EP0078345A1 - Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich - Google Patents

Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich Download PDF

Info

Publication number
EP0078345A1
EP0078345A1 EP81109474A EP81109474A EP0078345A1 EP 0078345 A1 EP0078345 A1 EP 0078345A1 EP 81109474 A EP81109474 A EP 81109474A EP 81109474 A EP81109474 A EP 81109474A EP 0078345 A1 EP0078345 A1 EP 0078345A1
Authority
EP
European Patent Office
Prior art keywords
pump
gap
chamber
high pressure
centrifugal pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81109474A
Other languages
English (en)
French (fr)
Inventor
Volker Stapelfeldt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRAN and LUEBBE
SPX Flow Technology Germany GmbH
Original Assignee
BRAN and LUEBBE
Bran und Luebbe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRAN and LUEBBE, Bran und Luebbe GmbH filed Critical BRAN and LUEBBE
Priority to EP81109474A priority Critical patent/EP0078345A1/de
Publication of EP0078345A1 publication Critical patent/EP0078345A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0613Special connection between the rotor compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons

Definitions

  • the invention relates to a canned motor centrifugal pump with axial thrust compensation, with a casing that accommodates the canned pipe and encloses at least one pump impeller, a rotatable and axially displaceably mounted rotor shaft that supports the rotor and one or more pump impellers, at least one in the housing from the high pressure side of the pump to the canned interior of the partial flow duct for passing a partial material flow that is used for heat dissipation and lubrication through the rotor gap and to the slide bearings, one formed between the pump impeller and an intermediate wall of the housing and communicating with the bearing gap of the pump-mounted sliding bearing and an annular gap between the pump impeller and the intermediate wall of the housing Compensation chamber, arranged in the rear wall of the pump impeller facing this, the low pressure side of which connects the compensation chamber with through-openings and, if appropriate, the flow cross-section for the material to be conveyed om with axial displacements of the rotor shaft itself active counteracting changing throttle devices
  • the axial thrust compensation is also greatly influenced by the size of the partial flow and the changes in the conveyed material forming the partial flow during operation.
  • changes in the composition and / or the temperature of the conveyed material forming the partial flow often lead to strong changes in viscosity, which lead to undesirable axial displacements of the rotor shaft in the conventional designs.
  • the setting of the central axial position of the rotor shaft on the test bench is carried out by correspondingly setting the cross-sectional dimensions of the through openings in the pump impeller.
  • the size of these passage openings can not be changed during operation.
  • Another difficulty is that the test benches for such centrifugal pumps are usually always with and for cost reasons the same pumped medium and not operated with the pumped material for which the respective centrifugal pump is to be used later in operation.
  • the resulting viscosity differences between the test medium and the medium to be pumped in practice also result in deviations in the axial position of the rotor shaft.
  • the centrifugal pump of the type mentioned is characterized in accordance with the invention in that the high-pressure chamber. is connected to the equalization chamber by an inlet channel with a larger flow cross-section relative to the bearing gap of the pump-mounted slide bearing and to the annular gap between the pump impeller and the intermediate wall of the housing, and the inlet channel has a flow control device, which is also adjustable during operation, for regulating the pressure in the equalizing chamber.
  • the centrifugal pump can be quickly and easily adapted to changes in the composition and / or the physical data (temperature, viscosity, etc.) of the material to be conveyed and any undesirable axial load on the bearings can be avoided, which increases operational reliability and the service life.
  • centrifugal pump It is particularly advantageous to detect the axial position of the rotor shaft by means of a corresponding position indicator and to provide an adjustment device for the flow control device that is automatically actuated by the signals thereof. In this way, the axial position of the rotor shaft can be kept optimally without operating effort.
  • the canned motor centrifugal pump 1 shown in the figures has a casing 2 enclosing the canned motor and the pump impeller 19, which contains the canned pipe 6 tightly installed therein and the stator 7 of the canned motor surrounding it.
  • a rotor shaft 13 which supports the rotor 14 of the canned motor, is rotatably and axially displaceably limited in a sliding bearing 9 near the pump and a sliding bearing 11 remote from the pump.
  • the plain bearing 9 close to the pump is arranged in an intermediate wall 5 of the housing.
  • the hollow rotor shaft 13 provided with a continuous return channel 17 is connected to the pump impeller 19 in a rotationally fixed manner.
  • the pump impeller 19 When the pump impeller 19 is set into rapid rotation by the current flowing in the winding of the stator 7 via the rotor 14 seated on the rotor shaft 13, the pump impeller 19 sucks the conveyed material out of the low-pressure space 3, which by centrifugal force into the pump impeller 19 surrounding high pressure chamber 4 is promoted and flows out of it.
