EP0083043B1 - Verschleissteil - Google Patents

Verschleissteil Download PDF

Info

Publication number
EP0083043B1
EP0083043B1 EP82111762A EP82111762A EP0083043B1 EP 0083043 B1 EP0083043 B1 EP 0083043B1 EP 82111762 A EP82111762 A EP 82111762A EP 82111762 A EP82111762 A EP 82111762A EP 0083043 B1 EP0083043 B1 EP 0083043B1
Authority
EP
European Patent Office
Prior art keywords
layer
layers
range
titanium
wearing part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82111762A
Other languages
English (en)
French (fr)
Other versions
EP0083043A1 (de
Inventor
Wilfried Dr. Schintlmeister
Wolfgang Wallgram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of EP0083043A1 publication Critical patent/EP0083043A1/de
Application granted granted Critical
Publication of EP0083043B1 publication Critical patent/EP0083043B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Definitions

  • the invention relates to a wearing part, in particular a hard metal cutting insert for machining, with a multilayer hard material coating, at least one layer being embodied as an oxide layer.
  • Such a wear part is known from DE-AS 2253745, the inner layer of the carbide base body which is initially located and consists of one or more carbides and / or nitrides of the elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Si and / or B and the outer layer of which consists of one or more extremely wear-resistant deposits made of aluminum oxide and / or zirconium oxide.
  • a disadvantage of this wearing part is that cracks can occur in the pure oxide top layers and that in many cases the oxide layers have insufficient adhesive strength and flake off.
  • the brittleness of the oxide layer increases rapidly with increasing layer thickness.
  • the structure changes very disadvantageously, so that in practice such wear parts are limited to the use of a comparatively very thin layer of a few micrometers or a thicker layer does not bring any additional advantages. This in turn limits the service life of wearing parts, e.g. from indexable inserts to machining, crucial.
  • DE-OS 2317447 which represents an additional application to the aforementioned E-AS 2253745, describes a wearing part, the outer cover layer of which consists of one or more deposits of ceramic oxides, the oxides of the elements Si in particular being in addition to the oxides mentioned in the main patent , B, Ca, Mg, Ti and / or Hf are listed and the formation of mixed oxides is generally included in the application. Individual mixed oxides are not particularly emphasized.
  • DE-AS 2851584 discloses a composite body, preferably with a hard metal base body, in which on the base body one or more layers of one or more carbides and / or nitrides of the elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Si, B and on this layer or layers one or more layers of a mixture of at least one oxide and at least one nitride and / or of at least one oxynitride of the elements Cr, Al, Ca, Mg, Th , Sc, Y, La, Ti, Hf, V, Nb, Ta are arranged, the nitrogen content of the outermost layer being 0.1 to 30 atom%, preferably 0.2 to 15 atom%.
  • the only example describes the following layer structure on hard metal: TiC, 4 Jl m + Al 2 O 2.8 N 0.2 , 2-3 Jlm.
  • carbide wear parts in particular have been known, in which the outer layer consists of a large number of layers of alternating Ti (C, N) and Al 2 (O, N), this embodiment also being within the scope of protection of DE-AS 2917348 falls.
  • the object on which the invention is based is to create a wearing part, in particular a hard metal cutting insert for machining with a multi-layer hard material coating, at least one layer being designed as an oxide layer, which has improved wear resistance and improved wear resistance compared to known wearing parts Has adhesive strength of the hard material coating.
  • the wearing part according to the invention has a significantly increased wear resistance as well as an excellent adhesive strength of the hard material coating compared to known multi-layer coated wearing parts, so that there is a considerably longer service life of the wearing part.
  • These unexpectedly good properties are achieved by the incorporation of boron in the aluminum oxide layers with the simultaneous incorporation of oxygen components in the oxycarbide, oxycarbonitride, oxynitride, oxiboride, oxibornitride and oxiborocarbonitride intermediate layers.
  • oxygen and boron contents of the individual layers are within the specified limits.
  • the influence of oxygen can practically no longer be determined below 0.1% by weight.
  • the hardness of the intermediate layers drops very quickly and does not increase the wear resistance of the layer structure according to the invention.
  • an underlayer between the base body and the coating according to the invention.
  • This underlayer preferably has a single or multi-layer structure consisting of one or more carbides, nitrides, carbonitrides, borides or boron nitrides of the elements of IV. To VI. Group of the periodic table.
  • titanium oxycarbonitride and / or titanium oxynitride with a layer thickness of 0.05 to 1 ⁇ m directly on a base body made of hard metal or over a base layer and then a single aluminum-boron mixed oxide layer with a layer thickness from 2 to 10 ⁇ m.
  • a particularly preferred embodiment of the invention provides that directly on a base body made of hard metal or over an underlayer of a coating, consisting of a layer of titanium oxycarbonitride and / or titanium oxynitride with a layer thickness of 0.1 to 1 ⁇ m and subsequently of 2 to 8 aluminum-boron mixed oxide layers having layer thicknesses of 0.3 to 2 microns, respectively, alternating with 1 to 7 layers of Titanoxikarbonitrid and / or titanium oxynitride of the layer thicknesses of 0.05 to 0.5 m Jl are applied.
  • the titanium oxycarbonitride and / or titanium oxynitride layers preferably have an oxygen content of 0.5 to 3% by weight, while the aluminum-boron mixed oxide layers preferably have a boron content of 0.04-0.4% by weight. -% exhibit.
  • this multilayered layer structure according to the invention results in a further increase in the toughness of the coating with an excellent adhesive strength of the individual layers and thus in an unexpected increase in the wear resistance under impact stress compared to a layer structure according to the invention which contains only one aluminum-boron mixed oxide layer of the wearing part.
  • a particularly preferred underlayer starting from a base body made of hard metal, has the layer sequence titanium carbide and / or titanium carbonitride and / or titanium nitride with a total layer thickness of 1 to 8 ⁇ m .
  • the aluminum-boron mixed oxides partially contain titanium, zirconium, hafnium, niobium, chromium and / or magnesium oxides.
  • the mixed oxides can also have a nitrogen content of 0.14-2.76% by weight (0.2 to 4 atomic%).
  • the hard material coating of the wearing part according to the invention is preferably carried out by the CVD process, the chemical composition of the individual layers being determined by appropriate mixing ratios of the reaction gases.
  • Another preferred method for producing the wearing part according to the invention is that the individual layers of appropriate chemical composition are produced both by deposition using the CVD method and by interdiffusion between adjacent layers.
  • the introduction of the oxygen fractions into the oxycarbide, oxycarbonitride, oxynitride, oxiboride, oxibornitride and / or oxiborocarbonitride layers can take place both via an appropriate gas mixture composition, for example CO 2 H z O vapor, air, O 2 or contain other oxidizing gases, as well as by interdiffusion from the adjacent aluminum-boron mixed oxide layers.
  • This interdiffusion can be carried out, for example, by a temperature treatment between or after the individual coating runs at a temperature which is above the coating temperature, or during the coating travel of the aluminum-boron mixed oxide layers by means of an increased supply of oxygen in the gas mixture.
  • indexable inserts made of carbide of the UIOT grade / composition 6% Co, 5% TiC, 5% (TaC + NbC), 84% WC coatings corresponded to the USO application group MIO / and the shape SPGN 120308 EN in 5 different layer construction variants applied according to the table below.
  • the indexable inserts were cleaned, installed in the coating chamber of a prototype system from the applicant, heated to the coating temperature under protective gas and coated under the following coating conditions.
  • Variants 4 and 5 are provided with a layer structure according to the invention. These variants are compared with variants 1 to 3, which have a layer structure which differs from the invention and is known in one case, in a machining test.
  • the wear mark width v B of the open area wear was measured after a rotation time of 5 min.
  • the single-layer Al 2 O 3 or aluminum-boron mixed oxide layer is replaced by 4 layers, that by 3 Ti (C, N) or 3 Ti (C, N, 0) intermediate layers are connected.
  • a Ti (C 0.6 , N 0.4 ) layer was deposited on indexable inserts of the same type as in Example 1 and a TiN layer was deposited thereon.
  • the further layer structure was carried out in two variants, variant 2 representing a layer structure according to the invention.
  • the coating was carried out under reduced pressure. The wear resistance of the individual variants was again compared with one another in a machining test.
  • Oxygen content of the Ti (C, N, O) layers approx. 2% by weight.
  • the end of the service life was given by scour wear in both variants.
  • the end of the service life was 32 minutes for variant 1 and 41 minutes for variant 2 according to the invention.
  • the invention is not limited to hard metal base bodies.
  • the layer structure according to the invention also leads to other base materials such as e.g. with high-speed steel, stellite or other heat-resistant alloys, this leads to an unexpectedly large increase in wear resistance.
  • the invention is not limited to machining tools. Rather, it also extends to tools for non-cutting machining such as drawing dies and the like. As well as to tools that are mainly exposed to eroding wear, such as. B. rock drilling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Description

