EP0087766B1 - Process to control a gas network, especially under high pressure - Google Patents

Process to control a gas network, especially under high pressure Download PDF

Info

Publication number
EP0087766B1
EP0087766B1 EP83101821A EP83101821A EP0087766B1 EP 0087766 B1 EP0087766 B1 EP 0087766B1 EP 83101821 A EP83101821 A EP 83101821A EP 83101821 A EP83101821 A EP 83101821A EP 0087766 B1 EP0087766 B1 EP 0087766B1
Authority
EP
European Patent Office
Prior art keywords
gas
network
quality
ascertained
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83101821A
Other languages
German (de)
French (fr)
Other versions
EP0087766A1 (en
Inventor
Andreas Weimann
Peter Schröder
Dietmar Scheibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESG Elektronik-System- GmbH
Original Assignee
ESG Elektronik-System- GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6156797&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0087766(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ESG Elektronik-System- GmbH filed Critical ESG Elektronik-System- GmbH
Priority to AT83101821T priority Critical patent/ATE19296T1/en
Publication of EP0087766A1 publication Critical patent/EP0087766A1/en
Application granted granted Critical
Publication of EP0087766B1 publication Critical patent/EP0087766B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas

Definitions

  • the invention relates to a method for controlling a gas network, in particular in the high-pressure range, in which the gas quantity and the gas quality of the gas fed in are measured at the feed-in points of the network, using the measured values obtained, taking into account the network geometry, the gas quality curve along the lines is determined compares the determined gas quality curve with a target curve and controls the network by issuing corresponding control signals to network actuators in the direction of reducing the differences between the determined gas quality curve and target curve.
  • Gas production involves gases of different gas qualities, in particular gases with a low calorific value (L-gas) and gases with a high calorific value (H-gas), to which they are often to be transported and distributed in the same gas network, possibly a long-distance gas network.
  • synthetic gases and gases may be added as a product of coal gasification, with different gas quality in turn.
  • Fluctuating gas qualities of the gas fed in and mixtures when combining gas flows can lead to a constant change in the gas qualities in the long-distance gas network and thus to changing gas quality among gas consumers.
  • larger fluctuations in the quality of the gas taken off must be avoided, since operating problems occur in particular when the gas is used industrially. Contracts with gas customers often contain regulations on an upper and a lower limit for the calorific value and / or wobble number of the supplied gas.
  • the invention has for its object to provide a method for controlling a complex gas network with infeed of gases of different quality in several entry points, which fluctuations in the gas quality in the network, especially at selected network points, w. e.g. B. Acceptance points, at least reduced.
  • This object is achieved in that, in order to control a gas network with a plurality of feed points, into which gases of different quality are fed, and which are separated from one another by take-off points, the amount of gas taken off is measured at at least part of the take-off points of the network and the measured values obtained the determination of the gas quality curve is taken into account.
  • gases of widely differing gas quality can be fed in at the feed-in points without hesitation, since the method ensures that at least those customers who are dependent on gas quality which is as constant as possible are offered gas of a sufficiently constant quality. Since the reaction of the gas flows to control interventions is relatively sluggish, you can estimate the future gas quality curve along with the future gas quality curve along the lines, so that there is sufficient time to take appropriate control measures. It should be emphasized that the expenditure on equipment for carrying out the method can be kept relatively small, since the method can generally be carried out using the measuring devices usually present in gas networks. The gas distribution in meshed gas networks with possibly considerable line lengths is possible without any problems.
  • a prewarning signal is sent to the customers concerned.
  • This prewarning signal enables the customer to use his gas consumption device, e.g. B. to adapt its industrial furnaces to the expected gas quality, particularly the calorific value or the wobble number.
  • the pre-warning signal can include both the gas quality to be expected as well as its expected time of arrival.
  • the method according to the invention which only requires gas quality measurements at the feed-in points, provides information about the current or expected gas qualities at any network points, including in front of (and behind) mixing points within the network.
  • An actuating signal for an actuator in particular a control slide of the mixing point to keep the gas quality constant behind the mixing point, can be derived from the gas qualities determined in front of a mixing point.
  • the long-distance gas network (gas network in the high-pressure region) 10 indicated schematically in FIG. 1 consists of a branched system of lines 12 with feed points 14 (symbolized by two concentric circles) and take-off points 16 (symbolized by a simple circle). Compressors 18, pressure / flow controllers 20, a mixing station 22 and a slide 24 are switched into lines 12. Of course, other network configurations are also possible.
  • gas quality refers primarily to the calorific value of the gas.
  • the gas quality can alternatively or additionally be characterized by the Wobbe number (calorific value: -y from the density), the standard density and by the volume fractions of H 2 , CH 4 , C0 2 , N 2 , C 2 H s resulting from a gas analysis , higher hydrocarbons etc.
  • the natural gas is roughly classified into L-gas with a low calorific value and H-gas with a high calorific value.
  • Gases whose origin changes over time are fed into the feed points 14.
  • the associated change in the gas quality of the gas in the transmission system 10 can lead to major problems, in particular for large customers who are dependent on constant gas quality, for example because industrial furnaces which are precisely adjusted to a calorific value or a Wobbe number are used.
  • gas quality measurements at the take-off points one could in principle measure such gas quality fluctuations of the taken gas and accordingly take the necessary measures at the customer; the effort of this z. B. with calibrated calorimeter gas quality measurements is too high for the normal case.
  • the customer only measures the amount of gas (standard volume) or the gas volume (operating volume) for the subsequent thermal gas billing of the gas works with the customer.
  • the control or regulating method according to the invention requires such gas quality measurements only at the feed-in points 14. Furthermore, at the feed-in points 14 and at the take-off points 16, the gas quantities (gas quantities or gas volumes) fed in or discharged must be measured and all measured values supplied to a control device 26 which 1 is represented by a block diagram. The measured values of the delivery points (delivered gas quantities) and the feed-in points 14 (fed-in gas qualities and quantities) are fed to this control device 26 via lines 30 and 32 shown in broken lines in FIG. 1. In addition, the control device 26 has entered the network topology of the gas network 10, i.e.
  • dash-dotted electrical lines 34 are indicated which run from the network components 18 to 24 to the control device 26 and transmit signals to the control device 26 which characterize the respective setting of the components 18 to 24.
  • the flow state of the network 10 is calculated. H. the course of the flow velocity of the gas along the lines 12 of the network 10.
  • the pressure state of the network 10 can also be calculated.
  • the flow state of the network 10 determined in block 38 can now be used to determine the new quality curve that results after a predetermined time interval divided into computing time steps.
  • the network points characterizing certain gas qualities are shifted according to the initial quality curve by a distance in the flow direction which corresponds to the local flow velocity at these network points times the computing time step resulting from the flow state.
  • the junction of pipes 12 determines the gas mixture in accordance with the confluent gas flows.
  • the measured gas qualities are “pushed” into the long-distance gas network 10.
  • a diagram is shown to the right of the block representing the quality profile determinations, which shows the local profile of the gas quality Q along a path x along a pipe 12.
  • the double arrow connecting blocks 38 and 40 shows the effect of the new quality curve on the flow state to be determined next; the change in the gas quality in the lines 12 also results in a change in the compressibility number indicating the non-ideal behavior of the gases, since this depends on the gas composition.
  • the standard density of the gas changes accordingly.
  • the new flow state determined in this way is now used as the basis for determining the quality curve after the next computing time step, etc.
  • the gas quality curve currently prevailing in the lines 12 can be determined in each case. Comparison with setpoints for the quality curve along the lines 12 gives reference values for the network control (block 44). Since the gas quality can be tracked at arbitrarily selected network points by the method according to the invention, there is the possibility by appropriate control measures of the network 10 to ensure that the gas quality at predetermined network points, e.g. B. with a larger customer with strict gas quality requirements within specified limits, whereas larger gas quality fluctuations are allowed at other network points.
  • the take-off point 16 ′ in FIG. 1, which lies behind the mixing station 22, can be supplied with constant gas quality, for example, independently of the other take-off points 16.
  • dash-dot-dot lines indicate control lines 46 which lead from block 44 of control device 26 to network components 18 to 24 representing the actuators.
  • the electrical lines 46 as well as the electrical lines 30 and 32 are designed for remote control transmission of the control signals or the measurement signals.
  • a corresponding warning signal can be issued by the control device 26 to the corresponding customer, symbolized in FIG. 1 by an arrow coming from block 44 50.
  • a block 52 which represents the determination of future flow conditions, now follows the method step identified by block 40 of the previously described control method, which only takes into account current quality curves.
  • the required acceptance forecast obtained from the statistical evaluation of past acceptance periods, is fed from block 54 to block 52. From the flow state determined according to block 52 after a computing time interval has elapsed, the gas quality curve at this point in time can be determined by correspondingly shifting the network points which characterize certain gas qualities (block 56).
  • the associated flow state is in turn calculated from this gas quality curve, whereupon the gas quality curve is determined after a further computing time interval has elapsed.
  • the time behavior of the gas quality curve can be determined during a forecast interval composed of a large number of computing time intervals. If you grab a single network point, e.g. B. a decrease point 16, the expected time course of the gas quality can be determined at this point from the data obtained. This is indicated in FIG. 1 by the diagram next to block 56, which represents the gas quality Q at a network point as a function of time t.
  • the long-distance gas network 10 can be controlled accordingly. If the deviation is so large that compensation no longer appears possible, a warning signal, more precisely a prewarning signal, can in turn be sent to the corresponding customer, which includes both the extent of the change in gas quality and the time at which the change occurred.
  • a reference value for the amount of gas used is determined from the measured gas volume with the aid of a volume corrector with a constant set compressibility number and is used as the basis for heat billing.
  • the determined gas quantity value is subject to errors.
  • Another error in the heat quantity accounting stems from the fact that, instead of the calorific value that changes with the gas composition, a constant calorific value is used as a basis for the calculation.
  • the control method according to FIG. 1 now supplies, according to block 40, the current quality curve, e.g. B.
  • FIG. 2 the block diagram in FIG. 2 can also be used.
  • the device 126 shown here is in turn connected via the electrical lines 30 and 32 to the long-distance gas network, which has been omitted in FIG. 2 for the sake of simplicity.
  • Block 128 in FIG. 2, which corresponds to block 28 in FIG. 1, symbolizes the collection of the accounting measurement data, i. H. the measurement data accruing during the accounting period.
  • These measurement data can either be transmitted to the device 126 immediately after the measurement or can also be temporarily stored, for. B. in the form of x-t recorder curves, which is particularly advantageous in the case of acceptance points 16 which are widely scattered over the network.
  • the time profile of the gas quality Q at the customer during the billing period T is again determined iteratively. This in turn occurs in that a first flow state is determined from an initial flow state after a computation time interval has elapsed (block 138), the computation time interval being small compared to the billing period T. From this flow state, the associated gas quality curve is now calculated in block 140 and then the flow state after a further computing time interval has elapsed, etc. In this way, the time behavior of the gas quality along the lines of the network is obtained, from which the time course of the gas quality of a specific line point, that is to say the corresponding take-off point, can be determined (block 156). In addition to block 156, the time profile of the gas quality Q during the billing time interval T is shown diagrammatically.
  • the amount of heat removed in block 180 can be calculated with sufficient accuracy in accordance with the above explanations for FIG. 1 from the time profile of the gas quality at the customer and the measured time profile of the removed gas volumes.
  • control signals for the network control determined from the comparison with the setpoints according to block 42 in block 44 can still be checked for their effectiveness before being given to the actuators of the network 10, in that the effect of this Signals on the future flow conditions or the future gas qualities can be estimated in a simulation calculation.
  • This is indicated by the broken arrow 82, which connects the blocks 44 and 52 to one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