  • the high pressure chamber 4 is of low pressure room 3 separated by an annular gap 29.
  • a partial flow duct 16 leads through the housing intermediate wall 5 to the canned interior 8.
  • the partial material flow flowing through the partial flow duct 16 flows through the rotor gap 15 between the outer surface of the rotor 14 and the canned pipe 6 and also becomes the bearing gap 10 near the pump Plain bearing 9 and the bearing gap 12 of the pump-remote sliding bearing 11 supplied.
  • the main quantity of the partial flow is discharged via a throttle gap 28 formed between the end of the rotor shaft 13 remote from the pump and a collar of the housing which surrounds it at a short distance, the cross section of which is larger or smaller depending on the axial position of the rotor shaft 13. After passing the throttle gap 28, the partial flow flows back through the return duct 17 in the rotor shaft 13 to the low-pressure chamber 3.
  • a compensation chamber 18 is provided which communicates on the one hand with the bearing gap 10 of the sliding bearing 9 close to the pump and on the other hand is separated from the high-pressure chamber 4 by an axial annular gap 21 and an adjoining radial annular gap.
  • the compensation chamber 18 is also connected to the low-pressure side by through openings 20 arranged in the rear wall of the pump impeller 19.
  • an inlet channel 22 is also provided in the intermediate wall 5 of the housing, which in the illustrated embodiment starts from the canned interior 8 and leads to the compensation chamber 18.
  • a flow control device 23 is provided in the inlet channel 22, which in the embodiment shown in FIG. 2 can be adjusted by an actuating device 25 to be actuated from the outside in order to regulate the flow rate through the inlet channel 22.
  • the actuating device 25 is actuated by the signals of a position indicator device 24 which detects the axial position of the rotor shaft 13 and which is arranged on a tube which projects from the housing 2 in a pressure-tight manner and in which there is an extension of the rotor shaft 13 can move axially.
  • a partial flow branched off from the high-pressure space via the partial flow channel 16 is introduced into the can interior.
  • the partial atom is passed on the one hand through the rotor gap 15 and to the bearing gaps 10 and 12 of the slide bearings in order to dissipate the heat generated there on the one hand and to have a lubricating effect on the other.
  • the partial flow flowing away from the pump at the end of the rotor shaft 13 through the throttle gap 28 and the return duct 17 generates a liquid pressure acting on the rotor shaft 13 in the direction of the low-pressure chamber 3.
  • the part of the conveyed material emerging through the bearing gap 10 of the sliding bearing 9 near the pump reaches the equalizing chamber 18 and from there via the passage openings 20 back into the pump impeller 19.
  • a partial flow which can be regulated via the flow control device 23 flows from the canned space interior 8 via the inlet channel 22 to the compensation chamber 18. Since the flow cross section of the inlet channel 22 is larger than the flow cross section of the bearing gap 10 of the slide bearing 9 near the pump and of the annular gap 21, the pressure in the compensation chamber 18 and thus on the surfaces of the pump impeller 19 lying in the compensation chamber 18 Exerted pushing force can be adjusted appropriately by actuating the flow control device 23 without the size of the partial flow flowing through the rotor gap 15 being significantly changed thereby. When the flow control device 23 is closed, the compensation chamber 18 only receives the quantity of conveyed material passing through the bearing gap 10 of the sliding bearing 9 near the pump and the annular gap 21.
  • the compensation chamber 18 flows to conveyed goods according to the sum of the flow cross-sections of the inlet channel 22, the bearing gap 10 of the pump-bearing slide bearing 9 and the annular gap 21.
  • the pressure in the compensation chamber 18 can be varied within wide limits, whereby the axial position of the rotor shaft 13 can be changed in the desired manner and can be optimally adapted to the operating conditions.
  • centrifugal pump explained above on the basis of a preferred exemplary embodiment can be modified appropriately by the person skilled in the art in various ways depending on the requirements of the individual case, as long as the supply of conveyed material, which can also be regulated externally during operation, to a compensating chamber influencing the axial position of the rotor shaft without a substantial change in the is achieved by the partial flow flowing through the rotor gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft eine Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich, mit einem von der Hochdruckseite zum Spaltrohr-Innenraum führenden Teilstromkanal und einem zwischen dem Pumpenlaufrad und einer Gehäusezwischenwand gebildeten, einerseits mit dem Lagerspalt des pumpennahen Gleitlagers und anderseits über Durchlaßöffnungen mit der Niederdruckseite kommunizierenden Ausgleichskammer, die zusätzlich mit der Hochdruckseite über einen Einlaßkanal verbunden ist, der eine im Betrieb verstellbare Durchfluß-Regelvorrichtung aufweist.