  • Die Erfindung betrifft ein Verschleissteil, insbesondere einen Hartmetall-Schneideinsatz zur spanabhebenden Bearbeitung, mit einem mehrschichtigen Hartstoff-Überzug, wobei mindestens eine Schicht als Oxidschicht ausgeführt ist.
  • Aus der DE-AS 2253745 ist ein derartiges Verschleissteil bekannt, dessen dem Hartmetall-Grundkörper zunächst liegende innere Schicht aus einem oder mehreren Karbiden und/oder Nitriden der Elemente Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Si und/oder B besteht und dessen äussere Schicht aus einer oder mehreren extrem verschleissfesten Ablagerungen aus Aluminium-Oxid und/oder Zirkon-Oxid besteht.
  • Nachteilig bei diesem Verschleissteil ist, dass es in den reinen Oxid-Decksichten zu Rissen kommen kann und dass die Oxid-Schichten in vielen Fällen eine ungenügende Haftfestigkeit aufweisen und abplatzen. Die Sprödigkeit der Oxidschicht nimmt mit wachsender Schichtdicke rasch zu. Dabei verändert sich das Gefüge sehr nachteilig, so dass man bei derartigen Verschleissteilen in der Praxis auf die Verwendung einer vergleichsweise sehr dünnen Schicht von wenigen Mikrometern Dicke beschränkt ist bzw. eine dickere Schicht keine zusätzlichen Vorteile bringt. Dieser Umstand beschränkt wiederum die Standzeit von Verschleissteilen, z.B. von Wendeschneidplatten zur spanabhebenden Bearbeitung, entscheidend.
  • In der DE-OS 2317447, die eine Zusatzanmeldung zur eigangs erwähnten D E-AS 2253745 darstellt, ist ein Verschleissteil beschrieben, dessen äussere Deckschicht aus einer oder mehreren Ablagerungen keramischer Oxide besteht, wobei neben den im Hauptpatent genannten Oxiden insbesondere die Oxide der Elemente Si, B, Ca, Mg, Ti und/oder Hf aufgezählt sind und auch die Ausbildung von Mischoxiden in der Anmeldung allgemein mit eingeschlossen ist. Einzelne Mischoxide sind nicht besonders hervorgehoben.
  • Soweit zu einzelnen Ausgestaltungsmöglichkeiten praktische Erfahrungen vorliegen, ist auch in diesen Fällen das Auftreten von Rissen und die Haftfestigkeit der Oxid-Deckschichten nicht zufriedenstellend.
  • Aus der DE-AS 2851584 ist ein Verbundkörper, vorzugsweise mit einem Hartmetall-Grundkörper bekannt, bei dem auf dem Grundkörper eine oder mehrere Schichten aus einem oder mehreren Karbiden und/oder Nitriden der Elemente Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Si, B und auf dieser Schicht bzw. Schichten eine oder mehrere Schichten aus einem Gemenge von mindestens einem Oxid und mindestens einem Nitrid und/oder aus mindestens einem Oxinitrid der der Elemente Cr, Al, Ca, Mg, Th, Sc, Y, La, Ti, Hf, V, Nb, Ta angeordnet sind, wobei der Stickstoff-Gehalt der äussersten Schicht 0,1 bis 30 Atom %, vorzugsweise 0,2 bis 15 Atom % beträgt. Das einzige Beispiel beschreibt folgenden Schichtaufbau auf Hartmetall: TiC, 4 Jlm + Al2O2.8N0.2, 2-3 Jlm.
  • In der Praxis wurden vor allem Hartmetall-Verschleissteile bekannt, bei denen die äussere Schicht aus sehr vielen Lagen von abwechselnd Ti(C,N) und AI2(O,N) besteht, wobei diese Ausführung zusätzlich in den Schutzumfang der DE-AS 2917348 fällt.
  • Auch bei diesem Verbundkörper sind die erzielbaren Verschleissfestigkeiten für viele Anwendungsfälle nicht befriedigend. Zudem ist eine zu grosse Anzahl von einzelnen Lagen - das einzige Beispiel der DE-AS 2917348 beschreibt 38 Einzellagen - in der Fertigung nicht mehr wirtschaftlich.
  • Die der Erfindung zugrunde liegende Aufgabe liegt nun darin, ein Verschleissteil, insbesondere einen Hartmetall-Schneideinsatz zur spanabhebenden Bearbeitung mit einem mehrschichtigen Hartstoff-Überzug, wobei mindestens eine Schicht als Oxidschicht ausgeführt ist, zu schaffen, das gegenüber bekannten Verschleissteilen eine verbesserte Verschleissfestigkeit und eine verbesserte Haftfestigkeit der Hartstoff-Beschichtung aufweist.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der unmittelbar oder über eine Unterlagsschicht auf dem Grundkörper aufgebrachte Überzug aus je einer oder mehreren Schichten von Oxikarbiden und/oder Oxikarbonitriden und/oder Oxinitriden und/oder Oxiboriden und/oder Oxibornitrieden und/oder Oxiborkarbonitriden der Elemente Ti, Zr, Hf, B, Si, AI mit einem Sauerstoff - gehalt von 0,1 bis 5 Gew.-% jeweils im Wechsel mit einer oder mehreren Schichten von Aluminium-Bor-Mischoxiden mit Bor-Gehalten von 0,01 bis 1 Gew.-% besteht.
  • Das erfindungsgemässe Verschleissteil weist gegenüber bekannten mehrlagig beschichteten Verschleissteilen eine wesentlich erhöhte Verschleissfestigkeit sowie eine ausgezeichnete Haftfestigkeit der Hartstoff-Beschichtung auf, so dass sich erheblich vergrösserte Standzeiten des Verschleissteiles ergeben. Diese unerwartet guten Eigenschaften werden durch den Einbau von Bor in die Aluminiumoxid-Schichten bei gleichzeitigem Einbau von Sauerstoff-Anteilen in die Oxikarbid-, Oxikarbonitrid-, Oxinitrid-, Oxiborid-, Oxibornitrid- und Oxiborkarbonitrid-Zwischenschichten erreicht. Es war insbesondere völlig überraschend - wie nachfolgend an Hand der Beispiele belegt wird - dass lediglich der gleichzeitige Einbau der Sauerstoff-Anteile in den Zwischenschichten und des Bors in den Aluminiumoxid-Schichten eine wesentliche Steigerung der Verschleissfestigkeit bewirkte.