1. Method for controlling a gas supply network (10), especially in the high-pressure range, in which the gas quantity and the gas quality of the supplied gas are measured at the infeed points (14) of the network, utilising the obtained measured values, taking consideration of the network geometry, the gas quality pattern along the conduits is ascertained, the ascertained gas quality pattern is compared with an ideal pattern, and the network is controlled, by delivery of corresponding control signals to network setting members, in the direction of a reduction of the differences between ascertained gas quality pattern and ideal pattern, characterised in that for the controlling of a gas supply network with a plurality of infeed points (14) into which gases of different qualities are fed, and which are separated from one another by consumer points (16), the withdrawn gas quantity is measured at some at least of the consumer points (16) of the network and the measured values obtained are taken into consideration in the ascertainment of the gas quality pattern.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung eines Gasnetzes, insbesondere im Hochdruckbereich, bei welchem man an den Einspeisepunkten des Netzes die Gasquantität und die Gasqualität des eingespeisten Gases mißt, unter Verwendung der erhaltenen Meßwerte, unter Berücksichtigung der Netzgeometrie den Gasqualitätsverlauf entlang der Leitungen ermittelt, den ermittelten Gasqualitätsverlauf mit einem Sollverlauf vergleicht und das Netz durch Abgabe entsprechender Steuersignale an Netzstellglieder in Richtung einer Verringerung der Unterschiede zwischen ermitteltem Gasqualitätsverlauf und Sollverlauf steuert.The invention relates to a method for controlling a gas network, in particular in the high-pressure range, in which the gas quantity and the gas quality of the gas fed in are measured at the feed-in points of the network, using the measured values obtained, taking into account the network geometry, the gas quality curve along the lines is determined compares the determined gas quality curve with a target curve and controls the network by issuing corresponding control signals to network actuators in the direction of reducing the differences between the determined gas quality curve and target curve.

Bei der Gasförderung fallen Gase unterschiedlicher Gasqualitäten, insbesondere Gase mit niedrigem Brennwert (L-Gas) und Gase mit hohem Brennwert (H-Gas), an die häufig in demselben Gasnetz, ggf. Ferngasnetz, zu transportieren und zu verteilen sind. Möglicherweise kommen in Zukunft synthetische Gase und Gase als Produkt der Kohlevergasung hinzu, mit wiederum unterschiedlicher Gasqualität. Schwankende Gasqualitäten des eingespeisten Gases und Mischungen beim Zusammenführen von Gasströmen können zu einem ständigen Wechsel der Gasqualitäten im Ferngasnetz und damit zu wechselnder Gasqualität bei den Gasabnehmern führen. Größere Schwankungen der Qualität des abgenommenen Gases müssen jedoch vermieden werden, da insbesondere bei industrieller Verwertung des Gases Betriebsprobleme auftreten. So enthalten Verträge mit Gasabnehmern häufig Regelungen über eine obere und eine untere Grenze für Brennwert und/oder Wobbelzahl des gelieferten Gases.Gas production involves gases of different gas qualities, in particular gases with a low calorific value (L-gas) and gases with a high calorific value (H-gas), to which they are often to be transported and distributed in the same gas network, possibly a long-distance gas network. In the future, synthetic gases and gases may be added as a product of coal gasification, with different gas quality in turn. Fluctuating gas qualities of the gas fed in and mixtures when combining gas flows can lead to a constant change in the gas qualities in the long-distance gas network and thus to changing gas quality among gas consumers. However, larger fluctuations in the quality of the gas taken off must be avoided, since operating problems occur in particular when the gas is used industrially. Contracts with gas customers often contain regulations on an upper and a lower limit for the calorific value and / or wobble number of the supplied gas.

