EP0086014A1 - Method for the production and stabilisation of a reversible two-way memory effect in a Cu-Al-Ni or Cu-Al alloy - Google Patents

Method for the production and stabilisation of a reversible two-way memory effect in a Cu-Al-Ni or Cu-Al alloy Download PDF

Info

Publication number
EP0086014A1
EP0086014A1 EP83200130A EP83200130A EP0086014A1 EP 0086014 A1 EP0086014 A1 EP 0086014A1 EP 83200130 A EP83200130 A EP 83200130A EP 83200130 A EP83200130 A EP 83200130A EP 0086014 A1 EP0086014 A1 EP 0086014A1
Authority
EP
European Patent Office
Prior art keywords
alloy
temperature
subjected
stabilization
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83200130A
Other languages
German (de)
French (fr)
Other versions
EP0086014B1 (en
Inventor
Joachim Dr. Albrecht
Thomas Dr. Duerig
Olivier Dr. Mercier
Walter Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT83200130T priority Critical patent/ATE23570T1/en
Publication of EP0086014A1 publication Critical patent/EP0086014A1/en
Application granted granted Critical
Publication of EP0086014B1 publication Critical patent/EP0086014B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention is based on a method for generating and stabilizing a two-way memory effect according to the preamble of claim 1.
  • the invention is based on the object of specifying a method for Cu / Al / Ni and Cu / Al alloys in order to induce a considerable reversible two-way memory effect in these substances and, if appropriate, to stabilize this effect in such a way that from the said Alloys components that can be used in practice can be produced.
  • FIG. 2 shows a time / temperature diagram of the sequence of the individual method steps corresponding to the flow diagram of FIG. 1.
  • 1 represents the usual solution annealing mostly at approx. 850 ° C, ie the transformation of the alloy into the structure of the / 3 -mixing crystal
  • 2 the subsequent water quenching to carry the metastable state to room temperature.
  • 3 is to achieve a memory effect and for shaping of the component necessary critical deformation step, which can be carried out at room temperature or in principle at any temperature below 300 ° C. After this deformation, the workpiece does not necessarily have to be relieved. In the event of deformation above room temperature, it can be cooled.
  • 5 is the step of shape stabilization, which is carried out at 150 to 425 ° C.
  • step 3 the state according to step 5 can optionally also be reached via step 4 (maintaining the temperature).
  • 7 and 8 illustrate an optional one-way effect treatment followed by slow cooling. However, these steps can also be omitted.
  • the additional advantageous step of martensite stabilization with subsequent slow cooling is shown in sections 9 and 10.
  • Fig. 3 shows a diagram of the two-way effect using the example of a bending rod.
  • the deflection (deflection) f in mm is plotted as a function of the temperature T in ° C. If you go through a temperature cycle between about room temperature and 200 o C, the reversible deflection that follows the hysteresis curves is achieved. Curve 13 corresponds to the effect without, curve 14 to that with martensite stabilization. The quantitative improvement due to martensite stabilization is clearly evident.
  • the maximum achievable deflection difference of approx. 5 mm between the high and low temperature phase corresponds in the present case to an elongation S of approx. 1.3%. 4 schematically shows a test device for bending rods.
  • 15 is the bending rod made of memory alloy. 15 represents a clamping device for the bending rod, that is to say the so-called fixed point. 17 is a cord which is guided over a cable pulley 18 and by means of a counterweight 19 is slightly tense. The cord 17 is attached to the movable end of the bending bar 15. The counterweight 19 is dimensioned such that it is only with certainty that the frictional forces when moving process overcomes.
  • the arrow represents the direction of movement of the deflection of the bending rod 15, which, with full deflection (deflection), reaches the position according to FIG. 21 with its axis. The movements can be read or registered on a sensor (not shown) mounted on the roller 18.
  • the rod had a square cross section of 2.5 x 2.5 mm and a length of 35 mm. It was treated similarly to the procedure shown in FIGS. 1 and 2. First, the rod was pre-shaped at a temperature of 900 ° C in such a way that its longitudinal axis described a circular arc with a radius of -37 mm (negative sign, since curvature in the opposite direction with respect to the later definitive shape). The pre-bent rod was then subjected to solution annealing at a temperature of 950 ° C. for 15 minutes and subsequent quenching in cold water (similar to 1 and 2 in FIG. 2). The rod was then bent in the opposite direction at room temperature so that its longitudinal axis described a radius of + 35 mm.
  • Example I A test bar of the same dimensions and the same composition as in Example I was subjected to solution annealing at 850 ° C. for 10 minutes in the flat (stretched) state and then quenched in cold water. The rod was then bent to a radius of 22 mm at room temperature, which corresponded to an outermost fiber elongation of 5.4%. The bent rod was then held at a temperature of 300 ° C for 30 minutes under load. The load was removed while still warm and the relieved rod was slowly cooled to room temperature. The test was carried out in the same manner as in Example I. With this material without “martensite stabilization", greater scatter and less two-way effects were found than with the stabilized one according to Example I.
  • a torsion bar of the same composition as in Example I was subjected to a corresponding treatment and test.
  • the rod had a round cross-section, with a diameter of 3 mm and a measuring length of 24 mm. It was first solution annealed at a temperature of 850 ° C for 10 minutes and then quenched in cold water. The rod was heated to 100 ° C and twisted (twisted) at this temperature by a total angle ⁇ of 80 o with respect to the circular cross sections at the ends of the measuring length.
  • the twist angle ⁇ of the outermost fiber of the helix with the cylinder generating line (pitch angle) was approximately 5 °, which corresponded to an elongation of 6% in the main stress directions (tension and compression).
  • the rod was held in this tensioned position and heated to a temperature of 300 ° C. This state was maintained for 20 minutes. Then the rod was relieved and slowly cooled to room temperature. The two-way effect on torsion was then determined by going through a temperature cycle of 0 to 250 ° C.
  • the achievable reversible angle difference ⁇ of the circular cross sections at both ends of the measuring length was 9 °, which corresponded to a twist angle cC (pitch angle) of 34 '.
  • the equivalent of the strains in the two main stress directions was thus about 0.7%.
  • a tensile bar with the same composition and the same dimensions as the torsion bar according to Example III was subjected to a corresponding treatment and test. It was first subjected to solution annealing at a temperature of 850 ° C. for 15 minutes and then quenched in cold water. Then the rod was subjected to tensile stress in its longitudinal axis at room temperature and stretched (stretched) by an amount of 4%. While maintaining the applied load (tensile stress), the rod was heated to 300 ° C. and held in this state for 20 minutes. The load was then removed and the rod slowly cooled to room temperature. The two-way effect measured on various test specimens in the temperature interval from 0 to 200 ° C. was 0.2 to 0.5%. It could be significantly improved by the martensite stabilization treatment according to 9 in FIG. 2 and kept within narrow limits.
  • any memory alloy of the ⁇ -brass type which shows a well-known one-way effect in the natural state (i.e. after conventional treatment), but shows a negligible two-way effect, can be brought into a state according to the new method, where it has a clear two-way effect suitable for practical use having.
  • These primarily include the alloys of the types Cu / Al / Ni and Cu / Al.
  • solution annealing can be carried out at different temperatures (usually between 850 and 950 ° C).
  • the decisive process step corresponding to the shape stabilization can in the temperature range of 150 to 425 ° C for 0.5 to 180 min, the shorter times apply to the higher temperatures.
  • the load to be applied at the same time must be dimensioned such that a tension (tension, pressure or thrust) is generated which corresponds to an elongation of at least 1%. In the case of thrust, this means that the displacement angle ⁇ (pitch angle for torsion) must be at least 50 '.
  • the martensite stabilization can be carried out in the temperature range between 200 and 400 ° C for 1 min to 4 h.
  • the zero point stabilization of the two-way effect is advantageously carried out at a temperature which corresponds to the later maximum operating temperature (in our case approx. 200 ° C.).
  • the duration of the heating should be at least 1 min.
  • the present new method has shown the way for the first time how a two-way effect that can be used in practice can be achieved with memory alloys of the ⁇ -brass type, which normally only show a pronounced one-way effect.