  • Es ist dabei wichtig, dass die Sauerstoff- und Bor-Gehalte der einzelnen Schichten innerhalb der angegebenen Grenzen liegen. Unterhalb 0,1 Gew.-% ist der Einfluss des Sauerstoffs praktisch nicht mehr feststellbar. Bei höheren Sauerstoff-Gehalten als in dem angegebenen Bereich fällt die Härte derZwischenschichten sehr rasch ab und bewirkt keine Verschleissfestigkeitssteigerung des erfindungsgemässen Schichtaufbaues.
  • Desgleichen führt auch lediglich ein Bor-Gehalt innerhalb der erfindungsgemässen Grenzen im Aluminiumoxid zu einer sprunghaften Verschleissfestigkeitssteigerung. Es war im Gegenteil sogar nicht zu erwarten, dass es bei der Zugabe zu Aluminiumoxid überhaupt zu einer Verschleissfestigkeitssteigerung kommen, da reines Boroxid sehr weich und als Verschleisschutzschicht völlig ungeeignet ist. Zusätzlich bewirkt der Bor-Gehalt in den angegebenen Grenzen bei der Abscheidung der Aluminium-Bor-Mischoxid-Schicht eine geringere Staubentwicklung in der Beschichtungskammer und damit auch auf der Oberfläche des Beschichtungsgutes. Dadurch fallen weniger Schichtfehler an und es ergeben gleichmässigere Schichten.
  • In gewissen Anwendungsfällen ist es zweckmässig, eine Unterlagsschicht zwischen dem Grundkörper und dem erfindungsgemässen Überzug anzuordnen. Diese Unterlagsschicht weist vorzugsweise einen ein- oder mehrlagigen Schichtaufbau aus einem oder mehreren Karbiden, Nitriden, Karbonitriden, Boriden oder Bornitriden der Elemente der IV. bis VI. Gruppe des Periodensystems auf.
  • Weiters ist es in gewissen Anwendungsfällen vorteilhaft, unmittelbar auf einem Grundkörper aus Hartmetall oder über eine Unterlagsschicht eine einzige Schicht aus Titanoxikarbonitrid und/oder Titanoxinitrid mit einer Schichtdicke von 0,05 bis 1 µm und anschliessend daran eine einzige Aluminium-Bor-Mischoxidschicht mit einer Schichtdikke von 2 bis 10 µm aufzubringen.
  • Eine besonders bevorzugte Ausgestaltung der Erfindung sieht vor, dass unmittelbar auf einem Grundkörper aus Hartmetall oder über eine Unterlagsschicht eines Überzugs, bestehend aus einer Schicht aus Titanoxikarbonitrid und/oder Titanoxinitrid mit einer Schichtdicke von 0,1 bis 1 µm und anschliessend daran aus 2 bis 8 Aluminium-Bor-Mischoxidschichten mit Schichtdicken von 0,3 bis 2 µm jeweils im Wechsel mit 1 bis 7 Schichten aus Titanoxikarbonitrid und/oder Titanoxinitrid der Schichtdicken 0,05 bis 0,5 Jlm aufgebracht sind. Die Titanoxikarbonitrid- und/oder Titanoxinitrid-Schichten weisen dabei vorzugsweise einen Sauerstoff-Gehalt von 0,5 bis 3 Gew.- % auf, während die Aluminium-Bor-Mischoxidschichten vorzugsweise einen Bor-Gehalt von 0,04-0,4 Gew.-% aufweisen.
  • Insbesondere durch diesen mehrschichtigen erfindungsgemässen Schichtaufbau kommt es gegenüber einem erfindungsgemässen Schichtaufbau, der nur eine Aluminium-Bor-Mischoxid- Schicht enthält, zu einer weiteren Steigerung der Zähigkeit des Überzuges bei gleichzeitig ausgezeichneter Haftfestigkeit der einzelnen Schichten und damit zu einer unerwarteten Steigerung der Verschleissfestigkeit unter Schlagbeanspruchung des Verschleissteiles.
  • Eine besonders bevorzugte Unterlagsschicht weist von einem Grundkörper aus Hartmetall ausgehend die Schichtfolge Titankarbid und/oder Titankarbonitrid und/oder Titannitrid mit einer Gesamtschichtdicke von 1 bis 8 Jlm auf.
  • Weiters kann es vorteilhaft sein, wenn die Aluminium-Bor-Mischoxide teilweise Titan, Zirkonium, Hafnium, Niob, Chrom- und/oder Magnesium-Oxide enthalten. Daneben können die Mischoxide auch einen Stickstoff-Gehalt von 0,14-2,76 Gew.-% (0,2 bis 4 Atom-%) aufweisen.
  • Die Hartstoff-Beschichtung des erfindungsgemässen Verschleissteiles erfolgt vorzugsweise nach dem CVD-Verfahren, wobei die chemische Zusammensetzung der einzelnen Schichten durch entsprechende Mischungsverhältnisse der Reaktionsgase festgelegt wird.
  • Ein weiteres bevorzugtes Verfahren zur Herstellung des erfindungsgemässen Verschleissteiles besteht darin, dass die Herstellung der einzelnen Schichten entsprechender chemischer Zusammensetzung sowohl über die Abscheidung nach dem CVD-Verfahren als auch durch Interdiffusion zwischen angrenzenden Schichten erfolgt.
  • Insbesondere kann die Einbringung der Sauerstoff-Anteile in die Oxikarbid-, Oxikarbonitrid-, Oxinitrid-, Oxiborid-, Oxibornitrid- und/oder Oxiborkarbonitrid-Schichten sowohl über eine entsprechende Gasmischungszusammensetzung, die z.B. CO2 HzO-Dampf, Luft, O2 oder andere oxidierende Gase enthalten kann, als auch durch Interdiffusion aus den angrenzenden Aluminium-Bor-Mischoxid-Schichten erfolgen. Diese Interdiffusion kann z.B. durch eine Temperaturbehandlung zwischen oder nach den einzelnen Beschichtungsfahrten bei einer Temperatur, die über der Beschichtungstemperatur liegt, oder während der Beschichtungsfahrt der Aluminium-Bor-Mischoxid-Schichten durch ein erhöhtes Sauerstoff-Angebot der Gasmischung durchgeführt werden.
  • Der Gegenstand der Erfindung wird nachfolgend an Hand von Beispielen näher erläutert.
  • Beispiel 1
  • Auf Wendeschneidplatten aus Hartmetall der Sorte UIOT/Zusammensetzung 6% Co, 5%TiC, 5% (TaC + NbC), 84% WC, entspricht der USO-Anwendungsgruppe MIO/ und der Form SPGN 120308 EN wurden Überzüge in 5 verschiedenen Schichtaufbau-Varianten entsprechend nachstehender Tabelle aufgebracht. Die Wendeschneidplatten wurden dazu gereinigt, in die Beschichtungskammer einer Prototypenanlage des Anmelders eingebaut, unter Schutzgas auf die Beschichtungstemperatur aufgeheizt und unter den nachfolgenden Beschichtungsbedingungen beschichtet.
