EP0087766B1 - Procédé pour commander un réseau de gaz, en particulier sous haute pression - Google Patents

Procédé pour commander un réseau de gaz, en particulier sous haute pression Download PDF

Info

Publication number
EP0087766B1
EP0087766B1 EP83101821A EP83101821A EP0087766B1 EP 0087766 B1 EP0087766 B1 EP 0087766B1 EP 83101821 A EP83101821 A EP 83101821A EP 83101821 A EP83101821 A EP 83101821A EP 0087766 B1 EP0087766 B1 EP 0087766B1
Authority
EP
European Patent Office
Prior art keywords
gas
network
quality
ascertained
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83101821A
Other languages
German (de)
English (en)
Other versions
EP0087766A1 (fr
Inventor
Andreas Weimann
Peter Schröder
Dietmar Scheibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESG Elektronik-System- GmbH
Original Assignee
ESG Elektronik-System- GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6156797&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0087766(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ESG Elektronik-System- GmbH filed Critical ESG Elektronik-System- GmbH
Priority to AT83101821T priority Critical patent/ATE19296T1/de
Publication of EP0087766A1 publication Critical patent/EP0087766A1/fr
Application granted granted Critical
Publication of EP0087766B1 publication Critical patent/EP0087766B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas

Definitions

  • the invention relates to a method for controlling a gas network, in particular in the high-pressure range, in which the gas quantity and the gas quality of the gas fed in are measured at the feed-in points of the network, using the measured values obtained, taking into account the network geometry, the gas quality curve along the lines is determined compares the determined gas quality curve with a target curve and controls the network by issuing corresponding control signals to network actuators in the direction of reducing the differences between the determined gas quality curve and target curve.
  • Gas production involves gases of different gas qualities, in particular gases with a low calorific value (L-gas) and gases with a high calorific value (H-gas), to which they are often to be transported and distributed in the same gas network, possibly a long-distance gas network.
  • synthetic gases and gases may be added as a product of coal gasification, with different gas quality in turn.
  • Fluctuating gas qualities of the gas fed in and mixtures when combining gas flows can lead to a constant change in the gas qualities in the long-distance gas network and thus to changing gas quality among gas consumers.
  • larger fluctuations in the quality of the gas taken off must be avoided, since operating problems occur in particular when the gas is used industrially. Contracts with gas customers often contain regulations on an upper and a lower limit for the calorific value and / or wobble number of the supplied gas.
  • the invention has for its object to provide a method for controlling a complex gas network with infeed of gases of different quality in several entry points, which fluctuations in the gas quality in the network, especially at selected network points, w. e.g. B. Acceptance points, at least reduced.
  • This object is achieved in that, in order to control a gas network with a plurality of feed points, into which gases of different quality are fed, and which are separated from one another by take-off points, the amount of gas taken off is measured at at least part of the take-off points of the network and the measured values obtained the determination of the gas quality curve is taken into account.
  • gases of widely differing gas quality can be fed in at the feed-in points without hesitation, since the method ensures that at least those customers who are dependent on gas quality which is as constant as possible are offered gas of a sufficiently constant quality. Since the reaction of the gas flows to control interventions is relatively sluggish, you can estimate the future gas quality curve along with the future gas quality curve along the lines, so that there is sufficient time to take appropriate control measures. It should be emphasized that the expenditure on equipment for carrying out the method can be kept relatively small, since the method can generally be carried out using the measuring devices usually present in gas networks. The gas distribution in meshed gas networks with possibly considerable line lengths is possible without any problems.
  • a prewarning signal is sent to the customers concerned.
  • This prewarning signal enables the customer to use his gas consumption device, e.g. B. to adapt its industrial furnaces to the expected gas quality, particularly the calorific value or the wobble number.
  • the pre-warning signal can include both the gas quality to be expected as well as its expected time of arrival.
  • the method according to the invention which only requires gas quality measurements at the feed-in points, provides information about the current or expected gas qualities at any network points, including in front of (and behind) mixing points within the network.
  • An actuating signal for an actuator in particular a control slide of the mixing point to keep the gas quality constant behind the mixing point, can be derived from the gas qualities determined in front of a mixing point.
  • the long-distance gas network (gas network in the high-pressure region) 10 indicated schematically in FIG. 1 consists of a branched system of lines 12 with feed points 14 (symbolized by two concentric circles) and take-off points 16 (symbolized by a simple circle). Compressors 18, pressure / flow controllers 20, a mixing station 22 and a slide 24 are switched into lines 12. Of course, other network configurations are also possible.
  • gas quality refers primarily to the calorific value of the gas.
  • the gas quality can alternatively or additionally be characterized by the Wobbe number (calorific value: -y from the density), the standard density and by the volume fractions of H 2 , CH 4 , C0 2 , N 2 , C 2 H s resulting from a gas analysis , higher hydrocarbons etc.
  • the natural gas is roughly classified into L-gas with a low calorific value and H-gas with a high calorific value.
  • Gases whose origin changes over time are fed into the feed points 14.
  • the associated change in the gas quality of the gas in the transmission system 10 can lead to major problems, in particular for large customers who are dependent on constant gas quality, for example because industrial furnaces which are precisely adjusted to a calorific value or a Wobbe number are used.
  • gas quality measurements at the take-off points one could in principle measure such gas quality fluctuations of the taken gas and accordingly take the necessary measures at the customer; the effort of this z. B. with calibrated calorimeter gas quality measurements is too high for the normal case.
  • the customer only measures the amount of gas (standard volume) or the gas volume (operating volume) for the subsequent thermal gas billing of the gas works with the customer.
  • the control or regulating method according to the invention requires such gas quality measurements only at the feed-in points 14. Furthermore, at the feed-in points 14 and at the take-off points 16, the gas quantities (gas quantities or gas volumes) fed in or discharged must be measured and all measured values supplied to a control device 26 which 1 is represented by a block diagram. The measured values of the delivery points (delivered gas quantities) and the feed-in points 14 (fed-in gas qualities and quantities) are fed to this control device 26 via lines 30 and 32 shown in broken lines in FIG. 1. In addition, the control device 26 has entered the network topology of the gas network 10, i.e.
