EP0091030B1 - Commande de vitesse pour dispositif de transport télécommandé - Google Patents

Commande de vitesse pour dispositif de transport télécommandé Download PDF

Info

Publication number
EP0091030B1
EP0091030B1 EP83102964A EP83102964A EP0091030B1 EP 0091030 B1 EP0091030 B1 EP 0091030B1 EP 83102964 A EP83102964 A EP 83102964A EP 83102964 A EP83102964 A EP 83102964A EP 0091030 B1 EP0091030 B1 EP 0091030B1
Authority
EP
European Patent Office
Prior art keywords
control lever
speed
run
computer
potentiometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83102964A
Other languages
German (de)
English (en)
Other versions
EP0091030A3 (en
EP0091030A2 (fr
Inventor
Wolfgang Gröhn
Alfred Altenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0091030A2 publication Critical patent/EP0091030A2/fr
Publication of EP0091030A3 publication Critical patent/EP0091030A3/de
Application granted granted Critical
Publication of EP0091030B1 publication Critical patent/EP0091030B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the invention relates to a speed control for a remotely controllable transport device, in particular an articulated crane.
  • a control device which controls the movement of a tool attached to the end of a three-articulated adjusting device.
  • the articulated arms can be adjusted by means of drives, which are each equipped with a rotation angle control device.
  • a desired straight-line movement of the tool is calculated on the basis of the angle setpoints of the individual articulated arms.
  • the angular values of the other articulated arms are calculated depending on the lengths of the articulated arms, the values of the angles at the beginning of each movement process and the vertical distance from the pivot point of the first articulated arm to the tool.
  • the invention has for its object to provide a speed control for a transport device of the aforementioned type, in which one can achieve greater simplicity with higher accuracy.
  • a speed control device 1 is used to control the load speed of a transport device, which is designed as a two-part articulated crane 2.
  • This articulated crane 2 is arranged on a ship S and has a basic link 4 which is mounted on a fixed swivel joint 3 and which can be pivoted in a horizontal plane.
  • a tip link 6 is rotatably mounted on the base link 4 via a pivot joint 5, which link link is also pivotable in a horizontal plane.
  • the basic link 4 can be adjustable in height in the fixed swivel joint 3 by a lifting device, not shown.
  • a container 8 is attached. The end of the tip link 6 should be at a predeterminable speed on a predeterminable transport path 16, e.g.
  • a rotating mechanism equipped with an electric motor 3a or 5a is provided for the base link 4 or tip link 6.
  • an angle transmitter 5b is arranged on the rotating mechanism.
  • a speed control device 10 is used to control the electric motor 3a, to which a speed setpoint signal n A and a speed actual value signal n Aist are supplied.
  • a speed control device 11 is assigned to the electric motor 5a, to which a speed setpoint signal n B and a speed actual value signal n Bist are supplied.
  • the outputs of the speed control device 10 and 11 are connected to electrical actuating devices 3b and 5c of the slewing gear drives.
  • the speed setpoint signals n A and n B are formed in a computer 12 to which a control signal dependent on the angle of rotation ⁇ between the tip link and the base link and control signals -V1, -V2 which can be set by a control lever 13a on a setpoint adjuster 13 are supplied.
  • a clockwise rotation of the tip link 6 results in a decrease in the angle ⁇ .
  • the setpoint adjuster 13 with the control lever 13a is arranged in a cabin 9 which is attached to the tip link 6.
  • the tip link has two potentiometers 13b, 13c arranged spatially offset by 90 ° and fed via a limit controller 15.
  • the voltage of a potentiometer 14a, the tap of which is connected to a foot lever 14, is connected to the limit input.
  • the limit controller 15 is connected to the two outputs of the computer 12 via a minimum selection circuit 17.
  • the taps of the potentiometers 13b, 13c that can be adjusted by the control lever 13a are each guided to an input of the computer 12.