Description

  • Die Erfindung betrifft eine Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich, mit einem das Spaltrohr aufnehmenden, mindestens ein Pumpenlaufrad umschließenden Gehäuse, einer darin in Gleitlagern drehbar und begrenzt axial verschiebbar gelagerten, den Rotor und ein oder mehrere Pumpenlaufräder tragenden Rotorwelle, mindestens einem im Gehäuse von der Hochdruckseite der Pumpe zum Spaltrohr-Innenraum führenden Teilstromkanal zum Hindurchleiten eines zur Wärmeabführung und Schmierung dienenden Fördergut-Teilstromes durch den Rotorspalt und zu den Gleitlagern, einer zwischen dem Pumpenlaufrad und einer Gehäusezwischenwand gebildeten, mit dem Lagerspalt des pumpennahen Gleitlagers und einem Ringspalt zwischen Pumpenlaufrad und Gehäusezwischenwand kommunizierenden Ausgleichskammer, in der dieser zugewandten Rückwand des Pumpenlaufrades angeordneten, dessen Niederdruckseite mit der Ausgleichskammer verbindenden Durchlaßöffnungen sowie ggf. den Durchflußquerschnitt für den Fördergut-Teilstrom bei Axialverschiebungen der Rotorwelle selbsttätig gegensteuernd verändernden Drosselvorrichtungen.
  • Bei den aus der DE-AS 12 57 581 bekannten Spaltrohrmotor-Kreiselpumpen dieser Artefolgt der Axialschubausgleich dadurch, daß beide Seiten des Spaltrohr-Innenraumes jeweils über die mit Nuten versehenen Spalte der Gleitlager und an diese angrenzende radiale Ringspalte mit Räumen niedrigeren Druckes verbunden sind, wobei je nach der axialen Stellung der Rotorwelle der Durchflußquerschnitt des einen oder des anderen radialen Ringspalts verändert und durch die dabei erzeugte Druckdifferenz eine Rückstellung der Rotorwelle bewirkt wird. Da der durch den Rotorspalt geleitete Teilstrom jedoch auch der Abführung der vom Motor und von den Gleitlagern erzeugten Wärme dienen soll, ist jede durch eine zum Axialschubausgleich erfolgende Drosselung des Teilstroms für die Wärmeabführung von Nachteil. Darüber hinaus wird auch der Axialschubausgleich durch die Größe des Teilstroms sowie die im Betrieb auftretenden Veränderungen des den Teilstrom bildenden Förderguts stark beeinflußt. So treten beispielsweise mit Veränderungen in der Zusammensetzung und/oder der Temperatur des den Teilstrom bildenden Förderguts vielfach starke Viskositätsveränderungen ein, die bei den herkömmlichen Konstruktionen zu unerwünschten Axialverschiebungen der Rotorwelle führen.
  • Bei Kreiselpumpen der hier betrachteten Art erfolgt die Einstellung der mittleren axialen Stellung der Rotorwelle auf dem Prüfstand durch entsprechende Einstellung der Querschnittsabmessungen der Durchlaßöffnungen im Pumpenlaufrad. Die Größe dieser Durchlaßöffnungen kann aber während des Betriebs nicht verändert werden. Eine weitere Schwierigkeit besteht darin, daß die Prüfstände für derartige Kreiselpumpen normalerweise aus Kostengründen stets mit ein und demselben Fördermedium und nicht mit dem Fördergut betrieben werden, für das die jeweilige Kreiselpumpe später im Betrieb eingesetzt werden soll. Die dadurch bedingten Viskositätsunterschiede zwischen dem Prüfmedium und dem im Praxisbetrieb zu fördernden Medium ergeben ebenfalls Abweichungen in der axialen Stellung der Rotorwelle.
  • Aufgabe der Erfindung ist es nun, eine Kreiselpumpe der eingangs genannten Art zu schaffen, die mit einfachen Mitteln eine von der Größe des durch den Spaltrohr-Innenraum geführten Teilstrom unabhängige, auch bei laufendem Betrieb durchführbare Regelung des Axialschubausgleichs gestattet.
