EP0082092A1 - Procédé et appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique et emploi dudit appareil pour le chauffage notamment de fluide caloporteur - Google Patents

Procédé et appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique et emploi dudit appareil pour le chauffage notamment de fluide caloporteur Download PDF

Info

Publication number
EP0082092A1
EP0082092A1 EP82420166A EP82420166A EP0082092A1 EP 0082092 A1 EP0082092 A1 EP 0082092A1 EP 82420166 A EP82420166 A EP 82420166A EP 82420166 A EP82420166 A EP 82420166A EP 0082092 A1 EP0082092 A1 EP 0082092A1
Authority
EP
European Patent Office
Prior art keywords
product
resistors
heating
dielectric
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82420166A
Other languages
German (de)
English (en)
Other versions
EP0082092B1 (fr
Inventor
François Giolito
François Vachet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Rhone Poulenc Specialites Chimiques
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Specialites Chimiques, Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Specialites Chimiques
Priority to AT82420166T priority Critical patent/ATE32643T1/de
Publication of EP0082092A1 publication Critical patent/EP0082092A1/fr
Application granted granted Critical
Publication of EP0082092B1 publication Critical patent/EP0082092B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/82Fixedly-mounted immersion heaters

Definitions

  • the present invention relates to a method of heating a dielectric or substantially dielectric product using electrical energy. It also relates to a heating device implementing said method, and the use of such a device.
  • the "product" as defined above can be present before heating both in the liquid state and in the solid state, a product in the solid state being able to pass into the liquid state under the effect of heat.
  • the "product" can of course be. consisting of a single phase or of several phases, it can for example be in the form of a gas / solid, liquid / liquid or even solid / liquid mixture.
  • the method and apparatus, objects of the present invention are more particularly intended for the heating of heat transfer fluids.
  • liquids are usually heated by means of a heating device comprising at least one electrical resistance located in a metal sheath, an electrical insulation means such as air, magnesia, boron nitride, etc. being provided between the resistance and the inner surface of the sheath, the device being immersed in the liquid to be heated.
  • a heating device comprising at least one electrical resistance located in a metal sheath, an electrical insulation means such as air, magnesia, boron nitride, etc. being provided between the resistance and the inner surface of the sheath, the device being immersed in the liquid to be heated.
  • the heating device comprises a bundle of sheathed resistors in the shape of a U fixed by their free arms to a plate through which the electrical connections of each resistance in a U are ensured.
  • the plate also allows the fixing of the heating device to a flange surrounding an opening of the enclosure containing the liquid to be heated, this opening also makes it possible to introduce the beam inside the enclosure.
  • the geometry of the resistance bundle is the cause of significant pressure drops, areas of liquid stagnation and therefore overheating and risks of degradation thereof. In addition, this geometry also promotes fouling of the beam.
  • each U-shaped resistor implies being electrically connected at each of its ends.
  • This is a major drawback of this heating method since there are practically no beams on the market with an available unit power greater than 200 kW, which means providing the enclosure containing the liquid to be heated with a large number of beams to have the necessary power.
  • this mode of heating involves bulky and expensive equipment.
  • the resistance is bare, that is to say that between the resistance and the product there are no substantial means of electrical insulation, this does not exclude that in certain cases , and for some applications, the resistance includes a thin coating.
  • the process which is the subject of the invention is such that a potential difference greater than 380 V can be applied across the terminals of the resistors.
  • resistance means a conductor in which all the electrical energy received is transformed into heat by the Joule effect.
  • a dielectric or practically dielectric product heating apparatus has also been found which implements the heating method which is the subject of the invention.
  • Such a heater is characterized in that it comprises an enclosure containing said product in which is immersed at least one resistor and means for connecting the said resistor (s) to an electrical distribution network.
  • the device according to the invention includes, of course, in the wall of the enclosure openings allowing the passage of means for connecting the resistance or resistances to an electrical distribution network.
  • Those skilled in the art will establish the connections between the resistors and the network by the usual techniques by providing the necessary means of electrical insulation.
  • the heating device object of the invention, comprises several resistors electrically connected in series and / or in parallel.
  • the device according to the invention can comprise at least three resistors electrically connected in a triangle or in a star. This embodiment makes it possible to connect the resistors to a three-phase electrical distribution network.
  • resistance in the present text denotes both a single resistance and a resistance formed by several elementary resistances, identical or not, connected in series and / or in parallel.
  • the apparatus for heating a dielectric or substantially dielectric product, object of the invention can be such that the enclosure containing the product is swept by the product to be heated.
  • the enclosure of the appliance can be a section of pipe swept by the product to be heated.
  • Such an apparatus is more particularly intended for maintaining the temperature of a product in motion by compensating for the thermal losses which have occurred, for example during the transport of the hot product over long distances.
  • the enclosure, swept by the product to be heated, of such an apparatus can also be for example the reaction zone of a chemical reactor, the heat necessary for the reaction being directly supplied to the reaction mixture by one or more resistors immersed in this one.
  • the enclosure swept by the product can be the reaction zone of a fluidized bed reactor, the resistors being immersed directly in the gas / solid mixture.
  • enclosure swept by the product is meant above that the flow rate of the product by current the enclosure is relatively large compared to the volume of product present in the enclosure.
  • the enclosure is a "container comprising inlet means and outlet means" it is meant that the latter contains a certain volume of product and that the flow of product passing through the enclosure is low. -to the product present therein.
  • the enclosure of a heating according to the invention may consist of a container comprising means for entering the product to be heated and means for leaving the hot product.
  • Such an apparatus may include a container of sufficient volume to constitute a storage of hot product.
  • the boilers are heating devices according to this embodiment. Such heaters are more particularly intended for heating organic, natural or synthetic heat transfer fluids, used in industrial installations. It is also possible to use as heat transfer fluid products or mixtures of substantially dielectric molten mineral products.
  • the enclosure can be constituted by a closed container which comprises means for filling and draining the product, at least one resistance being immersed in the product.
  • a closed container which comprises means for filling and draining the product, at least one resistance being immersed in the product.
  • the enclosure of a heating device which is the subject of the invention may consist of a container comprising means for entering the product to be heated and means for leaving the vapor of said product.
  • a container comprising means for entering the product to be heated and means for leaving the vapor of said product.
  • an apparatus according to this embodiment is intended for heating a liquid, the liquid being heated to its boiling point in the container.
  • the boilers are heating devices according to this other embodiment.
  • the heating object of the invention may include resistors formed for example of a metal wire wound in a helix and not supported by a mandrel.
  • the device according to the invention is such that the said resistance (s) are substantially in the form of a plate.
  • the resistor (s) are placed in such a way that the velocity vectors of the general movement of the product, in natural or forced flow, in the vicinity of the resistor (s), are tangent or parallel to the faces of said plates.
  • the general movement of the product is the movement of the product corresponding to the tracking thereof, without taking account of local movements, such as vortices, in the vicinity of the faces of the plates.
  • the purpose of this arrangement is to reduce as much as possible the pressure losses due to the resistances and thus to promote thermal exchanges with the product while maintaining high scanning speeds of the faces of the resistances by the product.
  • plate more precisely designates a sheet in a rigid, flat and not very thick manner, the meaning of this term will be extended in the present text to thin sheets which are not planar, for example cylindrical or left.
  • Resistors in the form of left plates will be placed in such a way that the velocity vectors of the general movement of the product, in natural or forced flow, in the vicinity of the resistors, are tangent to the faces of said plates.
  • Resistors in the form of flat plates will be placed in such a way that the velocity vectors of the general movement of the product in natural or forced flow, in the vicinity of said surfaces, are parallel to the faces of the plates.
  • heating devices having a natural or forced flow of the product, of general direction parallel to a given direction, it is possible to use resistors in the form of a substantially flat plate placed parallel to the general direction of movement of the product.