Aus der US-A-4 277 254 ist es an sich bekannt, eine Mischstation mit Hilfe eines Rechners derart zu steuern, daß das abgegebene Gas einen vorgegebenen Brennwert aufweist. Die Steuerung komplizierter Gas-Netzwerke, bei welchen an den Einspeisepunkten Gase mit verschiedener Qualität eingespeist werden und aufgrund entsprechender Vernetzung (vermaschtes Netz) die jeweilige Gasabnahme an den Abnahmepunkten eine Veränderung des Gasqualitätsverlaufs entlang der, ggf. beträchtliche Längen erreichenden, Leitungen zur Folge hat, ist mit Hilfe dieses bekannten Verfahrens nicht möglich.From US-A-4 277 254 it is known per se to control a mixing station with the aid of a computer in such a way that the gas released has a predetermined calorific value. The control of complicated gas networks, in which gases of different quality are fed in at the entry points and due to the corresponding networking (meshed network), the respective gas take-off at the take-off points results in a change in the gas quality curve along the lines, which may reach considerable lengths, is not possible using this known method.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Steuerung eines komplexen Ferngasnetzes mit Einspeisung von Gasen verschiedener Qualität in mehreren Einspeisepunkten bereitzustellen, welches Schwankungen in der Gasqualität im Netz, insbesondere an ausgewählten Netzpunkten, w. z. B. Abnahmepunkten, zumindest verringert.The invention has for its object to provide a method for controlling a complex gas network with infeed of gases of different quality in several entry points, which fluctuations in the gas quality in the network, especially at selected network points, w. e.g. B. Acceptance points, at least reduced.

Diese Aufgabe wird dadurch gelöst, daß man zur Steuerung eines Gasnetzes mit mehreren Einspeisepunkten, in die Gase von verschiedener Qualität eingespeist werden, und die durch Abnahmepunkte voneinander getrennt sind, an wenigstens einem Teil der Abnahmepunkte des Netzes die abgenommene Gasquantität mißt und die erhaltenen Meßwerte bei der Ermittlung des Gasqualitätsverlaufs berücksichtigt.This object is achieved in that, in order to control a gas network with a plurality of feed points, into which gases of different quality are fed, and which are separated from one another by take-off points, the amount of gas taken off is measured at at least part of the take-off points of the network and the measured values obtained the determination of the gas quality curve is taken into account.

Es können folglich an den Einspeisepunkten bedenkenlos Gase stark unterschiedlicher Gasqualität eingespeist werden, da das Verfahren sicherstellt, daß zumindest diejenigen Abnehmer, die auf möglichst gleichbleibende Gasqualität angewiesen sind, Gas mit ausreichend konstanter Qualität angeboten bekommen. Da die Reaktion der Gasströme auf Steuer- und Regeleingriffe relativ träge ist, kann man hierbei neben dem momentanen Gasqualitätsverlauf auch den zukünftigen Gasqualitätsverlauf entlang der Leitungen abschätzen, so daß ausreichend Zeit bleibt, entsprechende Steuerungsmaßnahmen zu treffen. Hervorzuheben ist, daß der apparative Aufwand zur Durchführung des Verfahrens relativ klein gehalten werden kann, da das Verfahren im allgemeinen mit den üblicherweise in Gasnetzen vorhandenen Meßeinrichtungen durchführbar ist. Die Gasverteilung in vermaschten Gasnetzen mit ggf. beträchtlichen Leitungslängen ist problemlos möglich.Consequently, gases of widely differing gas quality can be fed in at the feed-in points without hesitation, since the method ensures that at least those customers who are dependent on gas quality which is as constant as possible are offered gas of a sufficiently constant quality. Since the reaction of the gas flows to control interventions is relatively sluggish, you can estimate the future gas quality curve along with the future gas quality curve along the lines, so that there is sufficient time to take appropriate control measures. It should be emphasized that the expenditure on equipment for carrying out the method can be kept relatively small, since the method can generally be carried out using the measuring devices usually present in gas networks. The gas distribution in meshed gas networks with possibly considerable line lengths is possible without any problems.

In den Fällen, in denen es trotz des erfindungsgemäßen Verfahrens nicht möglich ist, einen zulässigen Schwankungsbereich der Gasqualität an einem Abnahmepunkt einzuhalten, beispielsweise deshalb, weil nicht genügend H-Gas zur Kompensation von Gas mit zu niedrigem Brennwert zur Verfügung steht, wird vorgeschlagen, daß man bei außerhalb des zulässigen Schwankungsbereichs liegenden Abweichungen des ermittelten Gasqualitätsverlaufs vom Sollverlauf, insbesondere an ausgewählten Netzpunkten, ein Vorwarnsignal an die betroffenen Abnehmer abgibt. Dieses Vorwarnsignal ermöglicht es dem Abnehmer, seine Gasverbrauchseinrichtung, z. B. seine Industrieöfen, an die zu erwartende Gasqualität insbesondere den Brennwert bzw. die Wobbelzahl, anzupassen. Das Vorwarnsignal kann zu diesem Zweck sowohl die zu erwartende Gasqualität als auch ihr voraussichtliches zeitliches Eintreffen umfassen.In cases where it is not possible to maintain a permissible range of fluctuations in gas quality at a decrease point, for example because there is not enough H gas available to compensate for gas with too low a calorific value, it is proposed that in the event of deviations of the determined gas quality curve from the target curve, which lie outside the permissible fluctuation range, in particular at selected network points, a prewarning signal is sent to the customers concerned. This prewarning signal enables the customer to use his gas consumption device, e.g. B. to adapt its industrial furnaces to the expected gas quality, particularly the calorific value or the wobble number. For this purpose, the pre-warning signal can include both the gas quality to be expected as well as its expected time of arrival.

Das erfindungsgemäße Verfahren, welches lediglich Gasqualitätsmessungen an den Einspeisepunkten erfordert, liefert Informationen über die momentanen bzw. zu erwartenden Gasqualitäten an beliebigen Netzpunkten, so auch vor (und hinter) Mischstellen innerhalb des Netzes.The method according to the invention, which only requires gas quality measurements at the feed-in points, provides information about the current or expected gas qualities at any network points, including in front of (and behind) mixing points within the network.

Aus den ermittelten Gasqualitäten vor einer Mischstelle kann ein Stellsignal für ein Stellglied, insbesondere Regelschieber der Mischstelle zur Konstanthaltung der Gasqualität hinter der Mischstelle abgeleitet werden.An actuating signal for an actuator, in particular a control slide of the mixing point to keep the gas quality constant behind the mixing point, can be derived from the gas qualities determined in front of a mixing point.