  • the angle encoder 5b for detecting the actual rotation angle ⁇ between the tip link 6 and the base link 4 is advantageously designed as a resolver which has an input winding 18 fed by an AC power source 21 at 400 Hz and two output windings 19, 20 offset by 90 °, each of which in the computer a demodulator 22, 23 is connected downstream. In the windings 19, 20 offset by 90 °, voltages offset by 90 ° are induced. With the two demodulators one obtains a sine voltage dependent on the angle ⁇ and a cosine voltage.
  • the output of the demodulator 22, at which the signal sin ⁇ is present, is connected to an input of a divider 25, the second input of which is fed by the signal value -V, multiplied by a constant K via the adjustable resistor 24.
  • the constant which is dependent on the length L of the basic link is taken into account by an appropriate setting of the potentiometer 24.
  • the output of the demodulator 23, at which the signal cos ⁇ is present, is connected to a summing amplifier 26, at whose output the signal value 1-cos ⁇ is present.
  • This signal value is fed to the input of a multiplier 27, the other input of which is fed by the signal value n A.
  • the signal n A (1-cos ⁇ ) formed in this way is fed to one input of the summing amplifier 28.
  • the other input is fed by the signal - (V 2 - K), which is formed from the control signal -V 2 of the potentiometer 13c by passing it through the adjustable resistor 28a and with the constant is multiplied.
  • the summing amplifier 28 At the output of the summing amplifier 28 there is then a control signal according to the relationship at. In it and L the length of the tip link, which in the present case is equal to the length of the base link.
  • the resolver 5b achieves simple formation of the desired angular functions sin ⁇ , cos ⁇ with greater accuracy than when using function transmitters without using the potentiometers underlying the wear.
  • the control signals n A and n B In order to achieve a predetermined direction of movement in the direction of the load speed V L (FIG. 1), the control signals n A and n B must always correspond to the conditions of equations 1 and 2. Since the ramp-function generators 29, 30 present in DC drives for the rotating mechanisms of the basic and tip control arms have the same ramp-up speeds, the predetermined signals n A , n B for the final speeds would be reached at different times. This would prescribe an undesired direction of movement, since the ratio between the two speeds n A , n B would not correspond to the predicted calculated value before the end speeds were reached.
  • a device 31 assigning a device 31 to the ramp-function generator 29, 30, which changes the ramp-up speed of the two ramp-function generator in such a way that the control signals n A , n B specified by the computer 12 for the final speeds are reached at the same time.
  • the signal voltages in front of and behind the ramp generator 29 and 30 are fed to a differential amplifier 32 and 33, respectively, and the output voltage is rectified in absolute value formers 34, 35.
  • the quotients are then in computer modules 36, 37 educated.
  • the ramp generator 29, 30 are connected to a fixed voltage via a relay 40 or 41, which specifies a maximum ramp speed. If there are different signal values at the outputs of the absolute value formers 34, 35, the limit value detector switches the ramp-function generator with the slower ramp-up speed to the output of the computing module with the smaller signal value.
  • the crane driver has two options in his cabin 9 under the tip link 6 to control the movement of the basic link 4 and tip link 6.
  • the speed setpoint n A to n B is specified separately for each speed controller via a setpoint adjuster 42 with control lever 42a and a cross gate, specifically directly from two attached potentiometers 42b, 42c.
  • a variable or constant horizontal speed of the load is specified with the foot lever 14.
  • the direction specification is achieved with the control lever 13a arranged in a circular link via the two controlled potentiometers 13b, 13c.