  • dash-dotted electrical lines 34 are indicated which run from the network components 18 to 24 to the control device 26 and transmit signals to the control device 26 which characterize the respective setting of the components 18 to 24.
  • the flow state of the network 10 is calculated. H. the course of the flow velocity of the gas along the lines 12 of the network 10.
  • the pressure state of the network 10 can also be calculated.
  • the flow state of the network 10 determined in block 38 can now be used to determine the new quality curve that results after a predetermined time interval divided into computing time steps.
  • the network points characterizing certain gas qualities are shifted according to the initial quality curve by a distance in the flow direction which corresponds to the local flow velocity at these network points times the computing time step resulting from the flow state.
  • the junction of pipes 12 determines the gas mixture in accordance with the confluent gas flows.
  • the measured gas qualities are “pushed” into the long-distance gas network 10.
  • a diagram is shown to the right of the block representing the quality profile determinations, which shows the local profile of the gas quality Q along a path x along a pipe 12.
  • the double arrow connecting blocks 38 and 40 shows the effect of the new quality curve on the flow state to be determined next; the change in the gas quality in the lines 12 also results in a change in the compressibility number indicating the non-ideal behavior of the gases, since this depends on the gas composition.
  • the standard density of the gas changes accordingly.
  • the new flow state determined in this way is now used as the basis for determining the quality curve after the next computing time step, etc.
  • the gas quality curve currently prevailing in the lines 12 can be determined in each case. Comparison with setpoints for the quality curve along the lines 12 gives reference values for the network control (block 44). Since the gas quality can be tracked at arbitrarily selected network points by the method according to the invention, there is the possibility by appropriate control measures of the network 10 to ensure that the gas quality at predetermined network points, e.g. B. with a larger customer with strict gas quality requirements within specified limits, whereas larger gas quality fluctuations are allowed at other network points.
  • the take-off point 16 ′ in FIG. 1, which lies behind the mixing station 22, can be supplied with constant gas quality, for example, independently of the other take-off points 16.
  • dash-dot-dot lines indicate control lines 46 which lead from block 44 of control device 26 to network components 18 to 24 representing the actuators.
  • the electrical lines 46 as well as the electrical lines 30 and 32 are designed for remote control transmission of the control signals or the measurement signals.
  • a corresponding warning signal can be issued by the control device 26 to the corresponding customer, symbolized in FIG. 1 by an arrow coming from block 44 50.
  • a block 52 which represents the determination of future flow conditions, now follows the method step identified by block 40 of the previously described control method, which only takes into account current quality curves.
  • the required acceptance forecast obtained from the statistical evaluation of past acceptance periods, is fed from block 54 to block 52. From the flow state determined according to block 52 after a computing time interval has elapsed, the gas quality curve at this point in time can be determined by correspondingly shifting the network points which characterize certain gas qualities (block 56).
  • the associated flow state is in turn calculated from this gas quality curve, whereupon the gas quality curve is determined after a further computing time interval has elapsed.
  • the time behavior of the gas quality curve can be determined during a forecast interval composed of a large number of computing time intervals. If you grab a single network point, e.g. B. a decrease point 16, the expected time course of the gas quality can be determined at this point from the data obtained. This is indicated in FIG. 1 by the diagram next to block 56, which represents the gas quality Q at a network point as a function of time t.
  • the long-distance gas network 10 can be controlled accordingly. If the deviation is so large that compensation no longer appears possible, a warning signal, more precisely a prewarning signal, can in turn be sent to the corresponding customer, which includes both the extent of the change in gas quality and the time at which the change occurred.
  • a reference value for the amount of gas used is determined from the measured gas volume with the aid of a volume corrector with a constant set compressibility number and is used as the basis for heat billing.
  • the determined gas quantity value is subject to errors.
  • Another error in the heat quantity accounting stems from the fact that, instead of the calorific value that changes with the gas composition, a constant calorific value is used as a basis for the calculation.
  • the control method according to FIG. 1 now supplies, according to block 40, the current quality curve, e.g. B.
  • FIG. 2 the block diagram in FIG. 2 can also be used.
  • the device 126 shown here is in turn connected via the electrical lines 30 and 32 to the long-distance gas network, which has been omitted in FIG. 2 for the sake of simplicity.
  • Block 128 in FIG. 2, which corresponds to block 28 in FIG. 1, symbolizes the collection of the accounting measurement data, i. H. the measurement data accruing during the accounting period.
  • These measurement data can either be transmitted to the device 126 immediately after the measurement or can also be temporarily stored, for. B. in the form of x-t recorder curves, which is particularly advantageous in the case of acceptance points 16 which are widely scattered over the network.
  • the time profile of the gas quality Q at the customer during the billing period T is again determined iteratively. This in turn occurs in that a first flow state is determined from an initial flow state after a computation time interval has elapsed (block 138), the computation time interval being small compared to the billing period T. From this flow state, the associated gas quality curve is now calculated in block 140 and then the flow state after a further computing time interval has elapsed, etc. In this way, the time behavior of the gas quality along the lines of the network is obtained, from which the time course of the gas quality of a specific line point, that is to say the corresponding take-off point, can be determined (block 156). In addition to block 156, the time profile of the gas quality Q during the billing time interval T is shown diagrammatically.
  • the amount of heat removed in block 180 can be calculated with sufficient accuracy in accordance with the above explanations for FIG. 1 from the time profile of the gas quality at the customer and the measured time profile of the removed gas volumes.
  • control signals for the network control determined from the comparison with the setpoints according to block 42 in block 44 can still be checked for their effectiveness before being given to the actuators of the network 10, in that the effect of this Signals on the future flow conditions or the future gas qualities can be estimated in a simulation calculation.
  • This is indicated by the broken arrow 82, which connects the blocks 44 and 52 to one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (5)