  • Die Varianten 4 und 5 sind mit einem Schichtaufbau entsprechend der Erfindung versehen. Diese Varianten werden mit den Varianten 1 bis 3, die einen von der Erfindung abweichenden, in einem Fall vorbekannten Schichtaufbau aufweisen, in einem Zerspanungstest verglichen.
  • Bei allen Varianten liegt eine Unterlagsschicht bestehend aus 2 um Titankarbid gefolgt von 2 µm Titankarbonitrid (mit ca. 40% TiC- und 60% TiN-Anteil) vor. Bei den Varianten 1 bis 4 wurde Stickstoff als Trägergas verwendet, die Aluminiumoxid- bzw. die Aluminium-Bor-Mischoxidschicht enthält daher ca. 3 Atom-% N. Bei Variante 5 ist die Aluminium-Bor-Mischoxidschicht frei von Stickstoff.
    Figure imgb0001
  • Beschichtungsbedingungen:
  • Gasdruck in allen Fällen: Atmosphärendruck (ca. 1 bar absolut)
    Figure imgb0002
    Al2O3-Schicht bzw. AI-B-Mischoxidschicht:
    Figure imgb0003
    • Variante 2, 4 u. 5 - 0,15 Vol.-% BCl3
    • Variante 1 u. 3 - 0 Vol.-% BCI3 u. 13,4 Vol.-% H2
    • Dauer: 160 min
    • Temperatur: 1060° C
    Zerspanungstest:
  • Mit den beschichteten Wendeschneidplatten wurden unter Verwendung eines Werkzeuges HDP 7225 Drehversuche auf 2 Wellen aus unterschiedlichen Materialien mit unterschiedlichen Schnittbedingungen durchgeführt:
    • 1. Werkstoff: Baustahl ― Werkstoffnummer 1.1231
      • Zusammensetzung: 0,72% C
        • 0,28% Si
        • 0,79% Mn
        • 0,015% P
        • 0,011% S, Rest Fe;
        • vergütet auf 1000 N/mm2
      • Schnittgeschwindigkeit: v = 180 m/min
      • Vorschub: s = 0,42 mm/U
      • Spantiefe: a = 2 mm
    • 2. Werkstoff: Grauguss
      • Richtwerte der Zusammensetzung:
        • 3-3,5% C
        • 0,4-0,8% Si
        • 0,2-0,5% Mn, Rest Fe
      • Härte: 215 H B
      • Schnittgeschwindigkeit: v = 80 m/min
      • Vorschub: s = 0,28 mm/U
      • Spantiefe: a = 2 mm
  • Die Verschleissmarkenbreite vB des Freiflächenverschleisses wurde jeweils nach einer Drehzeit von 5 min gemessen.
    Figure imgb0004
  • Das Standzeitende war bei allen Varianten durch Kolkverschleiss gegeben.
  • Ein Vergleich der Verschleissergebnisse zeigt, dass lediglich durch den erfindungsgemässen Schichtaufbau entsprechend den Varianten 4 und 5, wo gleichzeitig ein Bor-Anteil in der Aluminiumoxidschicht und ein Sauerstoff-Anteil in der Ti(C,N)-Schicht vorhanden sind, eine merkliche Verschleissfestigkeitssteigerung der Variante 1, die in etwa einen zur Zeit auf dem Markt befindlichen Schichtaufbau aufweist, erzielt wird. Der alternative Einbau von Bor in der Aluminiumoxidschicht (Variante 2) oder von Sauerstoff in der (Ti(C,N)-Schicht (Variante 3) ergibt hingegen keine wesentlichen Verschleissfestigkeitssteigerungen gegenüber der Variante 1.
  • Aus dem Vergleich der Varianten 4 und 5 ist zu ersehen, dass ein gewisser Stickstoff-Anteil in der Aluminium-Bor-Mischoxidschicht, der z.B. durch die Verwendung von Stickstoff als Trägergas beim Beschichtungsvorgang zustande kommt, nur einen unwesentlichen Einfluss auf die Verschleissfestigkeitswerte hat.
  • Beispiel 2
  • Zum Unterschied von Beispiel 1 wird die einlagige Al2O3- bzw. Aluminium-Bor-Mischoxid- schicht durch 4 Schichten ersetzt, die durch 3 Ti(C,N)- bzw. 3 Ti(C,N,0)-Zwischenschichten verbunden sind.
  • Bei den Varianten 1 bis 4 wurde Argon als Trägergas verwendet, die Aluminium-Bor-Mischoxidschicht ist daher frei von Stickstoff.
  • Bei der Variante 5 sind in der Mischoxidschicht 3 Atom-% Stickstoff enthalten, da N2 als Trägergas verwendet wurde.
    Figure imgb0005
  • Beschichtungsbedingungen:
  • Gasdruck in allen Fällen: Atmosphärendruck (ca. 1 bar absolut)
    Figure imgb0006
    Al2O3-Schichten bzw. Aluminium-B-Mischoxidschichten:
    Figure imgb0007
    Variante 2, 4 u. 5 - 0,15 Vol.-% BCI3
    • Variante 1 u. 3 - 0 Vol.-% BCl3 u. 13,4 Vol.-% H2
    • Dauer: 40 min/Schicht
    • Temperatur: 1060° C
    Ti(C, N) -Zwischenschichten
  • Beschichtungstemperatur und Gaszusammensetzung wie bei 2. Ti(C,N)-Schicht.
  • Dauer: 8 min/Schicht
  • Ti(C,N,O)-Zwischenschichten Beschichtungstemperatur und Gaszusammensetzung wie oben.
  • Dauer: 8 Min/Schicht
  • Zerspanungstest:
    • Mit den beschichteten Wendeschneidplatten wurden Drehversuche auf der gleichen Welle aus Baustahl unter den gleichen Schnittbedingungen wie beim Beispiel 1 durchgeführt.
      Figure imgb0008
  • Das Standzeitende war jeweils durch die Grenze des noch tolerierbaren Kolkverschleisses bedingt.
  • Aus dem Vergleich der Beispiele 1 und 2 lässt sich erkennen, dass sich unter den gegebenen Zerspanungsbedingungen bei insgesamt etwa gleicher Gesamtschichtstärke bei dem mehrschichtigen Aufbau der Aluminiumoxid- bzw. Aluminium-Bor-Mischoxidschicht entsprechend Beispiel 2 gegenüber dem einschichtigen Aufbau gemäss Beispiel 1 eine weitere Verchleissfestigkeitssteigerung erreichen lässt. Die Verschleissfestigkeitssteigerung beim erfindungsgemässen Schichtaufbau (Varianten 4 und 5) ist wesentlich grösser als bei dem Schichtaufbau gemäss der Varianten 1 bis 3.
  • Beispiel 3
  • Auf Wendeschneidplatten der gleichen Art wie in Beispiel 1 wurde als Unterlagsschicht eine Ti(C0,6,N0,4)-Schicht und darauf eine TiN-Schicht abgeschieden. Der weitere Schichtaufbau erfolgte in 2 Varianten, wobei die Variante 2 einen erfindungsgemässen Schichtaufbau darstellt. Zum Unterschied zu den vorangegangenen Beispielen wurde die Beschichtung bei Unterdruck durchgeführt. Die Verschleissfestigkeit der einzelnen Varianten wurde wiederum in einem Zerspanungstest miteinander verglichen.