  • Resistors in the form of an elongated rectangular flat plate can be folded, for example in a zigzag, according to their length and placed in such a way that their width is parallel to the general direction of movement of the product.
  • 0n can also use resistors in the form of a generally cylindrical plate, the cylinder being generated by a generator moving parallel to the general direction of movement of the product by relying on a director, open or closed, of curved shape, by circular example, or polygonal, several cylindrical resistors can be placed concentrically.
  • the resistors can be in the form of a plate of continuous structure or of discontinuous structure.
  • continuous structure these resistances in the form of a plate are means that the structure of the resistors does not have a hole, so resistors of continuous structure are similar to sheets.
  • discontinuous structure of resistors in the form of a plate is meant that the structure of the resistors has holes, thus resistors of discontinuous structure can be made of a fabric obtained by weaving, knitting, braiding or twisting. They can also consist of a perforated sheet obtained by cutting with removal of material, for example by punching.
  • Preferably plate-shaped resistors of discontinuous structure are obtained by cutting a plurality of slots in a sheet and stretching in a direction perpendicular to the slots.
  • the face of the plates is the surface which envelops the reliefs of the plates.
  • the resistors are made of materials, resistant to corrosion.
  • the resistors can be made of stainless steels of shades usually used for this type of material, in refractory stainless steels, special steels can also be used after they have undergone an anticorrosion treatment.
  • the surfaces of the resistors may be of substantially smooth appearance, preferably they are of rough appearance. This rough appearance can be obtained for example by sanding.
  • Resistors whose surfaces are rough in appearance are more particularly intended for the production of heating devices objects of the invention which comprise means for entering a liquid to be heated and means for leaving the vapor of said liquid .
  • the roughness of the resistors promotes the nucleated boiling of the liquid.
  • the surfaces of the resistors may be provided with a coating, this coating may be porous, in order to promote nucleated flow, it may also be a thin anticorrosion coating, for example made of silicone enamel or thermostable.
  • the apparatus for heating a dielectric or practically dielectric product, according to the invention can be used in particular for heating chemicals with little or no conductivity of electricity, used game in industrial processes.
  • This heating device is particularly intended for heating heat transfer fluids used in chemical installations.
  • the heating device (1) object of the invention, shown diagrammatically in FIG. 1, is more particularly a heating device for heat transfer fluid used in an industrial installation.
  • This heating device (1) comprises an enclosure (2) containing the heat transfer fluid (3), in the heat transfer fluid (3) are immersed six resistors (4) and means (5) for connecting the resistors (4) to a electrical distribution network (6).
  • the enclosure (2) is, according to the present embodiment, a container formed by a body (7) substantially cylindrical, closed at its ends by a cover (8) and a bottom (9).
  • the enclosure (2) comprises at its lower part inlet means (10) of the heat transfer fluid to be heated and in the vicinity of its upper part outlet means (11) of the hot heat transfer fluid, these means consist of pipes .
  • the inlet pipe (10) is preferably provided with a three-way valve (12) allowing the emptying of the heating appliance (1).
  • Resistors (4) are in the form of substantially rectangular flat plates, their faces are placed parallel to the direction of the general movement of the fluid in the heater, upward movement represented by the arrow F. They are held in place with insulating supports (14) fixed to the body (7) of the enclosure (2).
  • the six resistors (4) are connected to each other in series by conductive bars (15), the two extreme resistors include the means (5) for connecting the assembly to the electrical distribution network (6).
  • the connections between the resistors (4) and the electrical network (6) pass through the bottom (9) of the enclosure (2) through an opening (16) provided with means of electrical insulation (17) and sealing.
  • resistors (4) and their mode of electrical connection have only been described above by way of example and it is not going beyond the ambit of the invention to replace at least one resistance (4) with several elementary resistances and / or by establishing the electrical connections between them differently.
  • the enclosure (2) is not completely filled with heat transfer fluid (3), in the free space (18) between the surface of the heat transfer fluid (3) and the cover (8) of the enclosure, a nitrogen pressure, the cover (8) being provided with a tube (19) for this purpose.
  • connections between the resistors (4) and the electrical network (6) can also be made through an opening of the cover (8), in the area of the cover (8) not bathed by the heat transfer fluid.
  • the inlet (10) pipes for the heat transfer fluid to be heated and the outlet (11) for the hot heat transfer fluid can be connected directly to the hot fluid implementation circuit, that is to say to the heating circuit of the industrial installation.
  • the inlet (10) pipes for the heat transfer fluid to be heated and the outlet (11) for the hot heat transfer fluid can be connected to a heat exchanger in which another heat transfer fluid is heated, this being used in the industrial installation heating circuit.
  • the resistors (4) can be produced in the form of substantially flat plates of discontinuous structure as shown in partial views in FIGS. 2 and 3.
  • the plate-shaped resistor of discontinuous structure a fragment of which is shown in FIG. 2, comprises holes (i9) substantially in the form of a diamond obtained by cutting from a sheet of metal a plurality of slots aligned along their length and placed in staggered rows, then stretching in a direction perpendicular to the slits, that is to say parallel to the small diagonals of the diamonds. This stretching causes a rotation of the ribbons (20) separating the diamonds (cf. FIG. 3).
  • the faces of the plates are the surfaces, materialized by the two broken lines (21, 22), which envelop all the reliefs of the plates.
  • FIG. 3 shows the speed vectors V of the general movement of the flowing heat transfer fluid
  • the speed vectors V are here parallel to the faces of the plate, this general movement does not take account of local movements, such as the vortices T, created by the reliefs of the discontinuous structure plate. These T vortices favor the transfer of heat between the resistance and the heat transfer fluid.
  • the electrical resistance (s) being immersed directly in the dielectric or practically dielectric product allow better heat exchange because, with the heating method according to the invention, the surface which participates in the heat exchange with the product to be heated is the very surface through which the Joule effect born in resistance dissipates.
  • the entire surface of the resistor participates in the exchange with the product and the temperature difference between the resistor and the product is small, which limits the risks of thermal degradation of the product which is directly in contact with the resistor.
  • the method and the heating device according to the intention also have the advantage of allowing the construction of compact heating devices, in particular boilers.
  • Another advantage of the heating appliances which are the subject of the invention is that, by the shape of the resistors and by their positioning in such a way that the velocity vectors of the general movement of the product in the vicinity of the resistors are tangent or parallel to the faces of the plates, the pressure drops of the product in the heater are relatively low. These relatively low pressure drops for an appliance intended for heating a liquid product often allow thermosyphon operation of the appliance or, failing this, assisted circulation of the liquid, without requiring the use of powerful pumping means. In addition, when such a heater is used as a boiler, it allows a free passage section for large bubbles, unlike the boilers according to the prior art.
  • the heating devices according to the invention are of easy construction and maintenance, the problems of tightness in the sheaths of the resistors being very limited.
  • a substantially parallelepipeoic boiler It consists of a container surmounted by an air exchanger.
  • the container is made of partially insulated sheet metal to ensure, taking into account the regulation system, almost permanent heating operation.
  • It has three resistors, connected in series, in the form of an elongated rectangular plate, zigzag folded along their length, and located at different levels parallel to the bottom of the boiler.
  • the resistors are plates of discontinuous structure as shown in Figure 2, they dissipate a power of 2 kW.
  • the boiler is equipped with temperature measurement probes placed above and below the resistors.
  • the boiler contains 30 liters of heat transfer fluid consisting of partially hydrogenated polyphenyls, marketed under the name of GILOTHERM TH by the company RHONE-POULENC SPECIALITES CHIMIQUES.
  • the boiler operated as a thermosyphon boiler.
  • the average exchange coefficient was 700 W / m2 ° C and the temperature difference between the surface of the resistor and the GILOTHERM TH in boiling range of around 24 ° C.
  • a parallelepipedal boiler was produced having a resistance capable of dissipating 250 W.
  • a mixture of terphenyls made up of 12% orthoterphenyl, 60% metaterphenyl, 28% paraterphenyl, having a dot, was inserted into the boiler container. final fusion of 150 ° C, marketed under the name of OMP terphenyls by the company RHONE-POULENC SPECIALITES CHEMIQUES.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Resistance Heating (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Forging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