Abstract

Verfahren zur Erzeugung eines reversiblen Zweiwegeffekts in Cu/Al/Ni- und Cu/Al-Gedächtnislegierungen durch Wärmebehandlung unter gleichzeitiger Aufbringung einer äusseren Spannung (5) nach der durch die herkömmlichen Schritte Lösungsglühen, Abschrecken (1; 2) und Verformen (3) erfolgten Martensitbildung. Zusätzliche Verbesserung durch wahlweise Martensitstabilisierung (9) und Zweiwegeffekt-Nullpunktstabilisierung (11) in Form weiterer Wärmebehandlungen.Process for producing a reversible two-way effect in Cu / Al / Ni and Cu / Al memory alloys by heat treatment with simultaneous application of an external stress (5) after the solution annealing, quenching (1; 2) and deformation (3) were carried out by the conventional steps Martensite formation. Additional improvement through optional martensite stabilization (9) and two-way effect zero point stabilization (11) in the form of further heat treatments.

Description

Die Erfindung geht aus von einem Verfahren zur Erzeugung und Stabilisierung eines Zweiweg-Gedächtniseffekts nach der Gattung des Oberbegriffs des Anspruchs 1.The invention is based on a method for generating and stabilizing a two-way memory effect according to the preamble of claim 1.

Bei den Gedächtnislegierungen kann man im allgemeinen einem sog. Zweiwegeffekt von einem Einwegeffekt unterscheiden. Während letzterer in der Regel ausgeprägter und bekannter ist (Ni/Ti-Legierungen,β -Messinge) und auch zu zahlreichen Anwendungen geführt hat, ist der Zweiwegeffekt problematischer und schwieriger zu beherrschen. Doch besteht in der Technik ein allgemeines Bedürfnis nach Bauelementen, welche einen quantitativ genügend grossen Zweiwegeffekt zeigen, um ein weiteres interessantes Anwendungsgebiet zu erschliessen. Meist liegt nun jedoch der Punkt der martensitischen Umwandlung der klassischen Zweiwegeffekt-Legierungen in einem ungünstigen Temperaturbereich. Es'gibt jedoch eine Anzahl von Gedächtnislegierungen, vorab die demβ -Messingtyp angehörenden klassischen Cu/Al/Ni- und Cu/Al-Legierungen, deren Umwandlungspunkt günstig liegt, die zwar wohl einen deutlichen Einweg- aber kaum einen namhaften Zweiwegeffekt zeigen.In the case of memory alloys, a so-called two-way effect can generally be distinguished from a one-way effect. While the latter is generally more pronounced and well-known (Ni / Ti alloys, β-brasses) and has also led to numerous applications, the two-way effect is more problematic and difficult to master. However, there is a general need in technology for components which have a sufficiently large two-way effect in terms of quantity in order to open up another interesting area of application. Most of the time, however, the point of the martensitic transformation of the classic two-way effect alloys lies in an unfavorable temperature range. However, there are a number of memory alloys, above all the classic Cu / Al / Ni and Cu / Al alloys belonging to the β-brass type, whose transformation point is favorable, which may have a clear one-way but hardly a well-known two-way effect.