  • Schichtaufbau:
    • Variante 1: 2 µm Ti (C0.6,N0,4)
      • 1,5 µm TiN
      • 1,5 µm Al2O3
      • 0,5 µm TiN
      • 1,5 µm AI203
    • Variante 2: 2 µm Ti(C0,6,N0,4)
      • 1 µm TiN
      • ca. 0,5 µm Ti(N,B,O)
      • 1,5 µm Aluminium-Bor-Mischoxid
      • 0,5 µm Ti(N,B,O)
      • 1,5 µm Aluminium-Bor-Mischoxid
    Beschichtungsbedingungen:
    • Ti(0,6,N0,4)-Schicht: Temperatur: 1020° C Druck: 5 k Pa
    • Gasgemisch: 83 Vol.-% H2
      • 8 Vol.-% N2
      • 4 Vol.-% CH4
      • 5 Vol.-°/ TiCl4
    • Dauer: 130 min
    • TiN-Schicht: Temperatur: 1020° C
      • Druck: 6 k Pa
    • Gasgemisch: 65 Vol.-% H2
      • 32 Vol.-% N2
      • 7 Vol.-% TiCl4
    • Dauer: Variante 1 : 93 min
      • Variante 2: 62 min
    • Ti(N,B,O)-Schichten: Temperatur: 1020° C
      • Druck: 4 k Pa
    • Gasgemisch: 60,8 Vol.-% H2
      • 27 Vol.-% N2
      • 5 Vol.-% BCI3
      • 7 Vol.-°/ TiCl4
      • 0,2 Vol.-% CO2
    • Dauer: 35 min
    • Al2O3-Schichten: Temperatur: 1020° C
      • Druck: 4 k Pa
    • Gasgemisch: 76,8 Vol.-% H2
      • 4,0 Vol.-% CO2
      • 16 Vol.-% CO
      • 3,2 Vol.-% AICI3
    • Dauer: 180 min/Schicht
    • Aluminium-Bor-Mischoxidschichten:
      • Temperatur: 1020° C
      • Druck: 4 k Pa
    • Gasgemisch: 76,5 Vol.-% H2
      • 4,0 Vol.-% CO2
      • 16 Vol.-% CO
      • 3,2 Vol.-% AICI3
      • 0,3 Vol.-% BCI3
    • Dauer: 180 min/Schicht
  • Mit den beschichteten Platten wurden Drehversuche auf Baustahl unter den in Beispiel 1 genannten Schnittbedingungen und Drehversuche auf Grauguss mit folgenden Schnittbedingungen durchgeführt:
    • Werkstoff: Grauguss-Zusammensetzung wie bei Beispiel 1
    • Härte: 205 HB
    • Schnittgeschwindigkeit: v = 80 m/min
    • Vorschub: s = 0,28 mm/U
    • Spantiefe: a = 2 mm
      Figure imgb0009
  • Ein Vergleich der Beispiele 1 und 2 mit 3 zeigt, dass kein nenneswerter Unterschied in der Qualität der Verschleissteile mit den jeweiligen Überzügen besteht, je nachdem ob bei Atmosphärendruck oder im Unterdruckbereich beschichtet wurde.
  • Beispiel 4
  • Auf Wendeschneidplatten der gleichen Art wie in den vorhergehenden Beispielen wurde wiederum bei Unterdruck ein erfindungsgemässerviellagiger Schichtaufbau ohne Unterlagsschicht direkt auf dem Hartmetall aufgebracht (Variante 2). Dieser Schichtaufbau wird wiederum mit einem von der Erfindung abweichenden viellagigen Schichtaufbau, der ebenfalls ohne Unterlagsschicht aufgebracht ist (Variante 1), verglichen.
  • Schichtaufbau:
    • Variante 1: 0,5 µm Ti(C0,6,N0,4)
      • 0,8 µm Al2O3
      • 0,3 µm Ti(C,N)
      • 0,8 µm Al2O3
      • 0,3 µm Ti(C,N)
      • 0,8 µm Al2O3
      • 0,3 µm Ti(C,N)
      • 0,8 µm Al2O3
      • 0,3 µm Ti(C,N)
      • 0,8 µm Al2O3
    • Variante 2: 0,5 µm Ti (C,N,0)
      • 0,8 µm Aluminium-Bor-Mischoxid
      • 0,2 µm Ti(C,N,O)
      • 0,8 µm Aluminium-Bor-Mischoxid
      • 0,2 µm Ti(C,N,O)
      • 0,8 µm Aluminium-Bor-Mischoxid
      • 0,2 µm Ti(C,N,O)
      • 0,8 µm Aluminium-Bor-Mischoxid
      • 0,2 µm Ti(C,N,O)
      • 0,8 µm Aluminium-Bor-Mischoxid
  • Sauerstoff-Gehalt der Ti(C,N,O)-Schichten ca. 2 Gew.-%.
  • Beschichtungsbedingungen:
    • Ti(C0,6,N0,4)-Schichten
    • Gasgemisch: 83 Vol.-% H2
      • 8 Vol.-% N2
      • 4 Vol.-% CH4
      • 5 Vol.-% TiCl4
    • Temperatur: 1020° C
    • Druck: 5 k Pa
    • Dauer: Unterlagsschicht: 32 min
      • Zwischenschichten: 20 min/Schicht
    • Ti(C,N,0)-Schichten
    • Gasgemisch: 82,9 Vol.-% H2
      • 8 Vol.-% N2
      • 4 Vol.-% CH4
      • 5 Vol.-% TiCl4
      • 0,1 Vol.-% CO2
    • Temperatur: 1020° C
    • Druck: 1 k Pa
    • Dauer: Unterlagsschicht: 45 min
      • Zwischenschichten: 18 min/Schicht
    • Al2O3-Schichten
    • Gasgemisch: 25 Vol.-% H2
      • 6 Vol.-% CO2
      • 66 Vol.-% Ar
      • 3 Vol.-% AICI3
    • Temperatur: 1020° C
    • Druck: 4 k Pa
    • Dauer: 65 min/Schicht
    Aluminium-Bor-Mischoxidschichten
    • Gasgemisch: 25 Vol.-% H2
      • 6 Vol.-% CO2
      • 65,6 Vol.-% Ar 3 Vol.-% AICI3
      • 0,4 Vol.-% BCI3
    • Temperatur: 1020° C
    • Druck: 4 k Pa
    • Dauer: 65 min/Schicht
    Zerspanungstest:
  • Auf einer Baustahlwelle (0,6% C, Festigkeit 750 N/mm2) wurden Drehversuche unter folgenden Schnittbedingungen durchgeführt: Schnittgeschwindigkeit: v = 200 m/min Vorschub: s = 0,41 mm/U Spantiefe: a = 2 mm
  • Das Standzeitende war bei beiden Varianten durch Kolkverschleiss gegeben. Das Standzeitende betrug bei Variante 1 32 min, bei der erfindungsgemässen Variante 2 41 min.
  • In den Beispielen wurde Hartmetall als Grundkörper verwendet. Die Erfindung ist jedoch nicht auf Hartmetall-Grundkörper beschränkt. Dererfindungsgemässe Schichtaufbau führt ebenso bei anderen Grundkörpermaterialien wie z.B. bei Schnellstahl, Stellit oder anderen warmfesten Legierungen zu einer unerwartet grossen Steigerung der Verschleissfestigkeit. Desgleichen ist die Erfindung nicht auf Werkzeuge für die spanabhebende Bearbeitung beschränkt. Sie erstreckt sich vielmehr auch auf Werkzeuge für die spanlose Bearbeitung wie Ziehmatrizen und dgl. sowie auf Werkzeuge, die hauptsächlich erodierendem Verschleiss ausgesetzt sind, wie z. B. Gesteinsbohrern.