Das erfindungsgemäße Verfahren läßt sich mit geringem Aufwand und guter Genauigkeit durchführen, wenn man

  • a) aus den Meßdaten den Verlauf der Fließgeschwindigkeit des Gases entlang der Netzleitung (Fließzustand des Netzes) ermittelt,
  • b) ausgehend von einem bekannten Anfangsqualitätsverlauf des Gases entlang der Netzleitungen einen momentanen Qualitätsverlauf ermittelt durch Verschieben der lokalen Gasqualitäten entsprechend den lokalen Fließgeschwindigkeiten des ermittelten momentanen Fließzustandes,
  • c) ggf. durch Annahmen über zukünftige Fließzustände zukünftige Qualitätsverläufe an mehreren unterschiedlichen zukünftigen Zeitpunkten durch entsprechendes Verschieben der Gasqualitäten abschätzt und
  • d) an einzelnen Netzpunkten, insbesondere Abnahmepunkten, die momentane Gasqualität gemäß dem ermittelten momentanen Qualitätsverlauf, bzw. die zu erwartenden zukünftigen Gasqualitäten gemäß den ermittelten zukünftigen Qualitätsverläufen mit einem Gasqualitätssollwert bzw. -sollwert-Intervall vergleicht und bei einer Abweichung vom Sollwert bzw. Sollwert-Intervall nach unten oder oben das Netz im Sinne einer Erhöhung bzw. einer Erniedrigung der Gasqualität in dem zum entsprechenden Netzpunkt gaszuführenden Leitungszweig nachsteuert, ggf. durch entsprechendes Ansteuern einer in diesem Leitungszweig liegenden Mischstation für Gase unterschiedlicher Gasqualität.
The inventive method can be carried out with little effort and good accuracy if one
  • a) determines the course of the flow velocity of the gas along the network line (flow state of the network) from the measurement data,
  • b) starting from a known initial quality curve of the gas along the network lines, an instantaneous quality curve determined by shifting the local gas qualities in accordance with the local flow rates of the determined instantaneous flow state,
  • c) if necessary, by making assumptions about future flow conditions, estimate future quality developments at several different future times by correspondingly shifting the gas qualities and
  • d) at individual network points, in particular acceptance points, compares the current gas quality according to the determined current quality curve, or the expected future gas qualities according to the determined future quality curves with a gas quality setpoint or setpoint interval and if there is a deviation from the setpoint or setpoint Interval downwards or upwards the network in the sense of an increase or a decrease in the gas quality in the line branch which is to be supplied with gas to the corresponding network point, if necessary by correspondingly controlling a mixing station for gases of different gas quality located in this line branch.

Die Erfindung wird im folgenden anhand der Zeichnung beispielsweise erläutert.The invention is explained below using the drawing, for example.

Es zeigt :

  • Figur 1 im Blockdiagramm Verfahrensschritte des erfindungsgemäßen Steuerungsverfahrens eines schemaartig angedeuteten Ferngasnetzes und
  • Figur 2 im Blockdiagramm Verfahrensschritte bei der erfindungsgemäßen thermischen Gasabrechnung.
It shows :
  • Figure 1 in the block diagram process steps of the control method according to the invention of a schematically indicated gas network and
  • Figure 2 in the block diagram process steps in the thermal gas accounting according to the invention.

Das in Fig. 1 oben schematisch angedeutete Ferngasnetz (Gasnetz im Hochdruckbereich) 10 besteht aus einem verzweigten System aus Leitungen 12 mit Einspeisepunkten 14 (durch zwei konzentrische Kreise symbolisiert) und Abnahmepunkten 16 (symbolisiert durch einen einfachen Kreis). In die Leitungen 12 sind Kompressoren 18, Druck/Fluß-Regler 20, eine Mischstation 22 sowie ein Schieber 24 eingeschaltet. Es sind selbstverständlich auch andere Netzkonfigurationen möglich.The long-distance gas network (gas network in the high-pressure region) 10 indicated schematically in FIG. 1 consists of a branched system of lines 12 with feed points 14 (symbolized by two concentric circles) and take-off points 16 (symbolized by a simple circle). Compressors 18, pressure / flow controllers 20, a mixing station 22 and a slide 24 are switched into lines 12. Of course, other network configurations are also possible.

Das an den Einspeisepunkten 14 eingespeiste Erdgas oder in Zukunft auch synthetische Gas bzw. Gas aus einer Kohlevergasungsanlage wird in mehr oder weniger stark unterschiedlicher Gasqualität angeliefert. Hierbei bezieht sich der Ausdruck « Gasqualität in erster Linie auf den Brennwert des Gases. Die Gasqualität kann auch alternativ oder zusätzlich charakterisiert sein durch die Wobbezahl (Brennwert : -y aus der Dichte), die Normdichte und durch die sich aus einer Gasanalyse ergebenden Volumenanteile an H2, CH4, C02, N2, C2Hs, höheren Kohlenwasserstoffen etc.The natural gas fed in at the entry points 14, or in the future also synthetic gas or gas from a coal gasification plant, is delivered in more or less different gas quality. The expression “gas quality refers primarily to the calorific value of the gas. The gas quality can alternatively or additionally be characterized by the Wobbe number (calorific value: -y from the density), the standard density and by the volume fractions of H 2 , CH 4 , C0 2 , N 2 , C 2 H s resulting from a gas analysis , higher hydrocarbons etc.

In einer Grobeinteilung wird das Erdgas in L-Gas mit niedrigem Brennwert und H-Gas mit hohem Brennwert eingeteilt.The natural gas is roughly classified into L-gas with a low calorific value and H-gas with a high calorific value.

In die Einspeisepunkte 14 werden Gase eingespeist, deren Herkunft mit der Zeit wechselt. Die damit verbundene Gasqualitätsänderung des Gases im Fernleitungsnetz 10 kann zu größeren Problemen führen, insbesondere bei Großabnehmern, die auf gleichbleibende Gasqualität angewiesen sind, beispielsweise deshalb, weil auf einen Brennwert bzw. eine Wobbezahl genau eingestellte Industrieöfen eingesetzt werden. Durch Gasqualitätsmessungen an den Abnahmepunkten könnte man zwar prinzipiell derartige Gasqualitätsschwankungen des abgenommenen Gases messen und dementsprechend die erforderlichen Maßnahmen beim Abnehmer treffen ; der Aufwand dieser z. B. mit geeichten Kalorimetern durchzuführenden Gasqualitätsmessungen ist jedoch für den Normalfall zu hoch. Beim Abnehmer wird in der Regel lediglich die Gasmenge (Normvolumen) bzw. das Gasvolumen (Betriebsvolumen) für die spätere thermische Gasabrechnung des Gaswerks mit dem Abnehmer gemessen. Das erfindungsgemäße Steuer- bzw. Regelverfahren erfordert derartige Gasqualitätsmessungen lediglich an den Einspeisepunkten 14. Ferner müssen an den Einspeisepunkten 14 sowie an den Abnahmepunkten 16 die eingespeisten bzw. abgegebenen Gasquantitäten (Gasmengen bzw. Gasvolumina) gemessen und sämtliche Meßwerte einer Steuereinrichtung 26 zugeführt werden, die in Fig. 1 durch ein Blockschema repräsentiert wird. Dieser Steuereinrichtung 26 werden über in Fig. 1 strichpunktiert dargestellte Leitungen 30 und 32 die Meßwerte der Abgabepunkte (abgegebene Gasquantitäten) und der Einspeisepunkte 14 (eingespeiste Gasqualitäten und -quantitäten) zugeführt. Daneben ist der Steuereinrichtung 26 die Netztopologie des Ferngasnetzes 10 eingegeben, also Lage und technische Daten (Länge, Querschnitt usw.) der Rohrleitungen 12 und Lage und technische Daten der Kompressoren 18, des Schiebers 24, der Druck/Fluß-Regler 20 und der Mischstation 22. In Fig. 1 sind strichpunktiert gezeichnete elektrische Leitungen 34 angedeutet, die von den Netzkomponenten 18 bis 24 zur Steuereinrichtung 26 verlaufen und Signale an die Steuereinrichtung 26 übermitteln, die die jeweilige Einstellung der Komponenten 18 bis 24 charakterisieren.Gases whose origin changes over time are fed into the feed points 14. The associated change in the gas quality of the gas in the transmission system 10 can lead to major problems, in particular for large customers who are dependent on constant gas quality, for example because industrial furnaces which are precisely adjusted to a calorific value or a Wobbe number are used. By gas quality measurements at the take-off points one could in principle measure such gas quality fluctuations of the taken gas and accordingly take the necessary measures at the customer; the effort of this z. B. with calibrated calorimeter gas quality measurements is too high for the normal case. As a rule, the customer only measures the amount of gas (standard volume) or the gas volume (operating volume) for the subsequent thermal gas billing of the gas works with the customer. The control or regulating method according to the invention requires such gas quality measurements only at the feed-in points 14. Furthermore, at the feed-in points 14 and at the take-off points 16, the gas quantities (gas quantities or gas volumes) fed in or discharged must be measured and all measured values supplied to a control device 26 which 1 is represented by a block diagram. The measured values of the delivery points (delivered gas quantities) and the feed-in points 14 (fed-in gas qualities and quantities) are fed to this control device 26 via lines 30 and 32 shown in broken lines in FIG. 1. In addition, the control device 26 has entered the network topology of the gas network 10, i.e. the location and technical data (length, cross section, etc.) of the pipelines 12 and the location and technical data of the compressors 18, the slide valve 24, the pressure / flow controller 20 and the mixing station 22. In FIG. 1, dash-dotted electrical lines 34 are indicated which run from the network components 18 to 24 to the control device 26 and transmit signals to the control device 26 which characterize the respective setting of the components 18 to 24.