  • Zur Lösung dieser Aufgabe ist die Kreiselpumpe der eingangs genannten Art erfindungsgemäß dadurch gekennzeichnet, daß der Hochdruckraum . mit der Ausgleichskammer durch einen Einlaßkanal mit relativ zum Lagerspalt des pumpennahen Gleitlagers und zum Ringspalt zwischen dem Pumpenlaufrad und der Gehäusezwischenwand größerem Strömungsquerschnitt verbunden ist und der Einlaßkanal eine auch im Betrieb verstellbare Durchfluß-Regelvorrichtung zur Regelung des Druckes in der Ausgleichskammer aufweist.
  • Auf diese Weise wird mit geringem Aufwand eine auch bei laufender Kreiselpumpe einfache Verstellbarkeit der axialen Stellung der Rotorwelle ermöglicht. Dadurch kann die Kreiselpumpe rasch und einfach sowohl Veränderungen in der Zusammensetzung und/oder den physikalischen Daten (Temperatur, Viskosität, etc.) des Förderguts angepaßt und jede unerwünschte Axialbelastung der Lager vermieden werden, was die Betriebssicherheit und die Lebensdauer erhöht.
  • Vorteilhafte weitere Ausgestaltungen der Kreiselpumpe sind in den Unteransprüchen beschrieben. Besonders vorteilhaft ist, die axiale Stellung der Rotorwelle durch eine entsprechende Stellungs-Anzeigevorrichtung zu erfassen und eine durch deren Signale automatisch betätigte Verstellvorrichtung für die Durchfluß-Regelvorrichtung vorzusehen. Auf diese Weise kann die axiale Stellung der Rotorwelle ohne Bedienungsaufwand optimal gehalten werden.
  • Im folgenden wird eine bevorzugte Ausführungsform der erfindungsgemäßen Kreiselpumpe unter Bezugnahme auf die beigefügten Zeichnungen weiter erläutert. Es zeigen:
    • Fig. 1 einen schematischen Längsschnitt durch eine erfindungsgemäße Kreiselpumpe und
    • Fig.·2 einen vergrößerten Längsschnitt durch einen Teil der Kreiselpumpe gemäß Fig. 1.
  • Die in den Figuren dargestellte Spaltrohrmotor-Kreiselpumpe 1 besitzt ein den Spaltrohrmotor und das Pumpenlaufrad 19 umschließendes Gehäuse 2, welches das darin dicht eingebaute Spaltrohr 6 und den dieses umgebenden Stator 7 des Spaltrohrmotors enthält. Im Inneren des Gehäuses 2 ist eine den Rotor 14 des Spaltrohrmotors tragende Rotorwelle 13 in einem pumpennahen Gleitlager 9 und einem pumpenfernen Gleitlager 11 drehbar und begrenzt axial verschiebbar gelagert. Das pumpennahe Gleitlager 9 ist in einer Gehäusezwischenwand 5 angeordnet. Die mit einem durchgehenden Rückführkanal 17 versehene hohle Rotorwelle 13 ist mit dem Pumpenlaufrad 19 drehfest verbunden. Wenn das Pumpenlaufrad 19 über den auf der Rotorwelle 13 sitzenden Rotor 14 von dem in der Vicklung des Stators 7 fließenden Strom in schnelle Umdrehung versetzt wird, saugt das Pumpenlaufrad 19 aus dem Niederdruckraum 3 das Fördergut an, das durch Einwirkung der Zentrifugalkraft in den das Pumpenlaufrad 19 umgebenden Hochdruckraum 4 gefördert wird und aus diesem abströmt. Der Hochdruckraum 4 ist vom Niederdruckraum 3 durch einen Ringspalt 29 getrennt.
  • Vom Hochdruckraum 4 führt ein Teilstromkanal 16 durch die Gehäusezwischenwand 5 zum Spaltrohr-Innenraum 8. Der durch den Teilstromkanal 16 zuströmende Fördergut-Teilstrom fließt durch den Rotorspalt 15 zwischen der Außenfläche des Rotors 14 und dem Spaltrohr 6 hindurch und wird außerdem dem Lagerspalt 10 des pumpennahen Gleitlagers 9 und dem Lagerspalt 12 des pumpenfernen Gleitlagers 11 zugeführt. Die Abführung der Hauptmenge des Teilstroms erfolgt über einen zwischen dem pumpenfernen Ende der Rotorwelle 13 und einem diese in geringem Abstand umschließenden Kragen des Gehäuses gebildeten Drosselspalt 28, dessen Querschnitt je nach der axialen Stellung der Rotorwelle 13 größer oder kleiner ist. Nach dem Passieren des Drosselspalts 28 strömt der Teilstrom durch den Rückführkanal 17 in der Rotorwelle 13 zum Niederdruckraum 3 zurück.