Claims (10)

1. Verschleissteil, insbesondere Hartmetall-Schneideinsatz zur spanabhebenden Bearbeitung mit einem mehrschichtigen Hartstoffüberzug, wobei mindestens eine Schicht als Oxidschicht ausgeführt ist, dadurch gekennzeichnet, dass der unmittelbar oder über eine Unterlagsschicht auf dem Grundkörper aufgebrachte Überzug aus je einer oder mehreren Schichten von Oxikarbiden und/ oder Oxikarbonitriden und/oder Oxinitriden und/ oder Oxiboriden und/oder Oxibornitriden und/ oder Oxiborkarbonitriden der Elemente Ti, Zr, Hf, B, Si, AI mit einem Sauerstoff-Gehalt von 0,1 bis 5 Gew.-% jeweils im Wechsel mit einer oder mehreren Schichten von Aluminium-Bor-Mischoxiden mit Bor-Gehalten von 0,01 bis 1 Gew.-%, besteht.
2. Verschleissteil nach Anspruch 1, dadurch gekennzeichnet, dass die Unterlagsschicht einen ein- oder mehrlagigen Schichtaufbau aus einem oder mehreren Karbiden, Nitriden, Karbonitriden, Boriden oder Bornitriden der Elemente der IV. bis VI. Gruppe des Periodensystems aufweist.
3. Verschleissteil nach Anspruch 1, dadurch gekennzeichnet, dass unmittelbar am Grundkörper oder über eine Unterlagsschicht eine Schicht aus Titanoxikarbonitrid und/oderTitanoxinitrid mit einer Schichtdicke von 0,05 bis 1 µm und anschliessend daran eine Aluminium-Bor-Mischoxid- schicht mit einer Schichtdicke von 2 bis 10 µm aufgebracht sind.
4. Verschleissteil nach Anspruch 1, dadurch gekennzeichnet, dass unmittelbar am Grundkörper oder über eine Unterlagsschicht eine Schicht aus Titanoxikarbonitrid und/oder Titanoxinitrid mit einer Schichtdicke von 0,1 bis 1 µm und anschliessend daran abwechselnd 2 bis 8 Aluminium-Bor-Mischoxidschichten mit Schichtdicken von 0,3 bis 2 µm jeweils im Wechsel mit 1 bis 7 Schichten aus Titanoxikarbonitrid und/oder Titanoxinitrid mit Schichtdicken von 0,05 bis 0,5 µm aufgebracht sind.
5. Verschleissteil nach Anspruch 3-4, dadurch gekennzeichnet, dass die Titanoxikarbonitrid-und/oder Titanoxinitridschichten einen Sauerstoff-Gehalt von 0,5 bis 3 Gew.-% aufweisen.
6. Verschleissteil nach Anspruch 3-5, dadurch gekennzeichnet, dass die Aluminium-Bor-Mischoxidschichten einen Bor-Gehalt von 0,04 bis 0,4 Gew.-% aufweisen.
7. Verschleissteil nach Anspruch 1-6, dadurch gekennzeichnet, dass die Unterlagsschicht vom Grundkörper ausgehend die Schichtfolge Titankarbid und/oder Titankarbonitrid und/oder Titannitrid mit einer Gesamtschichtdicke von 1 bis 8 Jlm aufweist.
8. Verschleissteil nach Anspruch 1 -7, dadurch gekennzeichnet, dass die Mischoxide einen Stickstoff-Gehalt von 0,14-2,76 Gew.-% (0,2 bis 4 Atom %) aufweisen.
9. Verfahren zur Herstellung eines Verschleissteiles nach den Ansprüchen 1 -8, dadurch gekennzeichnet, dass die Abscheidung der Hartstoffbeschichtung nach dem CVD-Verfahren erfolgt, wobei die chemische Zusammensetzung der einzelnen Schichten durch entsprechende Mischungsverhältnisse der Reaktionsgase festgelegt werden.
10. VerfahrenzurHerstellungeinesVerschleissteiles nach den Ansprüchen 1-8, dadurch gekennzeichnet, dass die Herstellung einzelner Schichten von entsprechender chemischer Zusammensetzung sowohl über die Abscheidung nach dem CVD-Verfahren als auch durch Interdiffusion zwischen angrenzenden Schichten erfolgt.
EP82111762A 1981-12-24 1982-12-17 Verschleissteil Expired EP0083043B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT5557/81 1981-12-24
AT0555781A AT377786B (de) 1981-12-24 1981-12-24 Verschleissteil, insbesondere hartmetall -schneideinsatz zur spanabhebenden bearbeitung