Ausgehend von den im Block 28 gesammelten Meßdaten sowie der Netztopologie incl. der aktuellen Einstellung der Netzkomponenten wird der Fließzustand des Netzes 10 berechnet, d. h. der Verlauf der Fließgeschwindigkeit des Gases entlang der Leitungen 12 des Netzes 10. Neben dieser Berechnung des Fließzustands, in Fig. 1 durch den Block 38 symbolisiert, kann auch der Druckzustand des Netzes 10 errechnet werden.Based on the measurement data collected in block 28 and the network topology including the current setting of the network components, the flow state of the network 10 is calculated. H. the course of the flow velocity of the gas along the lines 12 of the network 10. In addition to this calculation of the flow state, symbolized in FIG. 1 by the block 38, the pressure state of the network 10 can also be calculated.

Es ist nun von Interesse, wie sich die Gasqualität Q entlang der Leitungen 12 verteilt. Ausgehend von einem bekannten Anfangs-Qualitätsverlauf kann nun mit Hilfe des im Block 38 ermittelten Fließzustandes des Netzes 10 der sich nach Ablauf eines vorgegebenen in Rechenzeitschritte unterteilten Zeitintervalls ergebende neue Qualitätsverlauf ermittelt werden. Hierzu müssen die bestimmte Gasqualitäten kennzeichnenden Netzpunkte gemäß dem Anfangsqualitätsverlauf um eine Wegstrecke in Strömungsrichtung verschoben werden, die der sich aus dem Fließzustand ergebenden lokalen Strömungsgeschwindigkeit an diesen Netzpunkten mal dem Rechenzeitschritt entspricht. An Zusammenführungen von Rohrleitungen 12 wird die Gasmischung entsprechend den zusammenfließenden Gasströmen bestimmt. Bei Einspeisungen (Einspeisepunkte 14) werden die gemessenen Gasqualitäten in das Ferngasnetz 10 « geschoben ». Rechts neben dem mit 40 bezeichneten, die Qualitätsverlaufsermittlungen darstellenden Block ist ein Diagramm dargestellt, welches den örtlichen Verlauf der Gasqualität Q längs eines Weges x entlang einer Rohrleitung 12 darstellt.It is now of interest how the gas quality Q is distributed along the lines 12. On the basis of a known initial quality curve, the flow state of the network 10 determined in block 38 can now be used to determine the new quality curve that results after a predetermined time interval divided into computing time steps. To do this, the network points characterizing certain gas qualities are shifted according to the initial quality curve by a distance in the flow direction which corresponds to the local flow velocity at these network points times the computing time step resulting from the flow state. The junction of pipes 12 determines the gas mixture in accordance with the confluent gas flows. In the case of feeds (entry points 14), the measured gas qualities are “pushed” into the long-distance gas network 10. A diagram is shown to the right of the block representing the quality profile determinations, which shows the local profile of the gas quality Q along a path x along a pipe 12.

Der die Blöcke 38 und 40 verbindende Doppelpfeil zeigt die Rückwirkung des neuen Qualitätsverlaufs auf den als nächstes zu ermittelnden Fließzustand auf ; die Änderung der Gasqualität in den Leitungen 12 hat nämlich auch eine Änderung der das nichtideale Verhalten der Gase angebenden Kompressibilitätszahl zur Folge, da diese von der Gaszusammensetzung abhängt. Dementsprechend ändert sich auch die Normdichte des Gases. Der somit bestimmte neue Fließzustand wird nun der Ermittlung des Qualitätsverlaufes nach Ablauf des nächsten Rechenzeitschrittes zugrunde gelegt usw.The double arrow connecting blocks 38 and 40 shows the effect of the new quality curve on the flow state to be determined next; the change in the gas quality in the lines 12 also results in a change in the compressibility number indicating the non-ideal behavior of the gases, since this depends on the gas composition. The standard density of the gas changes accordingly. The new flow state determined in this way is now used as the basis for determining the quality curve after the next computing time step, etc.

Auf diese Weise kann jeweils der momentan in den Leitungen 12 herrschende Gasqualitätsverlauf ermittelt werden. Durch Vergleich mit Sollwerten für den Qualitätsverlauf entlang der Leitungen 12 erhält man Anhaltswerte für die Netzsteuerung (Block 44). Da durch das erfindungsgemäße Verfahren die Gasqualität an beliebig ausgewählten Netzpunkten verfolgt werden kann, besteht die Möglichkeit durch entsprechende Steuerungsmaßnahmen des Netzes 10 zu erreichen, daß die Gasqualität an vorgegebenen Netzpunkten, z. B. bei einem größeren Abnehmer mit strengen Anforderungen an die Gasqualität in vorgegebenen Grenzen gehalten wird, wohingegen an anderen Netzpunkten größere Gasqualitätsschwankungen zugelassen werden. Der Abnahmepunkt 16' in Fig. 1, der hinter der Mischstation 22 liegt, kann beispielsweise mit konstanter Gasqualität beliefert werden, unabhängig von den anderen Abnahmepunkten 16.In this way, the gas quality curve currently prevailing in the lines 12 can be determined in each case. Comparison with setpoints for the quality curve along the lines 12 gives reference values for the network control (block 44). Since the gas quality can be tracked at arbitrarily selected network points by the method according to the invention, there is the possibility by appropriate control measures of the network 10 to ensure that the gas quality at predetermined network points, e.g. B. with a larger customer with strict gas quality requirements within specified limits, whereas larger gas quality fluctuations are allowed at other network points. The take-off point 16 ′ in FIG. 1, which lies behind the mixing station 22, can be supplied with constant gas quality, for example, independently of the other take-off points 16.

In Fig. 1 sind mit Strich-Punkt-Punkt-Linien Steuerleitungen 46 angedeutet, die vom Block 44 der Steuereinrichtung 26 zu den Stellglieder darstellenden Netzkomponenten 18 bis 24 führen. Die elektrischen Leitungen 46 ebenso wie die elektrischen Leitungen 30 und 32 sind zu fernwirktechnischen Übertragung der Steuersignale bzw. der Meßsignale ausgebildet.1, dash-dot-dot lines indicate control lines 46 which lead from block 44 of control device 26 to network components 18 to 24 representing the actuators. The electrical lines 46 as well as the electrical lines 30 and 32 are designed for remote control transmission of the control signals or the measurement signals.