  • Zwischen der Gehäusezwischenwand 5 und der dieser zugewandten Rückseite des Pumpenlaufrades 19 ist eine Ausgleichskammer 18 vorgesehen, die einerseits mit dem Lagerspalt 10 des pumpennahen Gleitlagers 9 kommuniziert und andererseits vom Hochdruckraum 4 durch einen axialen Ringspalt 21 und einen daran anschließenden radialen Ringspalt getrennt ist. Die Ausgleichskammer 18 ist ferner durch in der Rückwand des Pumpenlaufrades 19 angeordnete Durchlaßöffnungen 20 mit der Niederdruckseite verbunden.
  • Erfindungsgemäß ist ferner in der Gehäusezwischenwand 5 ein Einlaßkanal 22 vorgesehen, der bei der dargestellten Ausführungsform vom Spaltrohr-Innenraum 8 ausgeht und zur Ausgleichskammer 18 führt. Im Einlaßkanal 22 ist eine Durchfluß-Regelvorrichtung 23 vorgesehen, die bei der in Fig. 2 dargestellten Ausführungsform durch eine von außen zu betätigende Stellvorrichtung 25 verstellt werden kann, um die Durchflußmenge durch den Einlaßkanal 22 zu regulieren.
  • Bei der in Fig. 1 dargestellten Ausführungsform wird die Stellvorrichtung 25 durch die Signale einer die axiale Stellung der Rotorwelle 13 erfassenden Stellungs-Anzeigevorrichtung 24 betätigt, die auf einem aus dem Gehäuse 2 druckdicht herausragenden Rohr angeordnet ist, in welchem sich ein Fortsatz der Rotorwelle 13 axial verschieben kann.
  • Im Betrieb wird ein aus dem Hochdruckraum über den Teilstromkanal 16 abgezweigter Teilstrom in den Spaltrohr-Innenraum eingeführt. Der Teilatrom wird einerseits durch den Rotorspalt 15 und zu den Lagerspalten 10 und 12 der Gleitlager geleitet, um einerseits die dort erzeugte Wärme abzuführen und andererseits schmierend zu wirken. Der am pumpenfernen Ende der Rotorwelle 13 durch den Drosselspalt 28 und den Rückführkanal 17 abströmende Teilstrom erzeugt einen die Rotorwelle 13 in Richtung zum Niederdruckraum 3 beaufschlagenden Flüssigkeitsdruck. Die durch den Lagerspalt 10 des pumpennahen Gleitlagers 9 austretende Teilmenge des Förderguts gelangt in die Ausgleichskammer 18 und von dieser über die Durchlaßöffnungen 20 zurück ins Pumpenlaufrad 19. Daneben strömt aber ein über die Durchfluß-Regelvorrichtung 23 regulierbarer Teilstrom vom Spaltrohr-Innenraum 8 über den Einlaßkanal 22 zur Ausgleichskammer 18. Da der Strömungsquerschnitt des Einlaßkanals 22 größer ist, als der Strömungsquerschnitt des Lagerspalts 10 des pumpennahen Gleitlagers 9 und des Ringspalts 21, kann der Druck in der Ausgleichskammer 18 und damit die auf die in der Ausgleichskammer 18 liegenden Flächen des Pumpenlaufrades 19 ausgeübte Schubkraft durch Betätigung der Durchfluß-Regelvorrichtung 23 zweckentsprechend eingestellt werden, ohne daß dadurch die Größe des durch den Rotorepalt 15 fließenden Teilstromes wesentlich verändert wird. Wenn die Durchfluß-Regelvorrichtung 23 geschlossen ist, fließt der Ausgleichskammer 18 nur die durch den Lagerspalt 10 des pumpennahen Gleitlagers 9 und den Ringspalt 21 hindurchtretende Fördergutmenge zu. Wenn die Durchfluß-Regelvorrichtung 23 vollständig geöffnet ist, strömt der Ausgleichskammer 18 Fördergut zu entsprechend der Summe der Strömungsquerschnitte des Einlaßkanals 22, des Lagerspalts 10 des pumpennahen Gleitlagers 9 und des Ringspaltes 21. Durch entsprechende Betätigung der Durchfluß-Regelvorrichtung 23 kann der Druck in der Ausgleichskammer 18 innerhalb weiter Grenzen variiert werden, wodurch die axiale Stellung der Rotorwelle 13 jeweils in der gewünschten Weise verändert und den Betriebsbedingungen optimal angepaßt werden kann.
  • Die vorstehend an Hand eines bevorzugten Ausführungsbeispiels erläuterte Kreiselpumpe kann vom Fachmann je nach den Anforderungen des Einzelfalles in verschiedener Weise zweckentsprechend abgewandelt werden, solange dabei die auch im Betrieb von außen regelbare Zuführung von Fördergut zu einer die axiale Stellung der Rotorwelle beeinflussenden Ausgleichskammer ohne wesentliche Veränderung des durch den Rotorspalt fließenden Teilstromes erzielt wird.