  • These potentiometers 13b, 13c specify the coordinate speeds V 1 and V 2 , the resultant V L of which remains constant at maximum deflection. Since the position of the crane operator in relation to the direction of travel changes with the movement of the tip link 6, the control lever 13a must be adjusted accordingly while driving.
  • a negative minimum voltage is specified in this area via a MIN selection circuit 48.
  • the horizontal speed specification for the load takes place via the feed from the limit controller 15 to the potentiometers 13b, 13c of the direction specification.
  • a potentiometer 14b specifies the minimum speed when the tap of the potentiometer 14a connected to the foot lever is at zero. The speed can be increased to the maximum speed by actuating the foot lever 14.
  • one of the speeds n A , n B can assume arithmetically higher values than the maximum speed. In order to maintain a correct speed ratio in these cases, overriding with the limit controller 15 is prevented. This resets the voltage V and V 2 at the output of the potentiometers 13b, 13c to such an extent that the calculated higher speed n A or n B never exceeds the maximum speed.
  • the ramp generator 29, 30 are arranged in the line between the potentiometers 13b, 13c of the set point adjuster 13 and the inputs 64, 65 of the computer 12 (FIG. 3). In this way, a constant acceleration or deceleration of the load can be achieved.
  • the ramp function generators specify the load speed component V in the direction of the tip link and the load speed component V 2 across the tip link in such a way that the resultant V L of the speed components always has the direction specified by the control lever 13a during startup.
  • a computer 51 is assigned to the ramp function generator 29, 30, which specifies the temporal change in the load speed components according to the following relationships: Therein means: ⁇ the angle between the load speed component V, in the direction of the tip link and the resultant V L from the two load speed components V, and V 2 according to FIGS. 1 and C L the constant predetermined acceleration or deceleration (C L negative) on the rectilinear load path, whereby The output signals of the ramp generator V, and V 2 are fed to the computer 51 and the quotient V 1 / V 2 is formed in a divider 52.
  • the angle ⁇ becomes arctan from the relationship calculated.
  • the sin, cos and the time derivative of ⁇ are calculated in further computer blocks 54, 55, 56.
  • the products are multiplied by 57, 58, 59, 60 educated.
  • the outputs of the multipliers 57 and 59 are fed to the inputs of a summing amplifier 61, in which the difference between the two input signals is formed and at the output of which the signal controlling the ramp generator 29 pending.
  • the signal values of the multipliers 58, 60 are fed to a summing amplifier 62, from whose output the signal is given to the ramp generator 30. This ensures that the load speed V L is linear with time t according to the relationship changes in a straight line from an initial speed V o .
  • the potentiometers 13b, 13c of the setpoint adjuster are connected to a constant voltage of a battery 73.
  • the tap of the potentiometer 14a connected to the voltage of the battery 74 on the foot lever 14 is via a minimum selection circuit 68 with one input a multiplier 66 or 67 connected, the other input of which is fed by the signals V 1 , V 2 .
  • the signals V 1 , V 2 fed to the inputs 64, 65 of the computer 12 are multiplied in the multipliers 66, 67 by a factor Ko 1 1 in order to reduce the setpoint on the one hand in accordance with the horizontal speed specification by the foot pedal 14 and on the other hand when a limit speed is reached or a speed setpoint / actual value difference is greater than permissible.
  • the minimum selection circuit 68 is supplied with a signal from a speed comparator 69, 70, which in each case determines whether the setpoint / actual value difference is greater than permissible.
  • Comparators 71, 72 are also provided, which determine whether the actual speed values n Aact , n Bact are below permissible limit values.
  • the actual speed value nBist is formed in an angle sensor 63a with a differentiator 63b connected downstream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Selective Calling Equipment (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control Of Conveyors (AREA)