L'invention concerne un procédé et un appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique à l'aide d'énergie électrique. L'appareil (1) comporte une enceinte (2) contenant le produit (3) dans lequel est immergée directement au moins une résistance (4) et des moyens (5) pour relier la ou lesdites résistances à un réseau (6) de distribution électrique. Le procédé et l'appareil sont notamment utilisés pour le chauffage de fluides caloporteurs.

Description

  • La présente invention concerne un procédé de chauffage d'un produit diélectrique ou pratiquement diélectrique à l'aide d'énergie électrique. Elle concerne également un appareil de chauffage mettant en oeuvre ledit procédé, et l'emploi d'un tel appareil.
  • Dans le présent texte le terme "produit" désignera au sens chimique du terme aussi bien un produit chimique unique qu'un mélange de deux ou plusieurs produits chimiques.
  • Le "produit" tel que défini ci-avant peut se présenter avant chauffage aussi bien à l'état liquide qu'à l'état solide, un produit se présentant à l'état solide pouvant passer à l'état liquide sous l'effet d'un apport de chaleur.
  • Le "produit" peut bien sûr être. constitué d'une seule phase ou de plusieurs phases, il peut par exemple se présenter sous former d'un mélange gaz/solide, liquide/liquide ou encore solide/liquide.
  • Le procédé et l'appareil, objets de la présente invention, sont plus particulièrement destinés au chauffage de fluides caloporteurs.
  • Les techniques de chauffage de produits à l'aide d'énergie électrique au moyen de l'effet Joule, actuellement utilisées industriellement, sont identiques que le produit à chauffer soit diélectrique ou conducteur. Ainsi par exemple, les liquides sont habituellement, chauffés au moyen de dispositif de chauffage comportant au moins une résistance électrique située dans une gaine métallique, un moyen d'isolation électrique tel que air, magnésie, nitrure de bore, ... étant prévu entre la résistance et la surface intérieure de la gaine, le dispositif étant immergé au sein du liquide à chauffer.
  • Le plus souvent, afin de pouvoir disposer d'une puissance suffisante, le dispositif de chauffage comporte un faisceau de résistances gainées en forme de U fixées par leurs bras libres à une plaque à travers laquelle les connexions électriques de chaque résistance en U sont assurées. La plaque permet également la fixation du dispositif de chauffage à une bride entourant une ouverture de l'enceinte contenant le liquide à chauffer, cette ouverture permet aussi d'introduire le faisceau à l'intérieur de l'enceinte.
  • Bien que ce moue de cnaurfage donne satisfaction, il présente de nombreux inconvénients.
  • En effet, comme des moyens d'isolation électrique sont nécessairement placés entre la résistance et la gaine métallique, ces moyens étant aussi, généralement, des isolants thermiques, il apparaît une différence de température importante entre la résistance elle même et la surface de la gaine participant aux échanges thermiques avec le liquide à cnauffer.
  • De plus, la géométrie du faisceau de résistances est cause de pertes de charges importantes, de zones de stagnation du liquide donc de surchauffes et de risques de dégradations de celui-ci. En outre, cette géométrie favorise aussi l'encrassement du faisceau.
  • De par leur conception, les faisceaux sont lourds et encombrants et de plus, chaque résistance en U implique d'être connectée électriquement à chacune de ses extrémités. Ceci est un inconvénient important de ce mode de chauffage, car on ne dispose pratiquement pas sur le marché de faisceaux d'une puissance unitaire disponible supérieure à 200 kW, ce qui implique de pourvoir l'enceinte contenant le liquide à chauffer d'un grand nombre de faisceaux pour disposer de la puissance nécessaire. Ainsi, lorsque des volumes ou des déoits importants de liquide sont à chauffer, à des températures de l'ordre de 300 °C par exemple, dans des installations de produits chimiques, ce mode de chauffage implique un matériel encombrant et coûteux.
  • Pour pallier ces inconvénients pour le chauffage de produits diélectriques ou pratiquement diélectriques à l'aide d'énergie électrique on a maintenant mis au point un procédé de chauffage et réalisé un appareil mettant en oeuvre ledit procédé.
  • Il a maintenant été trouvé, un procédé de chauffage d'un produit diélectrique ou pratiquement diélectrique à l'aide d'énergie électrique, caractérisé en ce qu'on immerge directement au moins une résistance dans ledit produit et on applique une différence de potentiel aux bornes de la ou desdites résistances.
  • Par "proouit pratiquement diélectrique" en entend, dans le présent texte, un produit dont la résistivité est supérieure à 108 Ω/cm à la température d'utilisation.
  • Par "directement" on entend que la résistance est nue, c'est-à-dire qu'entre la résistance et le produit il n'existe pas de moyens substantiels d'isolation électrique, ceci n'exclut pas, que dans certains cas, et pour certaines applications, la résistance comporte un mince revêtement.
  • Le procédé, objet de l'invention, est tel que l'on peut appliquer aux bornes de la ou des résistances une différence de potentiel supérieure à 380 V.
  • On peut notamment appliquer aux bornes de la résistance des différences de potentiel allant jusqu'à 10 000 V, des différences de potentiel de l'ordre de 5 500 V étant couramment disponibles en usine. Bien sûr, dans ce cas, lors de la mise en oeuvre du procédé, l'homme de l'art se conformera aux règles en vigueur et aux spécifications particulières de conception et d'utilisation des installations haute tension.
  • Dans le présent texte par "résistance" on entend un conducteur dans lequel toute l'énergie électrique reçue est transformée en chaleur par effet Joule.
  • Il a également été trouvé un appareil de chauffage de produit diélectrique ou pratiquement diélectrique qui met en oeuvre le procédé de chauffage, objet de l'invention.
  • Un tel appareil de chauffage est caractérisé en ce qu'il comporte une enceinte contenant ledit produit dans lequel est immergée au moins une résistance et des moyens pour relier la ou lesdites résistances à un réseau de distribution électrique.
  • L'appareil, selon l'invention, comporte, bien sûr, dans la paroi de l'enceinte des ouvertures permettant le passage des moyens pour relier la ou les résistances à un réseau de distribution électrique. L'homme de l'art établira les connexions entre les résistances et le réseau par les techniques habituelles en prévoyant les moyens d'isolation électrique nécessaires.
  • Avantageusement, l'appareil de chauffage, objet de l'invention, comporte plusieurs résistances reliées électriquement en série et/ou en parallèle.