Claims (5)

1) Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich, mit einem das Spaltrohr aufnehmenden, mindestens ein Pumpenlaufrad umschließenden Gehäuse, einer darin in Gleitlagern drehbar und begrenzt axial verschiebbar gelagerten, den Rotor und ein oder mehrere Pumpenlaufräder tragenden Rotorwelle, mindestens einem im Gehäuse von der Hochdruckseite der Pumpe zum Spaltrohr-Innenraum führenden Teilstromkanal zum Hindurchleiten eines zur Wärmeabführung und Schmierung dienenden Fördergut-Teilstromes durch den Rotorspalt und zu den Gleitlagern, einer zwischen dem Pumpenlaufrad und einer Gehäusezwischenwand gebildeten, mit dem Lagerspalt des pumpennahen Gleitlagers und einem Ringspalt zwischen Pumpenlaufrad und Gehäusezwischenwand kommunizierenden Ausgleichskammer, in der dieser zugewandten Rückwand des Pumpenlaufrades angeordneten, dessen Niederdruckseite mit der Ausgleichskammer verbindenden Durchlaßöffnungen sowie ggf.den Durchflußquerschnitt für den Fördergut-Teilstrom bei Axialverschiebungen der Rotorwelle selbsttätig gegensteuernd verändernden Vorrichtungen, dadurch gekennzeichnet, daß:
a) der Hoohdruckraum (4) mit der Ausgleichskammer (18) durch einen Einlaßkanal (22) mit relativ zum Lagerspalt (10) des pumpennahen Gleitlagers (9) und zum Ringspalt (21) zwischen dem Pumpenlaufrad (20) und der Gehäusezwischenwand (5) größerem Strömungsquerschnitt verbunden ist und
b) der Einlaßkanal (22) eine auch im Betrieb verstellbare Durchfluß-Regelvorrichtung (23) zur Regelung des Druckes in der Ausgleichskammer (18) aufweist.
2) Kreiselpumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Ausgleichskammer (18) mit dem Hochdruckraum (4) über einen axialen Ringspalt (21) und mindestens einen an diesen anschließenden radialen Ringspalt kommuniziert.
3) Kreiselpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Einlaßkanal (22) hochdruckseitig vom Teilstromkanal (16) oder dem Spaltrohr-Innenraum (8) abzweigt.
4) Kreiselpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Einlaßkanal (22) hochdruckseitig zwischen dem die Ausgleichskammer (18) vom Hochdruckraum (4) trennenden Ringspalt (21) und dem den Hochdruckraum (4) vom Niederdruckraum (3) trennenden Ringspalt (29) mündet.
5) Kreiselpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine durch Signale einer die axiale Stellung der Rotorwelle (13) erfassenden Stellungs-Anzeigevorrichtung (24) betätigte Stellvorrichtung für die Durchfluß-Regelvorrichtung (23) vorgesehen ist.
EP81109474A 1981-10-31 1981-10-31 Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich Withdrawn EP0078345A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP81109474A EP0078345A1 (de) 1981-10-31 1981-10-31 Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP81109474A EP0078345A1 (de) 1981-10-31 1981-10-31 Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich

Publications (1)

Publication Number Publication Date
EP0078345A1 true EP0078345A1 (de) 1983-05-11

Family

ID=8187999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109474A Withdrawn EP0078345A1 (de) 1981-10-31 1981-10-31 Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich

Country Status (1)