Claims (4)

1. Dispositif de commande de vitesse pour un dispositif de transport pouvant être télécommandé, notamment une grue articulée de bord (2), dans laquelle un bras orientable de pointe (6) est relié par l'intermédiaire d'une articulation tournante (5) à un bras orientable de base (4) pouvant tourner autour d'une articulation tournante fixe (3), il est prévu des dispositifs d'entraînement (3a, 5a) pourvus respectivement de régulateurs de la vitesse de rotation pour le bras orientable de base (4) et pour le bras orientable de pointe (6) et, pour la prédétermination d'un signal de commande (nA) pour le régulateur (11) de la vitesse de rotation du bras orientable de pointe (6) et pour la prédétermination d'un signal de commande (nB) pour le régulateur (10) de la vitesse de rotation du bras orientable de base (4), il est prévu un calculateur (12) auquel des signaux de commande dépendant de la valeur réelle (ß) de l'angle de rotation entre le bras orientable de pointe et le bras orientable de base et des signaux de commande (V1; V2) sont envoyés par un régulateur (13) de la valeur de consigne, qui est réglable au moyen d'un levier de commande (13a) et qui possède des potentiomètres (13b; 13c) décalés spatialement de 90° et servant à former des signaux de commande (V1; V2) qui sont proportionnels à la valeur et à la déviation suivant la direction x et suivant la direction d'un système de coordonnées, auquel cas, pour la commande de la vitesse, les deux potentiomètres (13b; 14b) sont placés sous tension et la sortie d'un potentiomètre (13b) est reliée à des modules de calculateurs (22, 24,25; 45 à 50) servant à résoudre la relation
Figure imgb0020
et la sortie de l'autre potentiomètre (13c) est reliée à des modules de calculateurs (23 à 29) pour résoudre la relation
Figure imgb0021
nA désignant la vitesse de rotation du bras orientable de base, nB la vitesse de rotation du bras orientable de pointe, V, la composante de la vitesse de charge en direction du bras orientable de pointe, V2 la composante de la vitesse de charge perpendiculairement au bras orientable de pointe, β l'angle entre le bras orientable de base et le bras orientable de pointe et K une constante.
2. Dispositif de commande de vitesse suivant la revendication 1, caractérisé par le fait que pour former les signaux de commande dépendant de l'angle (β) entre le bras orientable de pointe et le bras orientable de base, on utilise un synchro- transmetteur (5b) comportant un enroulement d'entrée (18) alimenté par un courant alternatif et deux enroulements de sortie (19, 20) décalés de 90° et en aval desquels sont branchés des démodulateurs respectifs (22, 23).
3. Dispositif de commande de la vitesse suivant la revendication 1, comportant des transmetteurs de vitesse à régime élevé branchés en amont des régulateurs de la vitesse de rotation, caractérisé par le fait qu'aux transmetteurs (29, 30) de vitesse à régime élevé est associé un dispositif (31 ) qui modifie les vitesses à régime élevé des deux transmetteurs de vitesse à régime élevé de telle sorte que les valeurs de signaux (nA; nB) prédéterminées par le calculateur (12) pour les vitesses de rotation sont atteintes simultanément.
4. Dispositif de commande de la vitesse suivant la revendication 1 ou 2, caractérisé par le fait qu'un transmetteur (29 ou 30) de vitesse à régime élevé est disposé respectivement dans les lignes de jonction entre les potentiomètres (13b; 13c) décalés spatialement de 90° et les entrées correspondantes (64,65) du calculateur (12) et un calculateur (51) est associé aux transmetteurs (29, 30) de vitesse à régime élevé de telle sorte que l'on obtient une accélération ou une décélération constante de la charge et que la résultante (VL) des signaux, délivrés sur les sorties des transmetteurs (29, 30) de vitesse à régime élevé, des composantes de vitesse (V1; V2) a toujours la direction prédéterminé par le levier de commande (13a), pendant le régime à vitesse élevée.
EP83102964A 1982-04-06 1983-03-24 Commande de vitesse pour dispositif de transport télécommandé Expired EP0091030B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3213321 1982-04-06
DE19823213321 DE3213321A1 (de) 1982-04-06 1982-04-06 Geschwindigkeitssteuerung fuer eine fernsteuerbare transportvorrichtung

Publications (3)

Publication Number Publication Date
EP0091030A2 EP0091030A2 (fr) 1983-10-12
EP0091030A3 EP0091030A3 (en) 1984-07-04
EP0091030B1 true EP0091030B1 (fr) 1986-08-06

Family

ID=6160654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102964A Expired EP0091030B1 (fr) 1982-04-06 1983-03-24 Commande de vitesse pour dispositif de transport télécommandé

Country Status (4)

Country Link
EP (1) EP0091030B1 (fr)
JP (1) JPS58188292A (fr)
DE (2) DE3213321A1 (fr)
NO (1) NO831156L (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109264585A (zh) * 2018-10-31 2019-01-25 郑州桔槔智能科技有限公司 塔吊无人驾驶系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589134A (en) * 1969-10-30 1971-06-29 Westinghouse Electric Corp Manipulator apparatus
EP0003025B1 (fr) * 1977-12-08 1984-04-18 Siemens Aktiengesellschaft Système de commande pour le mécanisme d'orientation d'une grue
EP0003577B1 (fr) * 1978-02-15 1982-02-03 Siemens Aktiengesellschaft Régulation de la vitesse pour le mécanisme d'orientation et/ou de levage d'une grue
DE2933861C2 (de) * 1979-08-21 1983-02-03 Siemens AG, 1000 Berlin und 8000 München Geschwindigkeitssteuerung für Drehwerks- oder Hubwerksantriebe einer Transporteinrichtung, insbesondere eines Schiffskrans
DE3213332C2 (de) * 1982-04-06 1986-03-13 O & K Orenstein & Koppel Ag, 1000 Berlin Verfahren zur Horizontalsteuerung des Lastanlenkpunktes eines Gelenkkranes mit senkrechten Drehachsen