Für den Fall, daß trotz entsprechender Steuerungsmaßnahmen ein Abweichen der Gasqualität an einem Abnahmepunkt von einem vorgegebenen zulässigen Qualitätsintervall unvermeidlich ist, kann ein entsprechendes Warnsignal von der Steuereinrichtung 26 an den entsprechenden Abnehmer abgegeben werden, in Fig. 1 symbolisiert durch einen vom Block 44 abgehenden Pfeil 50.In the event that, in spite of appropriate control measures, a deviation in the gas quality at a take-off point from a predetermined permissible quality interval is inevitable, a corresponding warning signal can be issued by the control device 26 to the corresponding customer, symbolized in FIG. 1 by an arrow coming from block 44 50.

Aufgrund der Trägheit des Steuer- und Regelsystems des Netzes 10 ist es sehr vorteilhaft auch zukünftige Gasqualitätsverläufe näherungsweise zu ermitteln. Die hierzu erforderlichen Verfahrensschritte sind in Fig. 1 durch Blöcke mit unterbrochener Umfangslinie angedeutet. An dem mit dem Block 40 gekennzeichneten Verfahrensschritt des zuvor beschriebenen, lediglich momentane' Qualitätsverläufe berücksichtigenden Steuerungsverfahrens schließt sich nunmehr ein Block 52 an, der die Ermittlung zukünftiger Fließzustände darstellt. Die hierfür erforderliche, aus der statistischen Auswertung zurückliegender Abnahmezeiträume gewonnene Abnahmeprognose wird vom Block 54 dem Block 52 zugeführt. Aus dem gemäß Block 52 ermittelten Fließzustand nach Ablauf eines Rechenzeitintervalls kann durch entsprechende Verschiebung der bestimmte Gasqualitäten kennzeichnenden Netzpunkte der Gasqualitätsverlauf zu diesem Zeitpunkt bestimmt werden (Block 56). Wie der Doppelpfeil zwischen den Blöcken 52 und 56 anzeigt, wird aus diesem Gasqualitätsverlauf wiederum der zugeordnete Fließzustand berechnet, woraufhin der Gasqualitätsverlauf nach Ablauf eines weiteren Rechenzeitintervalls bestimmt wird. Auf diese Weise läßt sich das Zeitverhalten des Gasqualitätsverlaufs während eines aus einer Vielzahl von Rechenzeitintervallen zusammengesetzten Prognoseintervalls ermitteln. Greift man einen einzelnen Netzpunkt, z. B. einen Abnahmepunkt 16 heraus, so läßt sich aus den gewonnenen Daten der voraussichtliche zeitliche Verlauf der Gasqualität an diesem Punkte ermitteln. Dies ist in Fig. 1 durch das Diagramm neben dem Block 56 angedeutet, welches die Gasqualität Q an einem Netz--punkt in Abhängigkeit von der Zeit t darstellt.Because of the inertia of the control and regulating system of the network 10, it is very advantageous to also approximately determine future gas quality profiles. The process steps required for this are indicated in FIG. 1 by blocks with an interrupted circumferential line. A block 52, which represents the determination of future flow conditions, now follows the method step identified by block 40 of the previously described control method, which only takes into account current quality curves. The required acceptance forecast, obtained from the statistical evaluation of past acceptance periods, is fed from block 54 to block 52. From the flow state determined according to block 52 after a computing time interval has elapsed, the gas quality curve at this point in time can be determined by correspondingly shifting the network points which characterize certain gas qualities (block 56). As the double arrow between blocks 52 and 56 indicates, the associated flow state is in turn calculated from this gas quality curve, whereupon the gas quality curve is determined after a further computing time interval has elapsed. In this way, the time behavior of the gas quality curve can be determined during a forecast interval composed of a large number of computing time intervals. If you grab a single network point, e.g. B. a decrease point 16, the expected time course of the gas quality can be determined at this point from the data obtained. This is indicated in FIG. 1 by the diagram next to block 56, which represents the gas quality Q at a network point as a function of time t.

Weicht nun die prognostizierte Gasqualität an einem vorbestimmten Abnahmepunkt von einem Sollwert bzw. von einem Sollintervall ab, so kann dementsprechend das Ferngasnetz 10 gesteuert werden. Falls die Abweichung so groß ist, daß eine Kompensation nicht mehr möglich erscheint, kann wiederum ein Warnsignal, genauer gesagt ein Vorwarnsignal, an den entsprechenden Abnehmer abgegeben werden, welches sowohl das Ausmaß der Änderung der Gasqualität als auch den Zeitpunkt des Eintretens der Änderung umfaßt.If the predicted gas quality deviates from a desired value or from a desired interval at a predetermined take-off point, then the long-distance gas network 10 can be controlled accordingly. If the deviation is so large that compensation no longer appears possible, a warning signal, more precisely a prewarning signal, can in turn be sent to the corresponding customer, which includes both the extent of the change in gas quality and the time at which the change occurred.

Der ständige Wechsel der Gasqualitäten im Ferngasnetz und damit an den Abnahmepunkten 16 führt auch zu Problemen bei der Gaskundenabrechnung. Die Abrechnung für Gasabnehmer erfolgt nach Wärmemengen (= Gasmenge Brennwerte). Die Abnehmermessung des Brennwertes mit geeichten Kalorimetern sowie der exakten Gasmenge ist sehr aufwendig und kommt daher nur bei sehr großen Gasabnehmern in Betracht. Bei mittleren und kleineren Gasabnehmern lohnt sich der Investitions- und Betriebskostenaufwand nicht. Bei diesen Abnehmern erfolgt im allgemeinen lediglich eine Messung des Gasvolumens (= Betriebsvolumen VB [m3]). Eine exakte Berechnung der Gasmenge (= Normvolumen VN [m3]) aus dem Gasvolumen erfolgt über die Beziehung :

Figure imgb0001
wobei p der aktuelle Druck in bar, pN der Normaldruck in bar, T die aktuelle Temperatur in Grad °K, TN die Normtemperatur in Grad °K und K die von Druck, Temperatur und Gasqualität abhängende Kompressibilitätszahl ist.The constant change of gas qualities in the long-distance gas network and thus at the acceptance points 16 also leads to problems in gas customer billing. Billing for gas customers is based on heat quantities (= gas quantity calorific values). The customer measurement of the calorific value with calibrated calorimeters and the exact amount of gas is very complex and is therefore only considered for very large gas consumers. The investment and operating costs are not worthwhile for medium and small gas consumers. These customers generally only measure the gas volume (= operating volume V B [m 3 ]). An exact calculation of the gas quantity (= standard volume V N [m 3 ]) from the gas volume takes place via the relationship:
Figure imgb0001
where p is the current pressure in bar, p N is the normal pressure in bar, T is the current temperature in degrees ° K, T N is the standard temperature in degrees ° K and K is the compressibility number depending on pressure, temperature and gas quality.