Als Stand der Technik können u.a. folgende Dokumente angeführt werden:

  • R. Haynes, Some Observations on Isothermal Transformations of Eutectoid Aluminium Bronzes Below Their MS Temperatures, Journal of the Institute of Metals 1954-55, Vol. 83, Seiten 357-358; W.A. Rachinger, A "super-elastic" single Crystal calibration bar, British Journal of Applied Physics, Vo. 9, Juni 1958, Seiten 250-252; R.P. Jewett, D.J. Mack.Further Investigation of Copper-Aluminium Alloys in the Temperature Range below the β
    Figure imgb0001
    α+γ2 Eutectoid, Journal of the Institute of Metals 1963-64, Vol. 92, Seiten 59-61; K.Otsuka and K. Shimizu, Memory Effect and Thermoelastic Martensite Transformation in Cu-Al-Ni Alloy, Scripta Metallurgia, Vol. 4, 1970 Pergamon Press Inc., Seiten 469-472; Kazuhiro Otsuka, Origin of Memory Effect in Cu-Al-Ni Alloy, Japanese Journal of Applied Physics, Vol. 10, No. 5, May 1971, Seiten 571-579.
The following documents can be cited as state of the art:
  • R. Haynes, Some Observations on Isothermal Transformations of Eutectoid Aluminum Bronzes Below Their M S Temperatures, Journal of the Institute of Metals 1954-55, Vol. 83, pages 357-358; WA Rachinger, A "super-elastic" single crystal calibration bar, British Journal of Applied Physics, Vo. June 9, 1958, pages 250-252; RP Jewett, DJ Mack. For ther Investigation of Copper-Aluminum Alloys in the Temperature Range below the β
    Figure imgb0001
    α + γ 2 Eutectoid, Journal of the Institute of Metals 1963-64, Vol. 92, pages 59-61; K.Otsuka and K. Shimizu, Memory Effect and Thermoelastic Martensite Transformation in Cu-Al-Ni Alloy, Scripta Metallurgia, Vol. 4, 1970 Pergamon Press Inc., pages 469-472; Kazuhiro Otsuka, Origin of Memory Effect in Cu-Al-Ni Alloy, Japanese Journal of Applied Physics, Vol. 10, No. 5, May 1971, pages 571-579.

Es besteht daher ein Bedürfnis nach Bauelementen aus Gedächtnislegierungen desβ -Messingtyps, welche bei für gewisse Anwendungen günstig liegender Umwandlungstemperatur einen namhaften Zweiwegeffekt aufweisen.There is therefore a need for components made of memory alloys of the β-brass type, which have a well-known two-way effect at a transformation temperature which is favorable for certain applications.

Der Erfindung liegt die Aufgabe zugrunde, für Cu/Al/Ni- und Cu/Al-Legierungen ein Verfahren anzugeben, um in diesen Stoffen einen beträchtlichen reversiblen Zweiweg=Gedächtnis- effekt zu induzieren und gegebenenfalls diesen Effekt derart zu stabilisieren, dass aus den besagten Legierungen für die Praxis brauchbare Bauelemente hergestellt werden können.The invention is based on the object of specifying a method for Cu / Al / Ni and Cu / Al alloys in order to induce a considerable reversible two-way memory effect in these substances and, if appropriate, to stabilize this effect in such a way that from the said Alloys components that can be used in practice can be produced.

Diese Aufgabe-wird durch die im kennzeichnenden Teil des Anspruchs 1 sowie zusätzlich in bevorzugter Weise durch die im kennzeichnenden Teil des Anspruchs 2 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claim 1 and additionally in a preferred manner by the features specified in the characterizing part of claim 2.

Die Erfindung wird anhand der nachfolgenden, durch Figuren erläuterten Ausführungsbeispiele beschrieben.The invention is described on the basis of the following exemplary embodiments explained by figures.

Dabei zeigt:

  • Fig. 1 ein Fliessdiagramm des Verfahrens,
  • Fig. 2 ein Zeit/Temperatur-Diagramm des Ablaufs der einzelnen Verfahrensschritte,
  • Fig. 3 ein Diagramm des Zweiweg-Gedächtniseffekts am Beispiel eines Biegestabes,
  • Fig. 4 das Schema einer Versuchseinrichtung für Biegestäbe.
It shows:
  • 1 is a flow diagram of the method,
  • 2 shows a time / temperature diagram of the sequence of the individual process steps,
  • 3 shows a diagram of the two-way memory effect using the example of a bending rod,
  • Fig. 4 shows the scheme of a test facility for bending rods.

Fig. 1 zeigt das Fliessdiagramm des Verfahrens in einzelnen Schritten in Blockdarstellung. Die entscheidenden thermomechanischen bzw. Wärmebehandlungen sind durch Umrahmung hervorgehoben. Im übrigen bedarf das Diagramm keiner weiteren Erklärung. Verfahrensbeispiel in Klammern gesetzt1 shows the flow diagram of the method in individual steps in block form. The decisive thermomechanical or heat treatments are highlighted by a frame. The diagram does not need any further explanation. Process example in parentheses

In Fig. 2 ist ein dem Fliessdiagramm von Fig. 1 entsprechendes Zeit/Temperatur-Diagramm des Ablaufs der einzelnen Verfahrensschritte dargestellt. 1 stellt die übliche Lösungsglühung meist bei ca. 850°C, d.h. die Ueberführung der Legierung in den Gefügezustand des /3 -Mischkristalls, 2 die nachfolgende Wasserabschreckung zur Verschleppung des metastabilen Zustandes auf Raumtemperatur dar. 3 ist der zur Erreichung eines Gedächtniseffekts und zur Formgebung des Bauelements notwendige kritische Verformungsschritt, welcher bei Raumtemperatur oder prinzipiell bei jeder unterhalb 300°C liegenden Temperatur durchgeführt werden kann. Nach dieser Verformung muss das Werkstück nicht unbedingt entlastet werden. Im Falle der Verformung oberhalb Raumtemperatur kann es abgekühlt werden. 5 ist der Schritt der Formstabilisierung, die bei 150 bis 425°C (im vorliegenden Fall 300°C) unter Spannung, d.h. unter gleichzeitiger Aufbringung einer Last zu erfolgen hat. Anschliessend kann gemäss 6 langsam abgekühlt werden. Von Schritt 3 kann wahlweise auch via Schritt 4 (Halten der Temperatur) der Zustand gemäss Schritt 5 erreicht werden. 7 und 8 stellen eine fakultative Einwegeffekt-Behandlung mit nachfolgender langsamer Abkühlung dar. Diese Schritte können jedoch auch weggelassen werden. Der zusätzliche vorteilhafte Schritt der Martensitstabilisierung mit darauffolgender langsamer Abkühlung ist in den Abschnitten 9 und 10 dargestellt. Zum Schluss kommt noch die fakultative, jedoch vorteilhafte Zweiwegeffekt-Nullpunktstabilisierung gemäss Abschnitt 11 und die langsame Abkühlung 12.FIG. 2 shows a time / temperature diagram of the sequence of the individual method steps corresponding to the flow diagram of FIG. 1. 1 represents the usual solution annealing mostly at approx. 850 ° C, ie the transformation of the alloy into the structure of the / 3 -mixing crystal, 2 the subsequent water quenching to carry the metastable state to room temperature. 3 is to achieve a memory effect and for shaping of the component necessary critical deformation step, which can be carried out at room temperature or in principle at any temperature below 300 ° C. After this deformation, the workpiece does not necessarily have to be relieved. In the event of deformation above room temperature, it can be cooled. 5 is the step of shape stabilization, which is carried out at 150 to 425 ° C. (in the present case 300 ° C.) under tension, ie with simultaneous application a load has to take place. Subsequently, cooling can be carried out slowly according to 6. From step 3, the state according to step 5 can optionally also be reached via step 4 (maintaining the temperature). 7 and 8 illustrate an optional one-way effect treatment followed by slow cooling. However, these steps can also be omitted. The additional advantageous step of martensite stabilization with subsequent slow cooling is shown in sections 9 and 10. Finally, there is the optional, but advantageous two-way effect zero stabilization according to section 11 and the slow cooling 12.

