacture of metal articles or masses |
DE2625212A1 (en) * | 1975-06-06 | 1976-12-23 | Ford Werke Ag | Process for the production of sintered molded bodies |
FR2355597A1 (en) * | 1976-06-24 | 1978-01-20 | Hoeganaes Ab | FRIED COMPONENTS MANUFACTURING PROCESS |
FR2382506A1 (en) * | 1977-03-02 | 1978-09-29 | Bosch Gmbh Robert | FERROUS ALLOY, FRITTED, HIGH STRENGTH |
DE2913221A1 (en) * | 1979-04-03 | 1980-10-16 | Amsted Ind Inc | High density iron-base material prodn. by liq. phase sintering - by enlarging liquidus-solidus temp. range by adding carbon to the alloy powder before compaction |
DE3004255A1 (en) * | 1980-02-06 | 1981-08-13 | Sintermetallwerk Krebsöge GmbH, 5608 Radevormwald | Sintered metal parts made from reduced powder - which is weakly compacted in die and sintered to make blank, which may be subjected to further compaction and re-sintering |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS545516A (en) * | 1977-06-15 | 1979-01-17 | Hitachi Ltd | Induction motor unit |
JPS5462108A (en) * | 1977-10-27 | 1979-05-18 | Nippon Piston Ring Co Ltd | Abrasion resistant sintered alloy |
JPS5813603B2 (en) * | 1978-01-31 | 1983-03-15 | トヨタ自動車株式会社 | Joining method of shaft member and its mating member |
GB2056251B (en) * | 1979-06-28 | 1983-09-07 | Matthews Ltd B | Manufacture of food products |
-
1982
- 1982-07-14 DE DE19823226257 patent/DE3226257A1/en not_active Withdrawn
-
1983
- 1983-06-25 DE DE8383106223T patent/DE3366712D1/en not_active Expired
- 1983-06-25 EP EP83106223A patent/EP0099015B1/en not_active Expired
- 1983-07-08 JP JP58123559A patent/JPS5923841A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB538227A (en) * | 1939-12-12 | 1941-07-25 | William Arthur Oubridge | Improvements in or relating to the manufacture of metal articles or masses |
DE2625212A1 (en) * | 1975-06-06 | 1976-12-23 | Ford Werke Ag | Process for the production of sintered molded bodies |
FR2355597A1 (en) * | 1976-06-24 | 1978-01-20 | Hoeganaes Ab | FRIED COMPONENTS MANUFACTURING PROCESS |
FR2382506A1 (en) * | 1977-03-02 | 1978-09-29 | Bosch Gmbh Robert | FERROUS ALLOY, FRITTED, HIGH STRENGTH |
DE2913221A1 (en) * | 1979-04-03 | 1980-10-16 | Amsted Ind Inc | High density iron-base material prodn. by liq. phase sintering - by enlarging liquidus-solidus temp. range by adding carbon to the alloy powder before compaction |
DE3004255A1 (en) * | 1980-02-06 | 1981-08-13 | Sintermetallwerk Krebsöge GmbH, 5608 Radevormwald | Sintered metal parts made from reduced powder - which is weakly compacted in die and sintered to make blank, which may be subjected to further compaction and re-sintering |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0234099A2 (en) * | 1986-02-25 | 1987-09-02 | Crucible Materials Corporation | Powder metallurgy high speed tool steel article and method of manufacture |
EP0234099A3 (en) * | 1986-02-25 | 1988-08-10 | Crucible Materials Corporation | Powder metallurgy high speed tool steel article and method of manufacture |
EP0564778A1 (en) * | 1992-03-07 | 1993-10-13 | Grundfos A/S | Material for sintering |
Also Published As
Publication number | Publication date |
---|---|
JPH0478712B2 (en) | 1992-12-11 |
DE3226257A1 (en) | 1984-01-19 |
EP0099015B1 (en) | 1986-10-08 |
JPS5923841A (en) | 1984-02-07 |
DE3366712D1 (en) | 1986-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4041918C2 (en) | High strength amorphous aluminum-based alloy and method of manufacturing a workpiece | |
DE69724589T2 (en) | PHOSPHATE-COATED IRON POWDER AND METHOD FOR THE PRODUCTION THEREOF | |
DE1446161A1 (en) | Method for producing a superconductor with improved superconductivity and unchanged dimensions | |
DE112015005685T5 (en) | METHOD FOR MANUFACTURING AN R-T-B PERMANENT MAGNET | |
DE3439397C2 (en) | ||
DE112018008152T5 (en) | Rare earth magnet, rare earth sputtering magnet, rare earth diffusion magnet and method of manufacturing | |
DE2658647A1 (en) | KERMET AND PROCESS FOR ITS MANUFACTURING | |
DE3019980C2 (en) | Process for the production of superconducting wires from multifilaments containing niobium and aluminum, surrounded by copper or copper alloy | |
DE2613255C2 (en) | Use of an iron-molybdenum-nickel sintered alloy with the addition of phosphorus for the production of high-strength workpieces | |
DE10150830A1 (en) | Soft magnetism alloy powder, a treatment method thereof, a soft magnetism alloy blank and the production method thereof | |
DE2366049A1 (en) | LAMINATED MATERIAL HIGH PERMEABILITY FOR MAGNETIC RECORDING AND PLAYBACK HEADS | |
DE2549298C2 (en) | Process for the production of a sintered silver-cadmium oxide alloy | |
DE3781724T2 (en) | METHOD FOR PRODUCING A NICKEL-TITANIUM ALLOY. | |
DE69226643T2 (en) | POWDER METALLURGICAL COMPOSITION WITH GOOD SOFT MAGNETIC PROPERTIES | |
DE3113378A1 (en) | METHOD FOR PRODUCING A POROUS BODY FOR A DRY ELECTROLYTE CAPACITOR | |
EP0099015A1 (en) | Process for manufacturing high-density sintered steel by a simple sintering technique | |
DE2930218A1 (en) | POROESER BODY | |
DE2705384C3 (en) | Permanent magnet alloy and process for heat treatment of sintered permanent magnets | |
DE1906522B2 (en) | METHOD OF MANUFACTURING A Sintered ALUMINUM NITRIDE YTTRIUM OXIDE ARTICLE | |
DE102008062614A1 (en) | Precursor for the production of sintered metallic components, a process for the production of the precursor and the manufacture of the components | |
DE2429600A1 (en) | MAGNETIC MATERIALS STABLE IN AIR AND METHOD OF PRODUCTION | |
CH599658A5 (en) | Electrically conducting material, esp. silver contg. cadmium oxide | |
DE2917882C2 (en) | Process for producing a copper-containing iron powder | |
DE1930859A1 (en) | Powder metal compositions and processes for their preparation | |
DE2919798C2 (en) | Nickel-iron material with low thermal expansion. Process for its manufacture and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19830625 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 3366712 Country of ref document: DE Date of ref document: 19861113 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930611 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930628 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19930920 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19940630 Ref country code: CH Effective date: 19940630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950825 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970301 |