  • Selon un mode de réalisation, l'appareil, selon l'invention, peut comporter au moins trois résistances reliées électriquement en triangle ou en étoile. Ce mode de réalisation permet de relier les résistances à un réseau de distribution électrique triphasé.
  • Le terme "résistance" dans le présent texte désigne aussi bien une résistance unique qu'une résistance formée de plusieurs résistances élémentaires, identiques ou non, reliées en série et/ou en parallèle.
  • L'homme de l'art déterminera le schéma électrique de liaison des résistances, selon la puissance de chauffage nécessaire, le matériel disponible, les impératifs de construction ......
  • L'appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique, objet de l'invention, peut être tel que l'enceinte contenant le produit est balayée par le produit à chauffer.
  • L'enceinte de l'appareil peut être un tronçon de conduite balayé par le produit à chauffer. Un tel appareil est plus particulièrement destiné à maintenir la température d'un produit en mouvement par compensation des pertes thermiques survenues par exemple lors du transport du produit chaud sur de longues distances.
  • L'enceinte, balayée par le produit à chauffer, d'un tel appareil peut aussi être par exemple la zone de réaction d'un réacteur chimique, la chaleur nécessaire à la réaction étant directement apportée au mélange réactionnel par une ou plusieurs résistances immergées dans celui-ci. Ainsi l'enceinte balayée par le produit peut être la zone de réaction d'un réacteur à lit fluidisé, les résistances étant immergées directement dans le mélange gaz/solide.
  • Par "enceinte balayée par le produit" on entend ci-avant que le débit du produit par courant l'enceinte est relativement important par rapport au volume de produit présent dans l'enceinte.
  • Au contraire, si après quand l'enceinte est un "récipient comportant des moyens d'entrée et des moyens de sortie" on entend que celle-ci contient un certain volume de produit et que le débit de produit parcourant l'enceinte est faible vis-à-vis du produit présent dans celle-ci.
  • Selon un autre mode de réalisation, l'enceinte d'un appareil de chauffage selon l'invention peut être constituée par un récipient comportant des moyens d'entrée du produit à chauffer et des moyens de sortie du produit chaud. Un tel appareil peut comporter un récipient d'un volume suffisant pour constituer un stockage de produit chaud.
  • Les chaudières sont des appareils de chauffage selon ce mode de réalisation. De tels appareils de chauffage sont plus particulièrement destinés au chauffage de fluides caloporteurs organiques, naturels ou synthétiques, utilisés dans les installations industrielles. On peut aussi utiliser comme fluide caloporteur des produits ou des mélanges de produits minéraux fondus pratiquement diélectriques.
  • Selon un autre mode de réalisation, l'enceinte peut être constituée par un récipient fermé qui comporte des moyens de remplissage et de vidange du produit au moins une résistance étant immergée dans le produit. Un tel appareil permet de recevoir de la chaleur, de la stocker et de la restituer.
  • Selon encore un autre mode de réalisation, l'enceinte d'un appareil de chauffage objet de l'invention peut être constituée par un récipient comportant des moyens d'entrée du produit à chauffer et des moyens de sortie de la vapeur dudit produit. De préférence un appareil selon ce mode de réalisation est destiné à chauffer un liquide, le liquide étant chauffé jusqu'à son point d'ébullition dans le récipient.
  • Les bouilleurs sont des appareils de chauffage selon cet autre mode de réalisation.
  • L'appareil de chauffage objet de l'invention peut comporter des résistances formées par exemple d'un fil métallique enroulé en hélice et non supporté par un mandrin.
  • De préférence l'appareil selon l'invention est tel que la ou lesdites résistances sont sensiblement en forme de plaque.
  • Avantageusement la ou les résistances sont placées de façon telle que les vecteurs vitesses du mouvement général du produit, en écoulement naturel ou forcé, au voisinage de la ou des résistances, soient tangents ou parallèles aux faces desdites plaques.
  • Le mouvement général du produit est le mouvement du produit correspondant au dépiacement de celui-ci, sans tenir compte de mouvements locaux, tels que les tourbillons, au voisinage des faces des plaques.
  • Cette disposition a pour but de diminuer autant que possible les pertes de charges dues aux résistances et ainsi de favoriser les échanges thermiques avec le produit en conservant des vitesses de balayage des faces des résistances par le produit, élevées.
  • Bien que le terme "plaque" désigne plus précisément une feuille d'une manière rigide, plane et peu épaisse, on étendra dans le présent texte la signification de ce terme à des feuilles peu épaisses non planes, par exemple cylindriques ou gauches.
  • Des résistances en forme de plaques gauches seront plaçées de façon telle que les vecteurs vitesses du mouvement général du prouuit, en écoulement naturel ou forcé, au voisinage des résistances, soient tangents aux faces desdites plaques.
  • Des résistances en forme de plaque planes seront placées de façon telle que les vecteurs vitesses du mouvement général du produit en écoulement naturel ou forcé, au voisinage desdites surfaces, soient parallèles aux faces des plaques.
  • Dans des appareils de chauffage selon l'invention, présentant un écoulement naturel ou forcé du produit, de direction générale parallèle à une direction donnée, on peut utiliser des résistances en forme de plaque sensiblement plane placées parallèlement à la direction générale du mouvement du produit.
  • Des résistances en forme de plaque plane rectangulaire allongée peuvent être pliées, par exemple en zigzag, selon leur longueur et placées de façon telle que leur largeur soit parallèle à la direction générale du mouvement du produit.
  • 0n peut aussi utiliser des résistances en forme de plaque de forme générale cylindrique, le cylindre étant engendré par une génératrice se déplaçant parallèlement à la direction générale du mouvement du produit en s'appuyant sur une directrice, ouverte ou fermée, de forme courbe, par exemple circulaire, ou de forme polygonale, plusieurs résistances cylindriques peuvent être placées de façon concentrique.
  • Les résistances peuvent être en forme de plaque de structure continue ou de structure discontinue.
  • Par "structure continue" ces résistances en forme ue plaque on entend que la structure des résistances ne comporte pas de trou, ainsi des résistances de structure continue sont semblables à des tôles.
  • Par "structure discontinue" des résistances en forme de plaque on entend que la structure des résistances comporte des trous, ainsi des résistances de structure discontinue peuvent être constituées d'un tissu obtenu par tissage, tricotage, tressage ou torsadage. Elles peuvent aussi être constituées d'une tôle ajourée obtenue par découpage avec enlèvement de matière, par exemple par poinçonnage.