Üblicherweise wird bei den mittleren und kleineren Gasabnehmern aus dem gemessenen Gasvolumen mit Hilfe eines Mengenumwerters mit konstant eingestellter Kompressibilitätszahl ein Anhaltswert für die verbrauchte Gasmenge ermittelt und der Wärmeabrechnung zugrundegelegt. Da die Kompressibilitätszahl jedoch tatsächlich entsprechend der wechselnden Gaszusammensetzung variiert, ist der ermittelte Gasmengenwert mit Fehlern behaftet. Ein weiterer Fehler bei der Wärmemengenabrechnung rührt daher, daß an Stelle des sich mit der Gaszusammensetzung ändernden Brennwertes der Einfachheit halber ein konstanter Brennwert der Berechnung zugrundegelegt wird. Das Steuerverfahren gemäß Fig. 1 liefert nun entsprechend dem Block 40 den momentanen Qualitätsverlauf, z. B. während eines Abrechnungszeitraumes, woraus sich der zeitliche Verlauf der Gasqualität an einem Abnahmepunkt 16 und hieraus auch der zeitliche Verlauf des Wertes für die Kompressibilitätszahl sowie des Brennwertes ohne weiteres ermitteln läßt. Man erhält somit aus den Meßwerten für das jeweils momentan verbrauchte Gasvolumen bzw. für die mittels des Mengenumwerters ermittelte Gasmenge die notwendigen Daten zur genauen Ermittlung der insgesamt verbrauchten Wärmemenge.In the case of medium-sized and smaller gas consumers, a reference value for the amount of gas used is determined from the measured gas volume with the aid of a volume corrector with a constant set compressibility number and is used as the basis for heat billing. However, since the compressibility number actually varies according to the changing gas composition, the determined gas quantity value is subject to errors. Another error in the heat quantity accounting stems from the fact that, instead of the calorific value that changes with the gas composition, a constant calorific value is used as a basis for the calculation. The control method according to FIG. 1 now supplies, according to block 40, the current quality curve, e.g. B. during a billing period, from which the time course of the gas quality at a take-off point 16 and from this also the time course of the value for the compressibility number and the calorific value can be easily determined. From the measured values for the currently used gas volume or for the gas quantity determined by means of the volume corrector, the data required for the exact determination of the total amount of heat consumed is thus obtained.

Der in diesem Zusammenhange verwendete Begriff Gasquantität faßt die ineinander umrechenbaren Größen Gasvolumen, Gasmenge und Gasmasse (= Normdichte - Gasmenge) zusammen.The term gas quantity used in this context summarizes the mutually convertible quantities gas volume, gas quantity and gas mass (= standard density - gas quantity).

Sofern es nur auf die genaue Gasabrechnung ankommt und nicht auf eine Steuerung des Ferngasnetzes 10 gemäß Fig. 1, kann auch gemäß dem Blockdiagramm in Fig. 2 vorgegangen werden. Die hier gezeigte Vorrichtung 126 ist wiederum über die elektrischen Leitungen 30 und 32 mit dem Ferngasnetz verbunden, welches der Einfachheit halber in Fig. 2 weggelassen worden ist. Der dem Block 28 in Fig. 1 entsprechende Block 128 in Fig. 2 symbolisiert die Sammlung der Abrechnungsmeßdaten, d. h. der im Abrechnungszeitraum anfallenden Meßdaten. Diese Meßdaten können entweder unmittelbar nach der Messung an die Vorrichtung 126 übertragen werden oder auch zwischengespeichert werden, z. B. in Form von x-t-Schreiber-Kurven, was insbesondere bei über das Netz weit verstreuten Abnahmepunkten 16 von Vorteil ist.If only the precise gas billing is important and not control of the gas network 10 according to FIG. 1, the block diagram in FIG. 2 can also be used. The device 126 shown here is in turn connected via the electrical lines 30 and 32 to the long-distance gas network, which has been omitted in FIG. 2 for the sake of simplicity. Block 128 in FIG. 2, which corresponds to block 28 in FIG. 1, symbolizes the collection of the accounting measurement data, i. H. the measurement data accruing during the accounting period. These measurement data can either be transmitted to the device 126 immediately after the measurement or can also be temporarily stored, for. B. in the form of x-t recorder curves, which is particularly advantageous in the case of acceptance points 16 which are widely scattered over the network.

Aus diesen Abrechnungsmeßdaten wird wiederum iterativ der Zeitverlauf der Gasqualität Q beim Abnehmer während des Abrechnungszeitraumes T ermittelt. Dies geschieht wiederum dadurch, daß von einem Anfangsfließzustand aus ein erster Fließzustand nach Ablauf eines Rechenzeitintervalls bestimmt wird (Block 138), wobei das Rechenzeitintervall klein ist gegenüber dem Abrechnungszeitraum T. Aus diesem Fließzustand wird nun im Block 140 der zugeordnete Gasqualitätsverlauf berechnet und anschließend der Fließzustand nach Ablauf eines weiteren Rechenzeitintervalls usw. Man erhält so das zeitliche Verhalten der Gasqualität längs der Leitungen des Netzes, woraus sich ohne weiteres der Zeitverlauf der Gasqualität eines bestimmten Leitungspunktes also des entsprechenden Abnahmepunktes ermitteln läßt (Block 156). Neben dem Block 156 ist der Zeitverlauf der Gasqualität Q während des Abrechnungszeitintervalls T diagrammartig dargestellt.From this billing measurement data, the time profile of the gas quality Q at the customer during the billing period T is again determined iteratively. This in turn occurs in that a first flow state is determined from an initial flow state after a computation time interval has elapsed (block 138), the computation time interval being small compared to the billing period T. From this flow state, the associated gas quality curve is now calculated in block 140 and then the flow state after a further computing time interval has elapsed, etc. In this way, the time behavior of the gas quality along the lines of the network is obtained, from which the time course of the gas quality of a specific line point, that is to say the corresponding take-off point, can be determined (block 156). In addition to block 156, the time profile of the gas quality Q during the billing time interval T is shown diagrammatically.

Aus dem so ermittelten Zeitverlauf der Gasqualität beim Abnehmer und dem gemessenen Zeitverlauf der abgenommenen Gasvolumina läßt sich entsprechend den vorstehenden Erläuterungen zu Fig. 1 die abgenommene Wärmemenge im Block 180 mit ausreichender Genauigkeit errechnen.The amount of heat removed in block 180 can be calculated with sufficient accuracy in accordance with the above explanations for FIG. 1 from the time profile of the gas quality at the customer and the measured time profile of the removed gas volumes.

Zur Ferngasnetzsteuerung gemäß Fig. 1 ist noch nachzutragen, daß die aus dem Vergleich mit den Sollwerten gemäß Block 42 im Block 44 ermittelten Stellsignale für die Netzsteuerung vor Abgabe an die Stellglieder des Netzes 10 noch auf ihre Wirksamkeit überprüft werden können, in dem die Auswirkung dieser Signale auf die zukünftigen Fließzustände bzw. die zukünftigen Gasqualitäten in einer Simulationsrechnung abgeschätzt werden. Dies ist durch den unterbrochenen Pfeil 82 angedeutet, der die Blöcke 44 und 52 miteinander verbindet.1 that the control signals for the network control determined from the comparison with the setpoints according to block 42 in block 44 can still be checked for their effectiveness before being given to the actuators of the network 10, in that the effect of this Signals on the future flow conditions or the future gas qualities can be estimated in a simulation calculation. This is indicated by the broken arrow 82, which connects the blocks 44 and 52 to one another.