Fig. 3 zeigt ein Diagramm des Zweiwegeffekts am Beispiel eines Biegestabes. Dabei ist die Auslenkung(Durchbiegung)f in mm in Funktion der Temperatur T in °C aufgetragen. Durchläuft man einen Temperaturzyklus etwa zwischen Raumtemperatur und 200oC, wird die gemäss Hysteresiskurven verlaufende reversible Auslenkung erzielt. Kurve 13 entspricht dem Effekt ohne, Kurve 14 demjenigen mit Martensitstabilisierung. Die quantitative Verbesserung durch die Martensitstabilisierung tritt deutlich hervor. Die maximal erzielbare Auslenkungsdifferenz von ca. 5 mm zwischen der Hoch- und Tieftemperaturphase entspricht im vorliegenden Fall einer Dehnung S von ca. 1,3%. In Fig. 4 ist eine Versuchseinrichtung für Biegestäbe schematisch dargestellt.15 ist der Biegestäb aus Gedä.chtnislegierung.15 stellt eine Einspannvorrichtung für den Biegestab, also den sog. Fixpunkt dar. 17 ist eine Schnur, welche über eine Seilrolle18 geführt und mittels eines Gegengewichts 19 leicht gespannt ist. Die Schnur 17 ist am beweglichen Ende des Biegestabes 15 befestigt. Das Gegengewicht 19 ist so bemessen, dass es nur gerade mit Sicherheit die Reibungskräfte beim Bewegungsvorgang überwindet. Der Pfeil stellt die Bewegungsrichtung der Auslenkung des Biegestabes 15 dar, welcher bei voller Auslenkung (Durchbiegung) mit seiner Achse die Stellung gemäss 21 erreicht. Die Bewegungen können an einem auf der Rolle 18 angebrachten Messwertgeber (nicht gezeichnet) abgelesen bzw. registriert werden.Fig. 3 shows a diagram of the two-way effect using the example of a bending rod. The deflection (deflection) f in mm is plotted as a function of the temperature T in ° C. If you go through a temperature cycle between about room temperature and 200 o C, the reversible deflection that follows the hysteresis curves is achieved. Curve 13 corresponds to the effect without, curve 14 to that with martensite stabilization. The quantitative improvement due to martensite stabilization is clearly evident. The maximum achievable deflection difference of approx. 5 mm between the high and low temperature phase corresponds in the present case to an elongation S of approx. 1.3%. 4 schematically shows a test device for bending rods. 15 is the bending rod made of memory alloy. 15 represents a clamping device for the bending rod, that is to say the so-called fixed point. 17 is a cord which is guided over a cable pulley 18 and by means of a counterweight 19 is slightly tense. The cord 17 is attached to the movable end of the bending bar 15. The counterweight 19 is dimensioned such that it is only with certainty that the frictional forces when moving process overcomes. The arrow represents the direction of movement of the deflection of the bending rod 15, which, with full deflection (deflection), reaches the position according to FIG. 21 with its axis. The movements can be read or registered on a sensor (not shown) mounted on the roller 18.

Ausführungsbeispiel I:Embodiment I:

Zur Erzeugung und Messung eines Zweiweg-Gedächtniseffekts wurde ein Biegestab der folgenden Zusammensetzung verwendet:

Figure imgb0002
A bending rod of the following composition was used to generate and measure a two-way memory effect:
Figure imgb0002