  • De préférence des résistances en forme de plaque de structure discontinue sont obtenues par découpage d'une pluralité de fentes dans une tôle et étirage dans une direction perpendiculaire aux fentes.
  • Pour les résistances de structure discontinue formées d'un tissu ou obtenues par découpage et étirage on considère que la face des plaques est la surface qui enveloppe les reliefs des plaques.
  • Les résistances sont réalisées en des matériaux, résistant à la corrosion. Ainsi, les résistances peuvent être en aciers inoxydables de nuances habituellement utilisées pour ce type de matériel, en aciers inoxydables réfractaires, on peut aussi utiliser des aciers spéciaux après qu'ils aient subi un traitement anticorrosion.
  • Les surfaces des résistances peuvent être d'aspect sensiblement lisse, de préférence elles sont d'aspect rugueux. Cet aspect rugueux peut être obtenu par exemple par sablage..
  • Des résistances dont les surfaces sont d'aspect rugueux sont plus particulièrement destinées à la réalisation d'appareils de chauffage objets de l'invention qui comportent des moyens d'entrée d'un liquide à chauffer et des moyens de sortie de la vapeur dudit liquide. En effet la rugosité des résistances favorise l'ébullition nucléée du liquide.
  • Eventuellement, les surfaces des résistances peuvent être pourvues d'un revêtement, ce revêtement peut être poreux, afin de favoriser l'éoullition nucléée, il peut aussi être un revêtement anticorrosion de faible épaisseur par exemple en émail silicone ou en thermostable.
  • L'appareil de chauffage de produit diélectrique ou pratiquement diélectrique, selon l'invention, est utilisable notamment pour chauffer des produits chimiques peu ou pas conducteurs de l'électricité, mis en jeu oans des procédés industriels.
  • L'invention sera décrite ci-après en se référant plus particulièrement à un appareil de chauffage d'un produit liquide.
  • Cet appareil de cnauffage est particulièrement destiné au chauffage des fluides caloporteurs utilisés dans les installations chimiques.
  • La compréhension de l'invention sera facilitée par les figures ci-jointes, qui illustrent à titre d'exemple, schématiquement et sans échelle déterminée, un mode de réalisation d'un appareil de chauffage selon la présente invention et un mode de réalisation de la structure d'une résistance.
    • La figure 1 est une vue en coupe par un plan axial d'un mode de réalisation d'un appareil de chauffage selon l'invention.
    • La figure 2 est une vue partielle d'un mode de réalisation d'une résistance de structure discontinue.
    • La figure 3 est une vue partielle en coupe par le plan III-III de la résistance selon la figure 2.
  • L'appareil de chauffage (1), objet de l'invention, représenté schématiquement figure l, est plus particulièrement un appareil de chauffage de fluide caloporteur utilisé dans une installation industrielle.
  • Cet appareil de chauffage (1) comporte une enceinte (2) contenant le fluide caloporteur (3), dans le fluide caloporteur (3) sont immergées six résistances (4) et des moyens (5) pour relier les résistances (4) à un réseau de distribution électrique (6).
  • L'enceinte (2) est, selon le présent mode de réalisation, un récipient formé d'un corps (7) sensiblement cylindrique, fermé à ses extrémités par un couvercle (8) et un fond (9).
  • L'enceinte (2) comporte à sa partie basse des moyens d'entrée (10) du fluide caloporteur à chauffer et au voisinage de sa partie haute des moyens de sortie (11) du fluide caloporteur chaud, ces moyens sont constitués par des conduites.
  • La conduite d'entrée (10) est de préférence pourvue d'une vanne trois voies (12) permettant la vidange de l'appareil de chauffage (1).
  • Les résistances (4), selon le mode Je réalisation représenté figure 1, sont en forme de plaques planes sensiblement rectangulaires, leurs faces sont placées parallèlement à la direction du mouvement général du fluide dans l'appareil de chauffage, mouvement ascendant représenté par la flèche F. Elles sont maintenues en place à l'aide de supports isolants (14) fixés au corps (7) de l'enceinte (2).
  • Les six résistances (4) sont reliées l'une à l'autre en série par des barrettes conductrices (15), les deux résistances extrêmes comportent les moyens (5) pour relier l'ensemble au réseau de distribution électrique (6). Les connexions entre les résistances (4) et le réseau électrique (6) traversent le fond (9) de l'enceinte (2) par une ouverture (16) pourvue de'moyens d'isolation électrique (17) et d'étanchéité.
  • Les résistances (4) et leur mode de liaison électrique n'ont été décrits ci-avant qu'à titre d'exemple et l'on ne sort pas du cadre de l'invention en remplaçant au moins une résistance (4) par plusieurs résistances élémentaires et/ou en établissant les liaisons électriques entre elles différemment.
  • Avantageusement l'enceinte (2) n'est pas totalement remplie de fluide caloporteur (3), dans l'espace libre (18) entre la surface du fluide caloporteur (3) et le couvercle (8) de l'enceinte on maintient une pression d'azote, le couvercle (8) étant pourvu d'une tubulure (19) à cet effet.
  • Les connexions entre les résistances (4) et le réseau électrique (6) peuvent aussi être réalisées à travers une ouverture du couvercle (8), dans la zone du couvercle (8) non baignée par le fluide caloporteur.
  • Les conduites d'entrée (10) du fluide caloporteur à chauffer et de sortie (11) du fluide caloporteur chaud peuvent être reliées directement au circuit de mise en oeuvre du fluide chaud c'est-à-dire au circuit de chauffage de l'installation industrielle.
  • Les conduites d'entrée (10),du fluide caloporteur à chauffer et de sortie (11) du fluide caloporteur chaud peuvent être reliées à un échangeur de chaleur dans lequel est chauffé un autre fluide caloporteur, celui-ci étant mis en oeuvre dans le circuit de chauffage de l'installation industrielle. Une telle réalisation permet de mieux sauvegarder la propreté, et par voie de conséquence, les propriétés olélectriuues du fluide caloporteur chauffé dans l'appareil de chauffage objet de la présente invention.
  • Les résistances (4) peuvent être réalisées en forme ae plaques sensiblement planes de structure discontinue telle que représentée en vues partielles figures 2 et 3.
  • La résistance en forme de plaque de structure discontinue, dont un fragment est représenté figure 2, comporte des trous (i9) sensiblement en forme de losange obtenus par découpage dans une tôle d'une pluralité de fentes alignées selon leur longueur et placées en quinconce, puis étirage dans une direction perpendiculaire aux fentes, c'est-à-dire parallèle aux petites diagonales des losanges. Cet étirage provoque une rotation des rubans (20) séparant les losanges (cf. figure 3). Selon ce mode de réalisation des résistances on considère que les faces des plaques sont les surfaces, matérialisées par les deux lignes discontinues (21, 22), qui enveloppent tous les reliefs des plaques.