1. Procédé pour commander un réseau de gaz (10), notamment sous haute pression, dans lequel on mesure la quantité et la qualité du gaz délivré aux points d'alimentation (14) du réseau, on détermine l'évolution de la qualité du gaz le long des conduits, en utilisant les valeurs mesurées obtenues et en tenant compte de la géométrie du réseau, on compare à une évolution de consigne l'évolution qualitative du gaz ainsi déterminée, et l'on commande le réseau par une délivrance de signaux correspondants à des organes d'ajustement du réseau, dans le sens d'une réduction des différences entre l'évolution de consigne et l'évolution qualitative du gaz déterminée, caractérisé par le fait que, pour commander un réseau de gaz à plusieurs points d'alimentation (14) auxquels des gaz de qualités différentes sont délivrés, et qui sont séparés les uns des autres par des points de prélèvement (16), l'on mesure la qualité du gaz prélevé sur une partie des points de prélèvement (16) du réseau, et l'on prend en considération les valeurs mesurées obtenues pour déterminer l'évolution qualitative du gaz.
2. Procédé selon la revendication 1, caractérisé par le fait que, lorsque l'allure qualitative du gaz déterminée accuse, par rapport à l'allure de consigne, des écarts situés à l'extérieur d'une plage de fluctuations admissible, on délivre un signal d'alerte préalable aux consommateurs concernés, en particulier en des points sélectionnés du réseau.
3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que, sur la base des qualités du gaz déterminées devant un poste de mélange, on dérive un signal d'ajustement appliqué à un organe d'ajustement, en particulier à un robinet- vanne du poste de mélange, afin de maintenir constante la qualité du gaz derrière ledit poste de mélange.
4. Procédé selon la revendication 1, caractérisé par le fait que
a) l'évolution de la vitesse d'écoulement du gaz le long du conduit du réseau (condition de circulation dans le réseau) est déterminée à partir des données de mesure,
b) sur la base d'une allure qualitative initiale connue du gaz le long des conduits du réseau, une allure qualitative momentanée est déterminée par un décalage des qualités locales du gaz, d'une manière correspondant aux vitesses locales d'écoulement de la condition de circulation déterminée à un instant considéré,
c) en extrapolant éventuellement des conditions de circulation futures, des évolutions qualitatives futures en plusieurs points ultérieurs différents dans le temps sont évaluées, par un décalage correspondant des qualités du gaz et
d) en des points individuels du réseau, en particulier des points de prélèvement (16), la qualité du gaz à un instant considéré conformément à l'allure qualitative momentanée déterminée, ou les futures qualités du gaz escomptées conformément aux allures qualitatives futures déterminées, sont comparées respectivement à une valeur de consigne de la qualité du gaz ou à un intervalle de cette valeur de consigne qualitative et, en présence d'un écart vers le bas ou vers le haut par rapport à la valeur de consigne ou à l'intervalle de consigne, respectivement, le réseau est réajusté par commande, respectivement dans le sens d'un accroissement ou d'une diminution de la qualité du gaz dans l'embranchement de conduits acheminant du gaz vers le point correspondant du réseau, éventuellement par une commande correspondante d'un poste de mélange de gaz de qualités différentes installé dans cet embranchement de conduits.
EP83101821A 1982-02-25 1983-02-24 Procédé pour commander un réseau de gaz, en particulier sous haute pression Expired EP0087766B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83101821T ATE19296T1 (de) 1982-02-25 1983-02-24 Verfahren zur steuerung eines gasnetzes, insbesondere im hochdruckbereich.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3206972 1982-02-25
DE19823206972 DE3206972A1 (de) 1982-02-25 1982-02-25 Verfahren zur steuerung eines gasnetzes, insbesondere im hochdruckbereich