Publications (2)

Publication Number Publication Date
EP0083043A1 EP0083043A1 (de) 1983-07-06
EP0083043B1 true EP0083043B1 (de) 1985-07-03

Family

ID=3577093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82111762A Expired EP0083043B1 (de) 1981-12-24 1982-12-17 Verschleissteil

Country Status (5)

Country Link
US (1) US4599281A (de)
EP (1) EP0083043B1 (de)
JP (1) JPS58115081A (de)
AT (1) AT377786B (de)
DE (1) DE3264591D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726987B2 (en) 2001-02-09 2004-04-27 Plansee Tizit Aktiengesellschaft Hard metal wearing part with mixed oxide coating

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL72728A (en) * 1983-08-22 1988-02-29 Ovonic Synthetic Materials Adherence wear resistant coatings
DE3434616C2 (de) * 1983-12-19 1997-06-19 Hartmetall Beteiligungsgesells Verfahren zur Herstellung von Titan-Bor-Oxinitridschichten auf Sinterhartmetallkörpern
AT385947B (de) * 1983-12-22 1988-06-10 Ver Edelstahlwerke Ag Hartmetallkoerper, insbesondere hartmetall-schneidwerkzeug
US4574459A (en) * 1983-12-23 1986-03-11 Corning Glass Works Extrusion die manufacture
JPS60141406A (ja) * 1983-12-27 1985-07-26 Fuji Die Kk 皮剥ダイス
JPS60238481A (ja) * 1984-05-14 1985-11-27 Sumitomo Electric Ind Ltd 多重層被覆超硬合金
US4568614A (en) * 1984-06-27 1986-02-04 Energy Conversion Devices, Inc. Steel article having a disordered silicon oxide coating thereon and method of preparing the coating
JPS61221369A (ja) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd 被覆超硬合金部材
US4774151A (en) * 1986-05-23 1988-09-27 International Business Machines Corporation Low contact electrical resistant composition, substrates coated therewith, and process for preparing such
US5310603A (en) * 1986-10-01 1994-05-10 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
US5433988A (en) * 1986-10-01 1995-07-18 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
US4855264A (en) * 1986-11-20 1989-08-08 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US4957886A (en) * 1986-11-20 1990-09-18 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
CA1333270C (en) * 1987-03-26 1994-11-29 Ppg Industries Ohio, Inc. Sputtered titanium oxynitride films
AT387186B (de) * 1987-05-04 1988-12-12 Ver Edelstahlwerke Ag Beschichteter hartmetallkoerper
AT387988B (de) * 1987-08-31 1989-04-10 Plansee Tizit Gmbh Verfahren zur herstellung mehrlagig beschichteter hartmetallteile
US4950558A (en) * 1987-10-01 1990-08-21 Gte Laboratories Incorporated Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof
AT390228B (de) * 1987-12-24 1990-04-10 Boehler Gmbh Verschleissteil und verfahren zu seiner herstellung
GB8801366D0 (en) * 1988-01-21 1988-02-17 Secr Defence Infra red transparent materials
US5304417A (en) * 1989-06-02 1994-04-19 Air Products And Chemicals, Inc. Graphite/carbon articles for elevated temperature service and method of manufacture
FR2649974B1 (fr) * 1989-07-21 1991-09-27 Aerospatiale Materiau carbone protege contre l'oxydation par du carbonitrure de bore
WO1991005076A1 (fr) * 1989-09-29 1991-04-18 Sumitomo Electric Industries, Ltd. Element dur revêtu en surface pour outils de coupe et pour outils resistant a l'abrasion
SE9101953D0 (sv) * 1991-06-25 1991-06-25 Sandvik Ab A1203 coated sintered body
DE4340652C2 (de) * 1993-11-30 2003-10-16 Widia Gmbh Verbundwerkstoff und Verfahren zu seiner Herstellung
JP2793773B2 (ja) * 1994-05-13 1998-09-03 神鋼コベルコツール株式会社 耐摩耗性に優れた硬質皮膜、硬質皮膜被覆工具及び硬質皮膜被覆部材
JP3866305B2 (ja) * 1994-10-27 2007-01-10 住友電工ハードメタル株式会社 工具用複合高硬度材料
GB2310218B (en) * 1996-02-13 1999-12-22 Marconi Gec Ltd Coatings
SE510778C2 (sv) * 1996-07-11 1999-06-21 Sandvik Ab Belagt skär för finfräsning av grått gjutjärn
SE518145C2 (sv) * 1997-04-18 2002-09-03 Sandvik Ab Multiskiktbelagt skärverktyg
JP4185172B2 (ja) * 1997-06-19 2008-11-26 住友電工ハードメタル株式会社 被覆硬質工具
US6492011B1 (en) * 1998-09-02 2002-12-10 Unaxis Trading Ag Wear-resistant workpiece and method for producing same
US6432480B1 (en) * 1999-09-27 2002-08-13 Caterpillar Inc. Modified boron containing coating for improved wear and pitting resistance
US6593015B1 (en) 1999-11-18 2003-07-15 Kennametal Pc Inc. Tool with a hard coating containing an aluminum-nitrogen compound and a boron-nitrogen compound and method of making the same
EP1132498B1 (de) * 2000-03-09 2008-05-07 Sulzer Metaplas GmbH Hartschichten auf Komponenten
US7264668B2 (en) * 2001-10-16 2007-09-04 The Chinese University Of Hong Kong Decorative hard coating and method for manufacture
ATE364740T1 (de) * 2001-11-07 2007-07-15 Hitachi Tool Eng Mit einer hartschicht beschichtetes werkzeug
US6660133B2 (en) 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
SE526603C3 (sv) 2003-01-24 2005-11-16 Sandvik Intellectual Property Belagt hårdmetallskär
JP4569861B2 (ja) * 2004-03-02 2010-10-27 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
AT7663U1 (de) * 2004-04-16 2005-07-25 Ceratizit Austria Gmbh Werkzeug mit verschleissfester beschichtung
SE528108C2 (sv) * 2004-07-13 2006-09-05 Sandvik Intellectual Property Belagt hårdmetallskär, speciellt för svarvning av stål, samt sätt att tillverka detsamma
DE102004063816B3 (de) * 2004-12-30 2006-05-18 Walter Ag Al2O3-Multilagenplatte
JP2009035784A (ja) * 2007-08-02 2009-02-19 Kobe Steel Ltd 酸化物皮膜、酸化物皮膜被覆材および酸化物皮膜の形成方法
WO2010106811A1 (ja) 2009-03-18 2010-09-23 三菱マテリアル株式会社 表面被覆切削工具
AT12293U1 (de) * 2009-10-05 2012-03-15 Ceratizit Austria Gmbh Schneidwerkzeug zur bearbeitung metallischer werkstoffe
US8409734B2 (en) * 2011-03-04 2013-04-02 Kennametal Inc. Coated substrates and methods of making same
US8440328B2 (en) 2011-03-18 2013-05-14 Kennametal Inc. Coating for improved wear resistance
DE102014108607A1 (de) * 2014-06-18 2015-12-24 Betek Gmbh & Co. Kg Gegenschneide
US9890084B2 (en) * 2015-10-01 2018-02-13 Kennametal Inc. Hybrid nanocomposite coatings and applications thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022572B1 (de) * 1970-07-29 1975-07-31
SE357984B (de) * 1971-11-12 1973-07-16 Sandvik Ab
US4055451A (en) * 1973-08-31 1977-10-25 Alan Gray Cockbain Composite materials
US4018631A (en) * 1975-06-12 1977-04-19 General Electric Company Coated cemented carbide product
US4035541A (en) * 1975-11-17 1977-07-12 Kennametal Inc. Sintered cemented carbide body coated with three layers
JPS5819626B2 (ja) * 1977-03-17 1983-04-19 セントラル硝子株式会社 酸化硼素アルミナ質耐火物
US4169913A (en) * 1978-03-01 1979-10-02 Sumitomo Electric Industries, Ltd. Coated tool steel and machining tool formed therefrom
DE2851584B2 (de) * 1978-11-29 1980-09-04 Fried. Krupp Gmbh, 4300 Essen Verbundkörper
DE2917348C2 (de) * 1979-04-28 1984-07-12 Fried. Krupp Gmbh, 4300 Essen Verschleißfester Verbundkörper
JPS6012991B2 (ja) * 1979-05-01 1985-04-04 住友電気工業株式会社 高硬度工具用焼結体の製造法
JPS55154562A (en) * 1979-05-18 1980-12-02 Sumitomo Electric Ind Ltd Sintered hard alloy part for base material of surface-covered tool material and their manufacture
US4357382A (en) * 1980-11-06 1982-11-02 Fansteel Inc. Coated cemented carbide bodies
US4447263A (en) * 1981-12-22 1984-05-08 Mitsubishi Kinzoku Kabushiki Kaisha Blade member of cermet having surface reaction layer and process for producing same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, unexamined applications, C Field, vol. 5, no. 195, 11. Dezember 1981, THE PATENT OFFICE JAPANESE GOVERNMENT, page 26 C 83 *
PATENT ABSTRACTS OF JAPAN, unexamined applications, C Field, vol. 5, no. 49, 8. April 1981, THE PATENT OFFICE JAPANESE GOVERNMENT, page 95 C 49 *
PATENT ABSTRACTS OF JAPAN, unexamined applications, C Field, vol. 5, no. 58, 21. April 1981, THE PATENT OFFICE JAPANESE GOVERNMENT, page 46 C 51 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726987B2 (en) 2001-02-09 2004-04-27 Plansee Tizit Aktiengesellschaft Hard metal wearing part with mixed oxide coating