Der Stab hatte einen quadratischen Querschnitt von 2,5 x 2,5 mm und eine Länge von 35 mm. Er wurde ähnlich dem Verfahrensablauf gemäss Fig. 1 and 2 behandelt. Zunächst wurde der Stab bei einer Temperatur von 900°C derart vorgeformt (vorgebogen), dass seine Längsachse einen Kreisbogen mit einem Radius von -37 mm (negatives Vorzeichen, da Krümmung in umgekehrter Richtung in Bezug auf die spätere definitive Form) beschrieb. Hierauf wurde der vorgebogene Stab während 15 min einer Lösungsglühung bei einer Temperatur von 950°C und einer darauffolgenden Abschreckung in kaltem Wasser unterworfen (ähnlich 1 und 2 in Fig. 2). Dann wurde der Stab bei Raumtemperatur in umgekehrter Richtung gebogen, so dass seine Längsachse einen Radius von + 35 mm beschrieb. Dies entsprach einer Dehnung der äussersten Faser von 6,88% (ähnlich 3 in Fig. 2). Daraufhin wurde der Stab unter Spannung einer Formstabilisierung unterworfen, indem er während 30 min auf eine Temperatur von 300 °C derart unter Last erhitzt wurde, dass durch die Einspannung dafür gesorgt wurde, dass der Radius seiner Längsachse auf + 35 mm gehalten wurde (ähnlich 5 in Fig. 2). Nach langsamer Abkühlung wurde der Biegestab von der zuvor aufgebrachten Last befreit. Zum Schluss wurde der Stab einer Martensitstabilisierung bei 300°C während 30 min (ähnlich 9 in Fig. 2) unterworfen. Nach langsamer Abkühlung wurde der Stab in der Anordnung gemäss Fig. 4 geprüft. Das Verhalten entsprach im Mittel ungefähr der Kurve 14 in Fig. 3. Die in einem Temperaturzyklus durchlaufene Differenz der Auslenkung (Durchbiegung) an mehreren Probestäben schwankte zwischen 4,4 mm und 5,9 mm, was einer Dehnung von 1,15% bis 1,53% entsprach. Im Mittel betrugen die entsprechenden Werte 4,94 mm und 1,28%. Die untere Umwandlungstemperatur betrug im Mittel ca. 160°C, die obere ca. 177°C, die Hysteresisbreite somit ca. 17oC.The rod had a square cross section of 2.5 x 2.5 mm and a length of 35 mm. It was treated similarly to the procedure shown in FIGS. 1 and 2. First, the rod was pre-shaped at a temperature of 900 ° C in such a way that its longitudinal axis described a circular arc with a radius of -37 mm (negative sign, since curvature in the opposite direction with respect to the later definitive shape). The pre-bent rod was then subjected to solution annealing at a temperature of 950 ° C. for 15 minutes and subsequent quenching in cold water (similar to 1 and 2 in FIG. 2). The rod was then bent in the opposite direction at room temperature so that its longitudinal axis described a radius of + 35 mm. This corresponded to an outermost fiber elongation of 6.88% (similar to 3 in Fig. 2). The rod was then subjected to a shape stabilization under tension by heating it under load for 30 minutes to a temperature of 300 ° C. in such a way that the clamping ensured that the radius of its longitudinal axis was kept at + 35 mm (similar to 5 in Fig. 2). After slow cooling, the bending bar was freed from the previously applied load. Finally, the rod was subjected to martensite stabilization at 300 ° C for 30 minutes (similar to 9 in Fig. 2). After slow cooling, the rod was tested in the arrangement shown in FIG. 4. The behavior corresponded approximately to curve 14 in FIG. 3 on average. The difference in deflection (deflection) on several test rods, which was run through in a temperature cycle, fluctuated between 4.4 mm and 5.9 mm, which corresponds to an elongation of 1.15% to 1 , 53% corresponded. The corresponding values were 4.94 mm and 1.28% on average. The lower transition temperature was on average approx. 160 ° C, the upper approx. 177 ° C, the hysteresis width thus approx. 17 o C.

Ausführunsbeispiel II:Example II:

Ein Probestab der gleichen Abmessungen und der gleichen Zusammensetzung wie unter Beispiel I wurde im ebenen (gestreckten) Zustand während 10 min einer Lösungsglühung bei 850oC unterworfen und anschliessend in kaltem Wasser abgeschreckt. Dann wurde der Stab bei Raumtemperatur auf einen Radius von 22 mm gebogen, was einer Dehnung der äussersten Faser von 5,4% entsprach. Daraufhin wurde der gebogene Stab während 30 min unter Last bei einer Temperatur von 300°C gehalten. Die Last wurde noch im warmen Zustand weggenommen und der entlastete Stab langsam auf Raumtemperatur abgekühlt. Die Prüfung wurde in der gleichen Weise wie unter Beispiel I durchgeführt. Es zeigten sich bei diesem Material ohne "Martensitstabilisierung" grössere Streuungen und geringere Zweiwegeffekte als beim stabilisierten gemäss Beispiel I. Die in einem Temperaturzyklus durchlaufene Differenz der Auslenkung an mehreren Probestäben schwankte zwischen 2,6 mm und 5,8 mm, was einer Dehnung von 0,70% bis 1,32% entsprach. Im Mittel betrugen die entsprechenden Werte 4,20 mm und 1,08%. Die untere Umwandlungstemperatur betrug im Mittel ca. 107°C, die obere ca. 150°C, die Hysteresisbreite somit ca. 43°C.A test bar of the same dimensions and the same composition as in Example I was subjected to solution annealing at 850 ° C. for 10 minutes in the flat (stretched) state and then quenched in cold water. The rod was then bent to a radius of 22 mm at room temperature, which corresponded to an outermost fiber elongation of 5.4%. The bent rod was then held at a temperature of 300 ° C for 30 minutes under load. The load was removed while still warm and the relieved rod was slowly cooled to room temperature. The test was carried out in the same manner as in Example I. With this material without "martensite stabilization", greater scatter and less two-way effects were found than with the stabilized one according to Example I. The difference in deflection on several test specimens, which was carried out in one temperature cycle, fluctuated between 2.6 mm and 5.8 mm, which corresponds to an elongation of 0 , 70% to 1.32% corresponded. The corresponding values averaged 4.20 mm and 1.08%. The lower transformation temperature was on average approx. 107 ° C, the upper approx. 150 ° C, the hysteresis width thus approx. 43 ° C.

Ausführungsbeispiel III:Working example III:

Ein Torsionsstab der gleichen Zusammensetzung wie in Beispiel I wurde einer entsprechenden Behandlung und Prüfung unterzogen. Der Stab hatte runden Querschnitt, mit einem Durchmesser von 3 mm und einer Messlänge von 24 mm. Er wurde zunächst bei einer Temperatur von 850°C während 10 min lösungsgeglüht und danach in kaltem Wasser abgeschreckt. Der Stab wurde auf 100° C erwärmt und bei dieser Temperatur um einen totalen Winkel θvon 80o bezogen auf die Kreisquerschnitte an den Enden der Messlänge verdreht (verdrillt). Der Verdrillungswinkel α der äussersten Faser der Schraubenlinie mit der Zylindererzeugenden (Steigungswinkel) betrug dabei ca. 5°, was etwa einer Dehnung von 6% in den Hauptspannungsrichtungen (Zug und Druck) entsprach. Der Stab wurde in dieser gespannten Lage festgehalten und auf eine Temperatur von 300°C erwärmt. Dieser Zustand wurde während 20 min gehalten. Dann wurde der Stab entlastet und langsam auf Raumtemperatur abgekühlt. Hierauf wurde der Zweiwegeffekt bezüglich Torsion bestimmt, indem ein Temperaturzyklus von 0 bis 250oC durchlaufen wurde. Der erzielbare reversible Winkelunterschied Δθ der Kreisquerschnitte an beiden Enden der Messlänge betrug 9°, was einem VerdrillungswinkelcC (Steigungswinkel) von 34' entsprach. Das Aequivalent der Dehnungen in den beiden Hauptspannungsrichtungen (Zug und Druck) betrug somit ca. 0,7%.A torsion bar of the same composition as in Example I was subjected to a corresponding treatment and test. The rod had a round cross-section, with a diameter of 3 mm and a measuring length of 24 mm. It was first solution annealed at a temperature of 850 ° C for 10 minutes and then quenched in cold water. The rod was heated to 100 ° C and twisted (twisted) at this temperature by a total angle θ of 80 o with respect to the circular cross sections at the ends of the measuring length. The twist angle α of the outermost fiber of the helix with the cylinder generating line (pitch angle) was approximately 5 °, which corresponded to an elongation of 6% in the main stress directions (tension and compression). The rod was held in this tensioned position and heated to a temperature of 300 ° C. This state was maintained for 20 minutes. Then the rod was relieved and slowly cooled to room temperature. The two-way effect on torsion was then determined by going through a temperature cycle of 0 to 250 ° C. The achievable reversible angle difference Δθ of the circular cross sections at both ends of the measuring length was 9 °, which corresponded to a twist angle cC (pitch angle) of 34 '. The equivalent of the strains in the two main stress directions (tension and compression) was thus about 0.7%.

Ausführungsbeispiel IV:Working example IV:

Ein Zugstab der gleichen Zusammensetzung und der gleichen Abmessungen wie der Torsionsstab gemäss Beispiel III wurde einer entsprechenden Behandlung und Prüfung unterzogen. Er wurde zunächst bei einer Temperatur von 850°C während 15 min einer Lösungsglühung unterworfen und anschliessend in kaltem Wasser abgeschreckt. Dann wurde der Stab bei Raumtemperatur in seiner Längsachse einer Zugbeanspruchung unterworfen und um einen Betrag von 4% gedehnt (gereckt). Unter Beibehaltung der aufgebrachten Last (Zugspannung) wurde der Stab auf 3000C erwärmt und in diesem Zustand während 20 min festgehalten. Danach wurde die Last weggenommen und der Stab langsam auf Raumtemperatur abgekühlt. Der an verschiedenen Probekörpern gemessene Zweiwegeffekt im Temperaturintervall von 0 bis 2000C betrug 0,2 bis 0,5%. Er könnte durch die Martensitstabilisierungsbehandlung gemäss 9 in Fig. 2 noch wesentlich verbessert und in engeren Grenzen gehalten werden.A tensile bar with the same composition and the same dimensions as the torsion bar according to Example III was subjected to a corresponding treatment and test. It was first subjected to solution annealing at a temperature of 850 ° C. for 15 minutes and then quenched in cold water. Then the rod was subjected to tensile stress in its longitudinal axis at room temperature and stretched (stretched) by an amount of 4%. While maintaining the applied load (tensile stress), the rod was heated to 300 ° C. and held in this state for 20 minutes. The load was then removed and the rod slowly cooled to room temperature. The two-way effect measured on various test specimens in the temperature interval from 0 to 200 ° C. was 0.2 to 0.5%. It could be significantly improved by the martensite stabilization treatment according to 9 in FIG. 2 and kept within narrow limits.

Die Erfindung erschöpft sich keineswegs in den oben genannten Ausführungsbeispielen. Prinzipiell kann jede Gedächtnislegierung desβ-Messingtyps, welche im natürlichen Zustand (d.h. nach herkömmlicher Behandlung) einen namhaften Einwegeffekt, jedoch einen verschwindend geringen Zweiwegeffekt zeigt, nach dem neuen Verfahren in einen Zustand gebracht werden, wo sie einen deutlichen, für die praktische Verwendung geeigneten Zweiwegeffekt aufweist. Dazu gehören vor allem die Legierungen des Typs Cu/Al/Ni und Cu/Al.The invention is by no means exhausted in the above-mentioned exemplary embodiments. In principle, any memory alloy of the β-brass type, which shows a well-known one-way effect in the natural state (i.e. after conventional treatment), but shows a negligible two-way effect, can be brought into a state according to the new method, where it has a clear two-way effect suitable for practical use having. These primarily include the alloys of the types Cu / Al / Ni and Cu / Al.

Die Lösungsglühung kann je nach Legierung und Grösse des Werkstücks bei verschiedenen Temperaturen (meist zwischen 850 und 950°C) durchgeführt werden. Der der Formstabilisierung entsprechende entscheidende Verfahrensschritt kann im Temperaturbereich von 150 bis 425°C während 0,5 bis 180 min durchgeführt werden, wobei die kürzeren Zeiten für die höheren Temperaturen gelten. Die gleichzeitig aufzubringende Last ist so zu bemessen, dass eine Spannung (Zug, Druck oder Schub) erzeugt wird, die einer Dehnung von mindestens 1% entspricht. Bei Schub bedeutet dies, dass der Verschiebungswinkel α (Steigungswinkel bei Torsion) mindestens 50' betragen muss. Die Martensitstabilisierung kann im Temperaturbereich zwischen 200 und 400°C während 1 min bis 4 h durchgeführt werden. Die Nullpunktstabilisierung des Zweiwegeffekts wird vorteilhafterweise bei einer Temperatur vorgenommen, welche der späteren maximalen Betriebstemperatur entspricht (in unserem Fall ca. 200oC). Die Dauer der Erwärmung soll mindestens 1 min betragen.Depending on the alloy and size of the workpiece, solution annealing can be carried out at different temperatures (usually between 850 and 950 ° C). The decisive process step corresponding to the shape stabilization can in the temperature range of 150 to 425 ° C for 0.5 to 180 min, the shorter times apply to the higher temperatures. The load to be applied at the same time must be dimensioned such that a tension (tension, pressure or thrust) is generated which corresponds to an elongation of at least 1%. In the case of thrust, this means that the displacement angle α (pitch angle for torsion) must be at least 50 '. The martensite stabilization can be carried out in the temperature range between 200 and 400 ° C for 1 min to 4 h. The zero point stabilization of the two-way effect is advantageously carried out at a temperature which corresponds to the later maximum operating temperature (in our case approx. 200 ° C.). The duration of the heating should be at least 1 min.