  • Sur la figure 3 on a représenté les vecteurs vitesses V du mouvement général du fluide caloporteur en écoulement, les vecteurs vitesses V sont ici parallèles aux faces de la plaque, ce mouvement général ne tient pas compte des mouvements locaux, tels que les tourbillons T, crées par les reliefs de la plaque de structure discontinue. Ces tourbillons T, favorisent le transfert de chaleur entre la résistance et le fluide caloporteur.
  • Le procédé et l'appareil, objets de l'invention, présentent de nombreux avantages vis-à-vis des appareils selon l'art antérieur.
  • En effet, la ou les résistances électriques étant immergées directement dans le produit diélectrique ou pratiquement diélectrique permettent un meilleur échange thermique car, avec le procédé de chauffage selon l'invention, la surface qui participe à l'échange thermique avec le produit à chauffer est la surface même par laquelle se dissipe l'effet Joule né dans la résistance. Ainsi, toute la surface de la résistance participe à l'échange avec le produit et l'écart de température entre la résistance et le produit est faible, ce qui limite les risques de dégradation thermique du produit qui est directement en contact avec la résistance.
  • Le procédé et l'appareil ue chauffage selon l'intention présentent aussi l'avantage de permettre la construction d'appareils de chauffage, notamment de chaudières, compacts. En effet, selon l'invention on peut disposer, pour des chaudières, d'une puissance électrique d'au moins i kW par litre d'encombrement de la zone d'écnange de chaudière.
  • La diminution du nombre et de l'encombrement des connexions électriques, par rapport aux dispositifs de chauffage comportant un faisceau de résistances électriques pourvues de gaines, favorise. également la compacité des appareils de chauffage selon l'invention.
  • Un autre avantage des appareils de chauffage objets de l'invention, est que, de par la forme de plaque des résistances et de par leur positionnement de façon telle que les vecteurs vitesses du mouvement général du produit au voisinage des résistances soient tangents ou parallèles aux faces des plaques, les pertes de charges du produit dans l'appareil de chauffage sont relativement faibles. Ces pertes de charges relativement faibles pour un appareil destiné à chauffer un produit liquide permettent souvent un fonctionnement en thermosiphon de l'appareil ou à défaut une circulation assistée du liquide, sans nécessiter l'utilisation de moyens de pompages puissants. De plus, lorsqu'un tel appareil de chauffage est utilisé comme bouilleur, il permet une section libre de passage des bulles importante, contrairement aux bouilleurs selon l'art antérieur.
  • En outre, les appareils de chauffage selon l'invention sont de constructions et d'entretien aisés, les problèmes d'étanchéité au niveau des gaines des résistances étant très limités.
  • Les avantages du procédé et de l'appareil de chauffage selon l'invention sont particulièrement intéressants à utiliser pour le chauffage de liquides diélectriques tels que les fluides caloporteurs.
  • Les exemples ci-après mettent en évidence les avantages du procédé et de l'appareil de chauffage mettant en oeuvre le procédé, objets de la présente invention, lors de diverses utilisations de l'appareil.
  • Exemple I :
  • Un a réalisé une chaudière sensiblement parallélepipéoique. Elle est constituée d'un récipient surmonté d'un échangeur à air. Le récipient est en tôle partiellement calorifugé pour assurer, compte-tenu du système de régulation, un fonctionnement quasi permanent du chauffage. Elle comporte trois résistances, reliées en série, en forme de plaque rectangulaire allongée, pliée en zigzag selon leur longueur, et situées à des niveaux différents parallèlement au fond de la chaudière.
  • Les résistances sont des plaques de structure discontinue telles que représentées figure 2, elles dissipent une puissance de 2 kW.
  • La chaudière est équipée de sondes de mesures de températures placées au-dessus et au-dessous des résistances.
  • La chaudière, contient 30 litres de fluide caloporteur constitué de polyphényles partiellement hydrogénés, commercialisé sous le nom de GILOTHERM TH par la Société RHONE-POULENC SPECIALITES CHIMIQUES.
  • Les essais ont été conduits par chauffage du GILOTHERM TH successivement : 1 000 heures à 300 °C
    • 500 heures à 340 °C
    • 650 heures à 350 °C.
  • A 300 °C la chaudière fonctionnait en thermosiphon, en convection naturelle.
  • A 350 °C on a noté la formation progressive de produits légers et la convection est devenue plus énergique : la chaudière fonctionnait en bouilleur thermosiphon. Le coefficient d'échange moyen était de 700 W/m2 °C et l'écart de température entre la surface de la résistance et le GILOTHERM TH en ébullition de l'ordre de 24 °C.
  • Entre chaque séquence d'essais, les résistances ont été sorties et observées : elles ne présentent aucune trace d'encrassement.
  • Lés analyses et les mesures des propriétés du fluide caloporteur mis en oeuvre dans la chaudière montrent que celui-ci n'a subi aucune dégradation.
  • Exemple II :
  • Dans la même chaudière, en utilisant une résistance de 2 kW dissipant 40 kW/m , on a chauffé pendant 288 heures à 255 °C, un fluide caloporteur constitué_de 26,5 % en poids de diphényle et 73,5 % en poids d'oxyde de phényle, commercialisé sous le nom de GILOTHERM DO par la Société RHONE-POULENC SPECIALITES CHIMIQUES. Le coefficient d'échange état de 2 000 KW/m2 °C, l'écart de température entre la résistance et
    Figure imgb0001
  • Apiès cet essai la résistance a été démontée et examinée, aucune trace d'encrassement n'a été ooservée.
  • Exemple III:
  • On a réalisé une chaudière parallélipipédique possédant une résistance susceptible de dissiper 250 W. On a introouit dans le récipient de la chaudière un mélange de terphényles constitué de 12 % d'orthoterphényle, 60 % de métaterphényle, 28 % de paraterphényle, ayant un point de fusion finale de 150 °C, commercialisé sous le nom de terphényles OMP par la Société RHONE-POULENC SPECIALITES CHIMIQUES.
  • Après solidification et refroidissement à la température ambiante un a réchauffé plusieurs fois le mélange de terphényles OMP jusqu'à 200 °C.
  • La fusion du mélange de terphényles s'est effectuée sans difficulté, la résistance n'a pas été encrassée.
  • Exemple IV :
  • Dans le même dispositif on a réchauffé aisément de la température ambiante à 240 °C un mélange de polyisobutènes visqueux oe masse molaire moyenne environ 900, commercialisé par la Société NAPHTACHIMIE sous le nom de NAPVIS 10.