Also Published As

Publication number Publication date
NO831156L (no) 1983-10-07
DE3365077D1 (en) 1986-09-11
DE3213321A1 (de) 1983-10-06
EP0091030A3 (en) 1984-07-04
JPS58188292A (ja) 1983-11-02
EP0091030A2 (fr) 1983-10-12

Similar Documents

Publication Publication Date Title
EP0174436B1 (fr) Système de traction et de direction pour unités de transport sans conducteur
DE10218773A1 (de) Steuerungsvorrichtung, Verfahren und System zum Steuern eines mobilen Körpers
EP0003577B1 (fr) Régulation de la vitesse pour le mécanisme d'orientation et/ou de levage d'une grue
EP0091030B1 (fr) Commande de vitesse pour dispositif de transport télécommandé
DE2933861C2 (de) Geschwindigkeitssteuerung für Drehwerks- oder Hubwerksantriebe einer Transporteinrichtung, insbesondere eines Schiffskrans
EP0003025B1 (fr) Système de commande pour le mécanisme d'orientation d'une grue
DE4429268A1 (de) Antrieb für eine verfahrbare Leitungstrommel
DE2839903A1 (de) Anordnung zur handhabung von werkstuecken
DE2231997C3 (de) Einrichtung zur Aufrechterhaltung eines zwischen zwei miteinander verknüpften Kranbewegungen bestehenden Verhältnisses
DE2005323A1 (de) Motorsteuerungssystem für hängend beförderte Lasten
DE2754698C2 (de) Regelung für Drehwerks- und/oder Hubwerksantriebe eines Krans
DE1463226B2 (de) Verwendung eines reglers mit hilfskraft in einer rohrbrenn schneidemaschine und einrichtung an einem regler mit hilfs kraft fuer diese verwendung
DE19809382C2 (de) Steuerungssystem für Handlingmaschinen
DE2933861B2 (fr)
DE3137465C1 (de) Geschwindigkeitssteuerung fuer eine fernsteuerbare Transportvorrichtung
EP0015501A1 (fr) Dispositif de démarrage pour le contrôle ou la régulation en champ orienté d'une machine asynchrone
DE911550C (de) Vorrichtung zur Stabilisierung eines in einer bestimmten Ebene verschwenkbaren Richtgeraetes
DE3712637C2 (fr)
DE1463226C (de) Verwendung eines Reglers mit Hilfskraft in einer Rohrbrennschneidemaschine und Einrichtung an einem Regler mit Hilfskraft für diese Verwendung
DE1506380A1 (de) Fernsteuersystem fuer ein Triebwerk,insbesondere fuer die unmittelbare Steuerung der Hauptantriebsmaschine eines Schiffes von der Kommandobruecke aus
DE2141303C3 (de) Vorrichtung für die Drehausrichtung einer an einem Lasthaken oder -joch eines Drehkrans hängenden Last
DE1481711C (de) Geschwindigkeits-Sollwertgeber für einen drehzahlgeregelten Aufzugsantrieb
DE1906599C3 (de) Einrichtung zur Steuerung von im Zwillingsbetrieb arbeitenden Drehwippkränen
DE1961345C3 (de) Steuerung für zwei im Verbundbetrieb auf eine gemeinsame Last arbeitende Dreh-Wippkräne
DE4407317A1 (de) Verfahren zum Speichern und Steuern eines Bewegungsablaufes einer Kamera

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19840726

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860806

REF Corresponds to:

Ref document number: 3365077

Country of ref document: DE

Date of ref document: 19860911

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19881201