Country Link
EP (1) EP0078345A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583466A1 (fr) * 1985-06-14 1986-12-19 Licentia Gmbh Pompe de circulation
WO2002012728A1 (de) * 2000-08-03 2002-02-14 Ksb Aktiengesellschaft Axialschubausgleichseinrichtung
EP1378667A2 (de) * 2002-07-04 2004-01-07 HERMETIC-PUMPEN GmbH Pumpstand
DE102006011613A1 (de) * 2006-03-14 2007-09-20 Ksb Aktiengesellschaft Kreiselpumpe mit Axialschubausgleichseinrichtung
US8337142B2 (en) 2006-08-30 2012-12-25 Schlumberger Technology Corporation System and method for reducing thrust acting on submersible pumping components
CN101761489B (zh) * 2008-12-26 2013-01-23 张志勇 一种液下用泵机
EP3042440A1 (de) * 2013-09-03 2016-07-13 Nuovo Pignone S.r.l. Lüftergekühlte elektrische maschine mit axialem schubausgleich
CN111810411A (zh) * 2020-08-10 2020-10-23 大连海密梯克泵业有限公司 多级带平衡盘结构屏蔽泵
US10890189B2 (en) 2016-06-01 2021-01-12 Schlumberger Technology Corporation Submersible pumping system having thrust pad flow bypass
CN113137396A (zh) * 2020-01-17 2021-07-20 格兰富控股联合股份公司 泵轴承保持器
CN113757158A (zh) * 2021-08-18 2021-12-07 合肥新沪屏蔽泵有限公司 一种多级屏蔽泵用平衡鼓结构
CN114922825A (zh) * 2022-06-15 2022-08-19 杭州大路实业有限公司 一种盘式电机驱动的离心泵结构
CN115596684A (zh) * 2022-12-01 2023-01-13 中国核动力研究设计院(Cn) 压气机、超临界二氧化碳循环系统和压气机压力控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190916373A (en) * 1909-07-13 1910-07-07 Emil Schauffelberger Improvements in and relating to Means for Balancing the End-thrust on the Rotor in Rotary Pumps, Blowers, Compressors and the like.
US2717182A (en) * 1945-06-11 1955-09-06 Daniel And Florence Guggenheim Shaft-positioning mechanism for turbine-driven pumps
GB773827A (en) * 1954-04-16 1957-05-01 Chempump Corp Improvements in motor driven pumps
US3220350A (en) * 1964-09-03 1965-11-30 Crane Co Motor driven pump
DE1257581B (de) * 1958-07-24 1967-12-28 Walter Meyer Kahlen Spaltrohrmotorkreiselpumpenaggregat
DE1808305A1 (de) * 1968-11-12 1970-07-16 Veredlung Gmbh Guss & Stahl Spaltrohrmotor-Kreiselpumpenaggregat
US4170435A (en) * 1977-10-14 1979-10-09 Swearingen Judson S Thrust controlled rotary apparatus
US4287758A (en) * 1979-07-19 1981-09-08 Rotoflow Corporation, Inc. Shaft mounting device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190916373A (en) * 1909-07-13 1910-07-07 Emil Schauffelberger Improvements in and relating to Means for Balancing the End-thrust on the Rotor in Rotary Pumps, Blowers, Compressors and the like.
US2717182A (en) * 1945-06-11 1955-09-06 Daniel And Florence Guggenheim Shaft-positioning mechanism for turbine-driven pumps
GB773827A (en) * 1954-04-16 1957-05-01 Chempump Corp Improvements in motor driven pumps
DE1257581B (de) * 1958-07-24 1967-12-28 Walter Meyer Kahlen Spaltrohrmotorkreiselpumpenaggregat
US3220350A (en) * 1964-09-03 1965-11-30 Crane Co Motor driven pump
DE1808305A1 (de) * 1968-11-12 1970-07-16 Veredlung Gmbh Guss & Stahl Spaltrohrmotor-Kreiselpumpenaggregat
US4170435A (en) * 1977-10-14 1979-10-09 Swearingen Judson S Thrust controlled rotary apparatus
US4287758A (en) * 1979-07-19 1981-09-08 Rotoflow Corporation, Inc. Shaft mounting device and method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583466A1 (fr) * 1985-06-14 1986-12-19 Licentia Gmbh Pompe de circulation
WO2002012728A1 (de) * 2000-08-03 2002-02-14 Ksb Aktiengesellschaft Axialschubausgleichseinrichtung
EP1378667A2 (de) * 2002-07-04 2004-01-07 HERMETIC-PUMPEN GmbH Pumpstand
DE10230025A1 (de) * 2002-07-04 2004-02-12 Hermetic-Pumpen Gmbh Pumpstand
EP1378667A3 (de) * 2002-07-04 2005-01-12 HERMETIC-PUMPEN GmbH Pumpstand
DE102006011613A1 (de) * 2006-03-14 2007-09-20 Ksb Aktiengesellschaft Kreiselpumpe mit Axialschubausgleichseinrichtung
US8337142B2 (en) 2006-08-30 2012-12-25 Schlumberger Technology Corporation System and method for reducing thrust acting on submersible pumping components
CN101761489B (zh) * 2008-12-26 2013-01-23 张志勇 一种液下用泵机
EP3042440A1 (de) * 2013-09-03 2016-07-13 Nuovo Pignone S.r.l. Lüftergekühlte elektrische maschine mit axialem schubausgleich
EP3042440B1 (de) * 2013-09-03 2022-12-21 Nuovo Pignone Tecnologie - S.r.l. Gebläse gekühlt elektrische maschine mit axial-druckkraft ausgleichung.
US10890189B2 (en) 2016-06-01 2021-01-12 Schlumberger Technology Corporation Submersible pumping system having thrust pad flow bypass
CN113137396A (zh) * 2020-01-17 2021-07-20 格兰富控股联合股份公司 泵轴承保持器
EP3851677A1 (de) * 2020-01-17 2021-07-21 Grundfos Holding A/S Pumpenlagerhalter
US20210222699A1 (en) * 2020-01-17 2021-07-22 Grundfos Holding A/S Pump bearing retainer
CN113137396B (zh) * 2020-01-17 2023-06-06 格兰富控股联合股份公司 泵轴承保持器
CN111810411A (zh) * 2020-08-10 2020-10-23 大连海密梯克泵业有限公司 多级带平衡盘结构屏蔽泵
CN113757158A (zh) * 2021-08-18 2021-12-07 合肥新沪屏蔽泵有限公司 一种多级屏蔽泵用平衡鼓结构
CN113757158B (zh) * 2021-08-18 2023-12-05 合肥新沪屏蔽泵有限公司 一种多级屏蔽泵用平衡鼓结构
CN114922825A (zh) * 2022-06-15 2022-08-19 杭州大路实业有限公司 一种盘式电机驱动的离心泵结构
CN115596684A (zh) * 2022-12-01 2023-01-13 中国核动力研究设计院(Cn) 压气机、超临界二氧化碳循环系统和压气机压力控制方法