Claims (23)

1. - Procédé de chauffage d'un produit diélectrique ou pratiquement diélectrique à l'aide d'énergie électrique, caractérisé en ce qu'on immerge directement au moins une résistance dans ledit produit et on applique une différence de potentiel aux bornes de la ou desdites résistances.
2. - Procédé selon la revendication 1, caractérisé en ce qu'on applique aux bornes de la ou des résistances une différence de potentiel supérieure à 380 V.
3. - Appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique à l'aide d'énergie électrique, caractérisé en ce qu'il met en oeuvre le procédé de chauffage selon l'une quelconque des revendications 1 ou 2.
4. - Appareil selon la revendication 3, caractérisé en ce qu'il comporte une enceinte (2) contenant ledit produit (3) dans lequel est immergée au moins une résistance (4) et des moyens (5) pour relier la ou lesdites résistances à un réseau de distribution électrique (6).
5. - Appareil selon la revendication 4, caractérisé en ce qu'il comporte plusieurs résistances (4) reliées électriquement (15) en série et/ou en parallèle.
6. - Appareil selon la revendication 4, caractérisé en ce qu'il comporte au moins trois résistances reliées électriquement en triangle ou en étoile.
7. - Appareil selon l'une quelconque des revendications 4 à 6, caractérisé en ce que ladite enceinte est balayée par le produit à chauffer.
8. - Appareil selon l'une quelconque des revendications 4 à 7, caractérisé en ce que ladite enceinte balayée par le produit à chauffer est un tronçon de conduite.
9. - Appareil selon l'une quelconque des revendications 4 à 7, caractérisé en ce que ladite enceinte balayée par le produit à chauffer est la zone de réaction d'un réacteur chimique.
10. - Appareil selon l'une quelconque des revendications 4 à 6, caractérisé en ce que ladite enceinte (2) est constituée par un récipient (7, 8, 9) comportant des moyens d'entrée (10) du produit à chauffer et des moyens de sortie (11) du produit chaud.
11. - Appareil selon l'une quelconque des revendications 4 à 6 caractérisé en ce que ladite enceinte est constituée par un récipient comportant des moyens d'entrée du produit à chauffer et des moyens de sortie de la vapeur dudit produit.
12. - Appareil selon l'une quelconque des revendications 4 à 6, caractérisé en ce que ladite enceinte est constituée par un récipient fermé comportant des mcyens de remplissage et de vidange du produit à chauffer.
13. - Appareil selon l'une quelconque des revendications 4 à 12, caractérisé en ce que la ou lesdites résistances sont sensiblement en forme de plaque.
14. - Appareil selon la revendication 13, caractérisé en ce que la ou les résistances en forme de plaque sont placées de façon telle que les vecteurs vitesses, du mouvement général du produit en écoulement naturel ou forcé, au voisinage de la ou des résistances soient tangents ou parallèles aux faces desdites plaques.
15. - Appareil selon l'une des revendications 13 ou 14, caractérisé en ce que la ou les résistances sont en forme de plaque sensiblement plane, ou de plaque sensiblement cylindrique.
16. - Appareil selon l'une quelconque des revendications 12 à 15, caractérisé en ce que la ou les résistances, en forme de plaque, sont de structure continue.
17. - Appareil selon l'une quelconque des revendications 12 à 16, caractérisé en ce que la ou les résistances, en forme de plaque, sont ue structure discontinue.
18. - Appareil selon l'une quelconque des revendications 4 à 17, caractérisé en ce que les surfaces de la ou des résistances sont d'aspect rugueux.
19. - Appareil selon l'une quelconque des revendications 4 à 18, caractérisé en ce que les surfaces de la ou des résistances sont pourvues d'un revêtement.
20. - Emploi d'un appareil de chauffage selon l'une quelconque des revendications 4 à 8, lu à 19, comme appareil de chauffage de liquide diélectrique ou pratiquement diélectrique notamment de fluide caloporteur.
21. - Emploi d'un appareil de chauffage selon l'une quelconque des revendications 4 à 7, 9 à 11, 13 à 19 comme zone de réaction d'un réacteur chimique.
22. - Emploi d'un appareil de chauffage selon l'une quelconque des revendications 4 à 6, 11, 13 à 19 comme bouilleur.
23. - Emploi d'un appareil de chauffage selon l'une quelconque des revendications 4 à 6, 12 à 19 comme appareil pour recevoir, stocker et restituer la chaleur.
EP82420166A 1981-12-16 1982-11-26 Procédé et appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique et emploi dudit appareil pour le chauffage notamment de fluide caloporteur Expired EP0082092B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82420166T ATE32643T1 (de) 1981-12-16 1982-11-26 Verfahren und vorrichtung zum erhitzen einer dielektrischen oder annaehernd dielektrischen fluessigkeit und anwendung dieser vorrichtung zur erhitzung speziell eines waermetraegers.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8123790A FR2518351B1 (fr) 1981-12-16 1981-12-16 Procede et appareil de chauffage de liquide dielectrique ou pratiquement dielectrique et emploi dudit appareil pour le chauffage notamment de fluide caloporteur
FR8123790 1981-12-16

Publications (2)

Publication Number Publication Date
EP0082092A1 true EP0082092A1 (fr) 1983-06-22
EP0082092B1 EP0082092B1 (fr) 1988-02-24

Family

ID=9265213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82420166A Expired EP0082092B1 (fr) 1981-12-16 1982-11-26 Procédé et appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique et emploi dudit appareil pour le chauffage notamment de fluide caloporteur

Country Status (6)

Country Link
EP (1) EP0082092B1 (fr)
AT (1) ATE32643T1 (fr)
BR (1) BR8207165A (fr)
CA (1) CA1195719A (fr)
DE (1) DE3278148D1 (fr)
FR (1) FR2518351B1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778559A (en) * 1986-10-15 1988-10-18 Advantage Production Technology Semiconductor substrate heater and reactor process and apparatus
US4891335A (en) * 1986-10-15 1990-01-02 Advantage Production Technology Inc. Semiconductor substrate heater and reactor process and apparatus
US4938815A (en) * 1986-10-15 1990-07-03 Advantage Production Technology, Inc. Semiconductor substrate heater and reactor process and apparatus
US4956046A (en) * 1986-10-15 1990-09-11 Advantage Production Technology, Inc. Semiconductor substrate treating method
US5044314A (en) * 1986-10-15 1991-09-03 Advantage Production Technology, Inc. Semiconductor wafer processing apparatus
WO2008112235A1 (fr) 2007-03-12 2008-09-18 Dyno Nobel Inc. Circuit de protection contre l'allumage d'un détonateur