Publications (2)

Publication Number Publication Date
EP0087766A1 EP0087766A1 (fr) 1983-09-07
EP0087766B1 true EP0087766B1 (fr) 1986-04-16

Family

ID=6156797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101821A Expired EP0087766B1 (fr) 1982-02-25 1983-02-24 Procédé pour commander un réseau de gaz, en particulier sous haute pression

Country Status (3)

Country Link
EP (1) EP0087766B1 (fr)
AT (1) ATE19296T1 (fr)
DE (2) DE3206972A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112137A (en) * 1998-02-04 2000-08-29 Gas Research Institute Adaptive system for predictive control of district pressure regulators
AU7078000A (en) * 1999-08-27 2001-03-26 Fisher Controls International Inc. Adaptive predictive control of pressure in a natural gas distribution system
DE102005062161A1 (de) * 2005-12-22 2007-06-28 E.On Ruhrgas Ag Gas-Druckregel- und -messanlage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277254A (en) * 1980-02-15 1981-07-07 Energy Systems, Incorporated Control system and apparatus for producing compatible mixtures of fuel gases

Also Published As

Publication number Publication date
EP0087766A1 (fr) 1983-09-07
ATE19296T1 (de) 1986-05-15
DE3206972A1 (de) 1983-09-08
DE3363007D1 (en) 1986-05-22