Similar Documents

Publication Publication Date Title
EP0078345A1 (de) Spaltrohrmotor-Kreiselpumpe mit Axialschubausgleich
DE3604625C2 (de) Gasturbine
DE3445321A1 (de) Abgedichteter spiralkompressor
DE3345684C2 (de)
DE69304905T2 (de) Abstreifende dichtung und mittel zum aufbringen von fluiddruck auf diese dichtung
DE3204750C2 (de) Magnetisch gelagerte Turbomolekularpumpe
DE3343886A1 (de) Drehanoden-roentgenroehre mit einem gleitlager
DE69532902T2 (de) Rotierende Spiralverdichter
EP3447302B1 (de) Wellenlagervorrichtung mit abhebevorrichtung
DE29610799U1 (de) Hydrodynamisches Gleitlager für einen Läufer einer Pumpe
DE3035396C2 (de) Refiner zum Mahlen einer unter Druck stehenden Faserstoffsuspension für die Papierherstellung
DE102020207431A1 (de) Elektrische Maschine mit Rotorkühlung
DE19609308C2 (de) Vakuumpumpe mit Gewindekanal
CH668811A5 (de) Hydrodynamisches gleitlager.
DE3880010T2 (de) Lagereinrichtung.
EP0461131B1 (de) Axialschubentlastungseinrichtung
DE19631824A1 (de) Kreiselpumpenlagerung mit Axialschubausgleich
EP0501286A2 (de) Woltmannzähler
DE3608289A1 (de) Turboverdichter
EP1977112A1 (de) Kreiselpumpe mit axialschubausgleichseinrichtung
EP3710704B1 (de) Pumpenanordnung zur versorgung einer gleitringdichtungsanordnung
DE102004058533A1 (de) Pumpe für Flüssigkeiten unter Überdruck
EP0003572B2 (de) Flügelzellenpumpe
EP3812582A1 (de) Kolbenverdichter und verfahren zum betrieb desselben
DE10217181B4 (de) Vorrichtung zur Begrenzung von Leckströmen an gelagerten Wellendurchführungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821127

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850830

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAPELFELDT, VOLKER