Claims (5)

1. Method for controlling a gas supply network (10), especially in the high-pressure range, in which the gas quantity and the gas quality of the supplied gas are measured at the infeed points (14) of the network, utilising the obtained measured values, taking consideration of the network geometry, the gas quality pattern along the conduits is ascertained, the ascertained gas quality pattern is compared with an ideal pattern, and the network is controlled, by delivery of corresponding control signals to network setting members, in the direction of a reduction of the differences between ascertained gas quality pattern and ideal pattern, characterised in that for the controlling of a gas supply network with a plurality of infeed points (14) into which gases of different qualities are fed, and which are separated from one another by consumer points (16), the withdrawn gas quantity is measured at some at least of the consumer points (16) of the network and the measured values obtained are taken into consideration in the ascertainment of the gas quality pattern.
2. Method according to Claim 1, characterised in that in the case of deviations of the ascertained gas quality pattern from the ideal pattern lying outside a permissible range of fluctuation, especially at selected points of the network, pre-warning signals are delivered to the relevant consumers.
3. Method according to Claim 1 or 2, characterised in that from the ascertained gas qualities before a mixing point a setting signal is derived for a setting member, especially a regulating slide valve, of the mixing point for keeping the gas quality constant after the mixing point.
4. Method according to Claim 1, characterised in that
a) from the measured data the pattern of the speed of flow of the gas along the main conduit (condition of flow of the network) is ascertained,
b) on the basis of a known initial quality pattern of the gas along the main conduits a momentary quality pattern is ascertained by displacement of the local gas qualities according to the local flow speeds of the ascertained momentary flow condition,
c) possibly by assumptions as to future flow conditions, future quality patterns at several different future time moments are estimated by appropriate displacement of the gas qualities, and
d) at individual network points, especially withdrawal points (16), the momentary gas quality according to the ascertained momentary quality pattern, or the expectable future gas qualities according to the ascertained future quality patterns are compared with a gas quality ideal value or ideal value range and in the case of a deviation from the ideal value or ideal value range upwards or downwards the network is recontrolled in the direction of a reduction or increase respectively of the gas quality in the conduit branch conducting gas to the corresponding network point, possibly by appropriate actuation of a mixing station for gases of different gas qualities, situated in this conduit branch.
EP83101821A 1982-02-25 1983-02-24 Process to control a gas network, especially under high pressure Expired EP0087766B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83101821T ATE19296T1 (en) 1982-02-25 1983-02-24 PROCEDURE FOR CONTROLLING A GAS NETWORK, ESPECIALLY IN THE HIGH PRESSURE SECTOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3206972 1982-02-25
DE19823206972 DE3206972A1 (en) 1982-02-25 1982-02-25 METHOD FOR CONTROLLING A GAS NETWORK, IN PARTICULAR IN THE HIGH PRESSURE AREA

Publications (2)

Publication Number Publication Date
EP0087766A1 EP0087766A1 (en) 1983-09-07
EP0087766B1 true EP0087766B1 (en) 1986-04-16

Family

ID=6156797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101821A Expired EP0087766B1 (en) 1982-02-25 1983-02-24 Process to control a gas network, especially under high pressure

Country Status (3)

Country Link
EP (1) EP0087766B1 (en)
AT (1) ATE19296T1 (en)
DE (2) DE3206972A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112137A (en) * 1998-02-04 2000-08-29 Gas Research Institute Adaptive system for predictive control of district pressure regulators
AU7078000A (en) * 1999-08-27 2001-03-26 Fisher Controls International Inc. Adaptive predictive control of pressure in a natural gas distribution system
DE102005062161A1 (en) * 2005-12-22 2007-06-28 E.On Ruhrgas Ag Gas pressure regulating and measuring system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277254A (en) * 1980-02-15 1981-07-07 Energy Systems, Incorporated Control system and apparatus for producing compatible mixtures of fuel gases

Also Published As

Publication number Publication date
EP0087766A1 (en) 1983-09-07
ATE19296T1 (en) 1986-05-15
DE3206972A1 (en) 1983-09-08
DE3363007D1 (en) 1986-05-22

Similar Documents

Publication Publication Date Title
DE3781941T2 (en) FLIGHT MANAGEMENT SYSTEM.
EP0041144B1 (en) Process and arrangements for filling tube reactors with particulate solids
DE2533709A1 (en) METHOD AND DEVICE FOR CONTROLLING A COATING SYSTEM
EP3358431A1 (en) General planning of production- and / or maintenanceplans
CH668641A5 (en) METHOD AND DEVICE FOR AUTOMATICALLY DETECTING THE THROUGHPUT OF A FLOW OF MATERIALS, e.g. GRAIN.
DE19545262B4 (en) Device for operating a multi-stand rolling mill
DE3133222C2 (en)
DE19850253A1 (en) Method and system for controlling cooling sections
EP0256222B2 (en) Balance for the continuous weighing and for the determination of the flow rate of bulk foodstuffs treated in a grain mill
DE4207144A1 (en) METHOD FOR REGULATING HEAT EXCHANGERS
EP2519364B1 (en) Method of controlling the side guides of a metal strip
EP0087766B1 (en) Process to control a gas network, especially under high pressure
DE2946569A1 (en) DEVICE FOR THERMALLY SPRAYING METAL AND CERAMIC POWDERS
EP0597374B1 (en) Method and device for mixing gases
DE102020110201A1 (en) Dosing device for dosing liquids
DE2925510A1 (en) Pneumatic bulk delivery system feed force measurement - using uncoated gas throughput and loaded gas pressure drop measurements with results stored in computer to regulate gas throughput
EP0068289A1 (en) Method and arrangement for the control of chemical processes
DE19641432C2 (en) Method and device for the pre-calculation of previously unknown parameters of an industrial process
DE1901088A1 (en) Method and device for process control
DE3834009C1 (en) Process and equipment for controlling the heating of coke ovens
EP1260895A2 (en) Method and device for cross-production stage data linking
EP0004598B1 (en) Process and circuit for interstand tension control in a continuous rolling mill having individual drives
EP0226969B1 (en) Device for making a reaction mixture from at least two components of a synthetic material
EP2468391A1 (en) Device for determining the mix rate in an extinguishing pipeline
DE2813045C2 (en) Steam turbine plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19831027

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 19296

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3363007

Country of ref document: DE

Date of ref document: 19860522

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870228

26 Opposition filed

Opponent name: RUHRGAS AKTIENGESELLSCHAFT

Effective date: 19870116

Opponent name: FERNGAS SALZGITTER GMBH

Effective date: 19870116

Opponent name: SCS SCIENTIFIC CONTROL SYSTEMS GMBH

Effective date: 19870116

NLR1 Nl: opposition has been filed with the epo

Opponent name: RUHRGAS AKTIENGESELLSCHAFT

Opponent name: FERNGAS SALZGITTER GMBH

Opponent name: SCS SCIENTIFIC CONTROL SYSTEMS GMBH

26 Opposition filed

Opponent name: PSI GESELLSCHAFT FUER PROZESSTEUERUNGS- UND INFORM

Effective date: 19870116

Opponent name: BEB ERDGAS UND ERDOEL GMBH

Effective date: 19870117

NLR1 Nl: opposition has been filed with the epo

Opponent name: PSI GESELLSCHAFT FUER PROZESSTEUERUNGS-UND INFORM

Opponent name: BEB ERDGAS UND ERDOEL GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890209

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890215

Year of fee payment: 7

Ref country code: DE

Payment date: 19890215

Year of fee payment: 7

Ref country code: BE

Payment date: 19890215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890227

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890228

Year of fee payment: 7

Ref country code: GB

Payment date: 19890228

Year of fee payment: 7

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SCS SCIENTIFIC CONTROL SYSTEMS GMBH * 870116 FERNG

Effective date: 19870116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900228

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

BERE Be: lapsed

Owner name: ESG ELEKTRONIK-SYSTEM G.M.B.H.

Effective date: 19900228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19900520

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 83101821.3

Effective date: 19901107