Similar Documents

Publication Publication Date Title
DE3781941T2 (de) Flugverwaltungssystem.
EP0041144B1 (fr) Procédé et agencements pour remplir des réacteurs tubulaires de matériaux solides particulaires
DE2533709A1 (de) Verfahren und vorrichtung zur steuerung einer beschichtungsanlage
EP3358431A1 (fr) Planification intégrée des plans de la production et / ou les plans de service
CH668641A5 (de) Verfahren und vorrichtung zur automatischen erfassung des durchsatzes eines schuettgutstromes, z.b. getreide.
DE19545262B4 (de) Einrichtung zum Betrieb einer mehrgerüstigen Walzstraße
DE3133222C2 (fr)
DE19850253A1 (de) Verfahren und System zur Regelung von Kühlstrecken
EP0256222B2 (fr) Balance de pesage continu et de détermination du débit des aliments en vrac traités dans un moulin à blé
DE4207144A1 (de) Verfahren zur regelung von waermeuebertragern
EP2519364B1 (fr) Methode de régulation des guides latéraux d'une bande métallique
EP0087766B1 (fr) Procédé pour commander un réseau de gaz, en particulier sous haute pression
DE2946569A1 (de) Vorrichtung zum thermischen verspritzen von metall- und keramikpulvern
EP0597374B1 (fr) Méthode et dispositif pour le mélange des gaz
DE102020110201A1 (de) Dosiervorrichtung zur Dosierung von Flüssigkeiten
DE2925510A1 (de) Verfahren und vorrichtung zur messung der foerderstaerke in einer pneumatischen foerderanlage
EP0068289A1 (fr) Méthode et dispositif de réglage de processus chimiques
DE19641432C2 (de) Verfahren und Einrichtung zur Vorausberechnung von vorab unbekannten Parametern eines industriellen Prozesses
DE1901088A1 (de) Verfahren und Vorrichtung zur Prozesssteuerung
DE3834009C1 (en) Process and equipment for controlling the heating of coke ovens
EP1260895A2 (fr) Procédé et dispositif pour la liaison des données entre des étapes de production
EP0004598B1 (fr) Procédé et circuit pour la commande de la tension entre les cages d'un laminoir continu à entraînement individuel
EP0226969B1 (fr) Dispositif pour la fabrication d'un mélange réactif d'au moins deux composants de matériau synthétique
EP2468391A1 (fr) Dispositif d'établissement du taux de mélange dans une conduite d'extinction
DE2813045C2 (de) Dampfturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19831027

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 19296

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3363007

Country of ref document: DE

Date of ref document: 19860522

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870228

26 Opposition filed

Opponent name: RUHRGAS AKTIENGESELLSCHAFT

Effective date: 19870116

Opponent name: FERNGAS SALZGITTER GMBH

Effective date: 19870116

Opponent name: SCS SCIENTIFIC CONTROL SYSTEMS GMBH

Effective date: 19870116

NLR1 Nl: opposition has been filed with the epo

Opponent name: RUHRGAS AKTIENGESELLSCHAFT

Opponent name: FERNGAS SALZGITTER GMBH

Opponent name: SCS SCIENTIFIC CONTROL SYSTEMS GMBH

26 Opposition filed

Opponent name: PSI GESELLSCHAFT FUER PROZESSTEUERUNGS- UND INFORM

Effective date: 19870116

Opponent name: BEB ERDGAS UND ERDOEL GMBH

Effective date: 19870117

NLR1 Nl: opposition has been filed with the epo

Opponent name: PSI GESELLSCHAFT FUER PROZESSTEUERUNGS-UND INFORM

Opponent name: BEB ERDGAS UND ERDOEL GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890209

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890215

Year of fee payment: 7

Ref country code: DE

Payment date: 19890215

Year of fee payment: 7

Ref country code: BE

Payment date: 19890215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890227

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890228

Year of fee payment: 7

Ref country code: GB

Payment date: 19890228

Year of fee payment: 7

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SCS SCIENTIFIC CONTROL SYSTEMS GMBH * 870116 FERNG

Effective date: 19870116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900228

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

BERE Be: lapsed

Owner name: ESG ELEKTRONIK-SYSTEM G.M.B.H.

Effective date: 19900228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19900520

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 83101821.3

Effective date: 19901107