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR351449A (fr) * 1905-02-11 1905-07-17 Shoenberg Electric Appliance C Appareil de chauffage électrique d'un liquide
CH145649A (de) * 1930-02-24 1931-03-15 Georg Leffer Louis Verfahren und Vorrichtung zum gleichmässigen Erwärmen von Fluida aller Art vermittelst elektrisch beheizter Widerstände.
FR1567557A (fr) * 1967-05-30 1969-05-16
FR1600146A (fr) * 1968-12-31 1970-07-20
DE2400478A1 (de) * 1974-01-05 1975-07-17 Eckerfeld Geb Reip Elisabeth Elektrisch beheizter durchlauferhitzer
DE2532377A1 (de) * 1975-07-19 1977-02-03 Licentia Gmbh Elektrisches heisswassergeraet
DE2703293A1 (de) * 1977-01-05 1978-07-06 Petz Elektro Waerme Techn Elektrisches heizregister
US4292504A (en) * 1979-10-02 1981-09-29 Tutco, Inc. Expanded metal electric heating element with edge support

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR351449A (fr) * 1905-02-11 1905-07-17 Shoenberg Electric Appliance C Appareil de chauffage électrique d'un liquide
CH145649A (de) * 1930-02-24 1931-03-15 Georg Leffer Louis Verfahren und Vorrichtung zum gleichmässigen Erwärmen von Fluida aller Art vermittelst elektrisch beheizter Widerstände.
FR1567557A (fr) * 1967-05-30 1969-05-16
FR1600146A (fr) * 1968-12-31 1970-07-20
DE2400478A1 (de) * 1974-01-05 1975-07-17 Eckerfeld Geb Reip Elisabeth Elektrisch beheizter durchlauferhitzer
DE2532377A1 (de) * 1975-07-19 1977-02-03 Licentia Gmbh Elektrisches heisswassergeraet
DE2703293A1 (de) * 1977-01-05 1978-07-06 Petz Elektro Waerme Techn Elektrisches heizregister
US4292504A (en) * 1979-10-02 1981-09-29 Tutco, Inc. Expanded metal electric heating element with edge support

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778559A (en) * 1986-10-15 1988-10-18 Advantage Production Technology Semiconductor substrate heater and reactor process and apparatus
US4891335A (en) * 1986-10-15 1990-01-02 Advantage Production Technology Inc. Semiconductor substrate heater and reactor process and apparatus
US4938815A (en) * 1986-10-15 1990-07-03 Advantage Production Technology, Inc. Semiconductor substrate heater and reactor process and apparatus
US4956046A (en) * 1986-10-15 1990-09-11 Advantage Production Technology, Inc. Semiconductor substrate treating method
US5044314A (en) * 1986-10-15 1991-09-03 Advantage Production Technology, Inc. Semiconductor wafer processing apparatus
WO2008112235A1 (fr) 2007-03-12 2008-09-18 Dyno Nobel Inc. Circuit de protection contre l'allumage d'un détonateur

Also Published As

Publication number Publication date
DE3278148D1 (en) 1988-03-31
BR8207165A (pt) 1983-10-11
EP0082092B1 (fr) 1988-02-24
FR2518351A1 (fr) 1983-06-17
CA1195719A (fr) 1985-10-22
FR2518351B1 (fr) 1985-06-21
ATE32643T1 (de) 1988-03-15

Similar Documents

Publication Publication Date Title
EP0616166A1 (fr) Conduit de fluides chauffable
EP0688421B1 (fr) Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif
AU567032B2 (en) Heat exchanger
KR20140033149A (ko) 용융염 이송용 파이프라인
EP0082092B1 (fr) Procédé et appareil de chauffage d'un produit diélectrique ou pratiquement diélectrique et emploi dudit appareil pour le chauffage notamment de fluide caloporteur
EP0153363A1 (fr) Echangeur thermique.
EP1408291A1 (fr) Dispositif electrique de chauffage d'eau, dispositif de chauffage liquide et generateur de vapeur
US5226106A (en) Ohmic heating apparatus using electrodes formed of closed microporosity material
FR2651869A1 (fr) Chaudiere electrique a turbulence cyclonique.
CA1165704A (fr) Conduite tubulaire flexible utilisable notamment pour le transfert de fluides a haute temperature et/ou a haute pression et tuyaux comportant une telle conduite tubulaire
FR2533307A1 (fr) Procede pour chauffer par induction des pieces a une temperature uniforme, notamment pour fabriquer des radiateurs de vehicule automobile
EP0586677B1 (fr) Dispositif de regulation thermique d'un fluide en circulation
US20040256375A1 (en) Electrical water heating device with large contact surface
EP0143719B1 (fr) Générateur électrique de vapeur
FR2725508A1 (fr) Dispositif de controle du flux de chaleur par vanne thermique
FR2661488A1 (fr) Echangeur de chaleur tridimensionnel a alimentation electrique.
EP4205508B1 (fr) Installation et procédé sous-marin de chauffage d'un effluent polyphasique circulant à l'intérieur d'une enveloppe sous-marine
EP3835641A1 (fr) Installation sous-marine de chauffage d'un effluent diphasique liquide/gaz circulant à l'intérieur d'une enveloppe sous-marine
WO1994012270A1 (fr) Echangeur melangeur a effet de convection chaotique
EP0117201B1 (fr) Dispositif de chauffage électrique par effet Joule direct pour chauffer un mélange gazeux
FR2459954A1 (fr) Echangeur de chaleur a double armature
FR2634091A1 (fr) Dispositif de chauffage d'un liquide en circulation par micro-ondes
FR2584172A1 (fr) Appareil a eau chaude a echangeur thermique
McCranie Heating Fuel Oil and Other Fluids in Cement Plants
Takaki et al. Application of electric heat tracing system to offshore pipelines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19831102

ITF It: translation for a ep patent filed
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHONE-POULENC CHIMIE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 32643

Country of ref document: AT

Date of ref document: 19880315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3278148

Country of ref document: DE

Date of ref document: 19880331

NLS Nl: assignments of ep-patents

Owner name: MONSANTO COMPANY TE ST. LOUIS, MISSOURI, VER. ST.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911023

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911111

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911113

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911115

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911129

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911230

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921126

Ref country code: AT

Effective date: 19921126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921130

Ref country code: CH

Effective date: 19921130

Ref country code: BE

Effective date: 19921130

BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82420166.9

Effective date: 19930610