Also Published As

Publication number Publication date
AT377786B (de) 1985-04-25
JPS6154114B2 (de) 1986-11-20
JPS58115081A (ja) 1983-07-08
DE3264591D1 (en) 1985-08-08
US4599281A (en) 1986-07-08
EP0083043A1 (de) 1983-07-06
ATA555781A (de) 1984-09-15

Similar Documents

Publication Publication Date Title
EP0083043B1 (de) Verschleissteil
DE60026634T2 (de) Beschichteter Schneidwerkzeugeinsatz
DE2525185C3 (de) Hartmetallkörper
EP2499275B1 (de) Beschichtete körper aus metall, hartmetall, cermet oder keramik sowie verfahren zur beschichtung derartiger körper
DE69518039T2 (de) Beschichtete Klinge aus Hartmetallegierung
DE69410441T2 (de) Langbohrer mit titancarbonitriden schneideinsätzen
DE69025521T2 (de) Mehrlagiger Überzug von einem nitridhaltigen Werkstoff und seine Herstellung
DE69619275T2 (de) Beschichteter drehbarer einsatz und verfahren zu dessen herstellung
EP2132358B1 (de) Mehrlagige cvd-schicht
DE2917348B1 (de) Verbundkoerper und seine Verwendung
EP0093706B1 (de) Werkzeug und Verfahren zu dessen Herstellung
EP0306077A2 (de) Verfahren zur Herstellung mehrlagig beschichteter Hartmetallteile
DE2851584B2 (de) Verbundkörper
DE69631484T2 (de) Ankeroxidbeschichtungen auf hartmetallschneidwerkzeugen
EP0980445A1 (de) Schneideinsatz zum zerspanen und verfahren zur herstellung dieses schneideinsatzes
EP1231295B1 (de) Hartmetallverschleissteil mit Mischoxidschicht
WO2009070820A1 (de) Beschichteter gegenstand
DE102016108734A1 (de) Beschichteter Körper und Verfahren zur Herstellung des Körpers
EP0143889A2 (de) Beschichteter Hartmetallkörper
DE2306504B2 (de) Beschichteter Sinterhartmetallkörper
DE69802035T2 (de) Beschichtetes Schneidwerkzeug
WO2009003206A2 (de) Al-Ti-Ru-N-C HARTSTOFFSCHICHT
DE69515503T2 (de) Beschichtete sinterkarbideinsätze für die verwendung beim metallschneiden
DE19503070C1 (de) Verschleißschutzschicht
CH615852A5 (en) Use of coated tools

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830419

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3264591

Country of ref document: DE

Date of ref document: 19850808

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 82111762.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011116

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011120

Year of fee payment: 20

Ref country code: CH

Payment date: 20011120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011203

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011220

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021216

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021216

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021217

BE20 Be: patent expired

Owner name: *METALLWERK PLANSEE G.M.B.H.

Effective date: 20021217

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20021216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20021217