Durch das vorliegende neue Verfahren wurde erstmals der Weg gewiesen, wie man bei Gedächtnislegierungen des β -Messingtyps, welche normalerweise nur einen ausgeprägten Einwegeffekt zeigen, zu einem für die Praxis brauchbaren Zweiwegeffekt kommen kann.The present new method has shown the way for the first time how a two-way effect that can be used in practice can be achieved with memory alloys of the β-brass type, which normally only show a pronounced one-way effect.

Claims (3)

1. Verfahren zur Erzeugung und Stabilisierung eines reversiblen Zweiweg-Gedächtniseffekts in einer Cu/Al/Ni- oder einer Cu/Al-Legierung, wobei die schmelzmetallurgisch oder pulvermetallurgisch hergestellte Legierung zunächst einer Lösungsglühung im Temperaturgebiet desβ -Mischkristalls mit anschliessendem Abschrecken in Wasser unterzogen wird, worauf die Legierung einer Verformung unterworfen wird, dadurch gekennzeichnet, dass die Legierung nach der Verformung zur Formstabilisierung einer Wärmebehandlung im Temperaturbereich von 150 bis 4250C während 0,5 bis 180 min unter gleichzeitiger Aufbringung einer Last zur Erzeugung einer Zug-, Druck- oder Schubspannung entsprechend einer Dehnung von mindestens 1% unterworfen, langsam auf Raumtemperatur abgekühlt und entlastet wird und einem oder mehreren weiteren Verfahrensschritten unterworfen wird.1. A method for producing and stabilizing a reversible two-way memory effect in a Cu / Al / Ni or a Cu / Al alloy, the alloy produced by melt metallurgy or powder metallurgy being first subjected to solution annealing in the temperature region of the β mixed crystal with subsequent quenching in water , whereupon the alloy is subjected to deformation, characterized in that the alloy after the deformation to stabilize the shape of a heat treatment in the temperature range from 150 to 425 ° C. for 0.5 to 180 min with simultaneous application of a load to generate a tensile, compressive or subjected to shear stress corresponding to an elongation of at least 1%, slowly cooled to room temperature and relieved and subjected to one or more further process steps. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als weiterer Verfahrensschritt nach der langsamen Abkühlung und Entlastung die Legierung zur Martensitstabilisierung einer Wärmebehandlung im Temperaturbereich von 200 bis 4000C während 1 min bis 4 h und einer langsamen Abkühlung auf Raumtemperatur unterworfen wird.2. The method according to claim 1, characterized in that as a further process step after slow cooling and relief, the alloy for martensite stabilization is subjected to a heat treatment in the temperature range from 200 to 400 0 C for 1 min to 4 h and a slow cooling to room temperature. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als zusätzlicher Verfahrensschritt nach der Wärmebehandlung zur Martensitstabilisierung die Legierung zur Nullpunktstabilisierung des Zweiweg-Gedächtniseffekts einer Wärmebehandlung bei der der maximalen Betriebstemperatur des Bauteils entsprechenden Temperatur während mindestens 1 min und einer langsamen Abkühlung auf Raumtemperatur unterworfen wird.3. The method according to claim 2, characterized in that as an additional step after the heat treatment for martensite stabilization, the alloy to zero Point stabilization of the two-way memory effect is subjected to heat treatment at a temperature corresponding to the maximum operating temperature of the component for at least 1 min and slowly cooled to room temperature.
EP83200130A 1982-02-05 1983-01-26 Method for the production and stabilisation of a reversible two-way memory effect in a cu-al-ni or cu-al alloy Expired EP0086014B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83200130T ATE23570T1 (en) 1982-02-05 1983-01-26 METHOD OF GENERATION AND STABILIZATION OF A REVERSIBLE TWO-WAY MEMORY EFFECT IN A CU/AL/NI OR A CU/AL ALLOY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH707/82 1982-02-05
CH70782 1982-02-05

Publications (2)

Publication Number Publication Date
EP0086014A1 true EP0086014A1 (en) 1983-08-17
EP0086014B1 EP0086014B1 (en) 1986-11-12

Family

ID=4193293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83200130A Expired EP0086014B1 (en) 1982-02-05 1983-01-26 Method for the production and stabilisation of a reversible two-way memory effect in a cu-al-ni or cu-al alloy

Country Status (5)

Country Link
US (1) US4416706A (en)
EP (1) EP0086014B1 (en)
JP (1) JPS58147548A (en)
AT (1) ATE23570T1 (en)
DE (1) DE3367626D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681331A1 (en) * 1991-09-17 1993-03-19 Imago Modifying characteristic transformation temp. of shape memory alloys contg. zinc@ and aluminium@ - comprises heat treating alloy at above 700 deg. C in air or neutral gas opt. in two stages with alloy being mechanically or ultrasonically cleaned after cooling between stages

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3319395A1 (en) * 1983-05-28 1984-11-29 G. Rau GmbH & Co, 7530 Pforzheim MOLDED PIECE FROM A COMPOSITE MATERIAL AND PRODUCTION METHOD THEREFOR
US4887430A (en) * 1988-12-21 1989-12-19 Eaton Corporation Bistable SME actuator with retainer
ES2116149B1 (en) * 1994-04-11 1999-08-01 Uni Politenica De Catalunya PROCEDURE FOR OBTAINING DOUBLE EFFECT FORM MEMORY IN INTELLIGENT ALLOYS WITH FORM MEMORY .. N
US5842312A (en) * 1995-03-01 1998-12-01 E*Sorb Systems Hysteretic damping apparati and methods
US6149742A (en) * 1998-05-26 2000-11-21 Lockheed Martin Corporation Process for conditioning shape memory alloys
US20040201444A1 (en) * 2000-12-20 2004-10-14 Byong-Ho Park Shape memory alloy actuators activated by strain gradient variation during phase transformation
US8409372B1 (en) 2010-09-02 2013-04-02 The United States of America as Represented by the Administraton of National Aeronautics and Space Administration Thermomechanical methodology for stabilizing shape memory alloy (SMA) response

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0035069A1 (en) * 1980-03-03 1981-09-09 BBC Aktiengesellschaft Brown, Boveri & Cie. Memory alloy based on Cu-Al or on Cu-Al-Ni and process for the stabilisation of the two-way effect

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53925B2 (en) * 1974-05-04 1978-01-13
FR2344639A1 (en) * 1976-03-18 1977-10-14 Raychem Corp Heat recoverable copper aluminium alloys - with zinc and/or manganese showing good stability at 125 degrees C after deformation in martensitic condition
SU606894A1 (en) * 1977-01-03 1978-05-15 Институт Металлофизики Ан Украинской Сср Method of manufacturing temperature-sensitive elements from alloys possessing plastic memory effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0035069A1 (en) * 1980-03-03 1981-09-09 BBC Aktiengesellschaft Brown, Boveri & Cie. Memory alloy based on Cu-Al or on Cu-Al-Ni and process for the stabilisation of the two-way effect

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Band 30, Nr. 1, Juni 1971, Seite 296 *
METALLURGICAL TRANSACTIONS A, Band 7A, Februar 1976, Seiten 265-272 *
METALLURGICAL TRANSACTIONS A, Band 8A, Juni 1977, Seiten 955-962 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681331A1 (en) * 1991-09-17 1993-03-19 Imago Modifying characteristic transformation temp. of shape memory alloys contg. zinc@ and aluminium@ - comprises heat treating alloy at above 700 deg. C in air or neutral gas opt. in two stages with alloy being mechanically or ultrasonically cleaned after cooling between stages

Also Published As

Publication number Publication date
US4416706A (en) 1983-11-22
DE3367626D1 (en) 1987-01-02
JPS58147548A (en) 1983-09-02
JPH0123546B2 (en) 1989-05-02
EP0086014B1 (en) 1986-11-12
ATE23570T1 (en) 1986-11-15

Similar Documents

Publication Publication Date Title
DE69916435T2 (en) METHOD FOR IMPROVING THE DUCTILITY OF NITINOL
DE2603911A1 (en) PROCESS FOR EXPANDING THE HYSTERESIS LOOP OF A METALLIC COMPOSITION WITH A REVERSIBLE TRANSITION BETWEEN AUSTENITIC AND MARTENSITIC STATE
EP0086011B1 (en) Process for generating a reversible two-way memory effect in a component made from an alloy showing a one-way effect
DE2459636A1 (en) PROCESS FOR IMPROVING THE TENSILE STRENGTH AND CYCLIC CREEPING RESISTANCE OF A MARTENSITIC TITANIUM-NICKEL ALLOY AND THE PRODUCT OBTAINED THEREOF
DE2516749B2 (en) Process for the production of metal bodies with repeatedly reversible shape change capability
DE2408388A1 (en) WIRE DRAWN UNDER TWIST, AND THE METHOD AND DEVICE FOR THE PRODUCTION THEREOF
EP0086014B1 (en) Method for the production and stabilisation of a reversible two-way memory effect in a cu-al-ni or cu-al alloy
EP0086012B1 (en) Process for generating a reversible two-way memory effect in a component made from an alloy showing a one-way effect
DE3421623A1 (en) THERMALLY ACTUATED DEVICE WITH A MEMORY ALLOY
CH637161A5 (en) METHOD FOR INCREASING THE MECHANICAL STRENGTH OF STEEL.
DE2021348B2 (en) Process for the production of objects from binary memory alloys
CH492796A (en) Process for the hot forming of a zinc alloy that is particularly easy to form
EP0035069B1 (en) Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect
DE1909176A1 (en) Process for stabilizing alloys
DE1233609B (en) Process for the heat treatment of a hardenable nickel-chromium alloy
AT411269B (en) ALUMINUM-SILICON ALLOYS WITH IMPROVED MECHANICAL PROPERTIES
DE3107480C2 (en) Process for improving the fatigue strength of workpieces obtained by unidirectional solidification made of high-temperature-resistant composite materials with monocrystalline, parallel fibers of a metal carbide contained in a matrix as a reinforcement phase and use of such workpieces
DE1458464C3 (en) Application of a heat treatment and stretch aging process to a steel
CH621150A5 (en) Process for treating an object to extend the austenitic-martensitic hysteresis loop of the metallic composition
DE2603863A1 (en) Metallic prods. showing thermal recovery - prepd. from alloys showing enlarged martensite-austenite hysteresis loops
DE2219295A1 (en)
AT246204B (en) Rapid process for soft annealing, especially of ball bearing steels, in continuous furnaces
DE805533C (en) Production of increased, uniform quality of bars and profiles from soft, unalloyed steels
AT396073B (en) Method for hot rolling and heat-treating bar stock
DE975558C (en) Process for the heat treatment of work pieces made of zinc alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19840119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 23570

Country of ref document: AT

Date of ref document: 19861115

Kind code of ref document: T

BECN Be: change of holder's name

Effective date: 19861112

REF Corresponds to:

Ref document number: 3367626

Country of ref document: DE

Date of ref document: 19870102

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BBC BROWN BOVERI AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910422

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920126

Ref country code: AT

Effective date: 19920126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920131

Ref country code: LI

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920730

Year of fee payment: 10

BERE Be: lapsed

Owner name: BBC BROWN BOVERI A.G.

Effective date: 19920131

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83200130.9

Effective date: 19920806