EP0076716A1 - Installation frigorifique à multimotocompresseurs - Google Patents

Installation frigorifique à multimotocompresseurs Download PDF

Info

Publication number
EP0076716A1
EP0076716A1 EP82401687A EP82401687A EP0076716A1 EP 0076716 A1 EP0076716 A1 EP 0076716A1 EP 82401687 A EP82401687 A EP 82401687A EP 82401687 A EP82401687 A EP 82401687A EP 0076716 A1 EP0076716 A1 EP 0076716A1
Authority
EP
European Patent Office
Prior art keywords
points
high pressure
pressure stage
stage
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82401687A
Other languages
German (de)
English (en)
Inventor
Pierre Deman
Emile Sanzey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FSB
Original Assignee
FSB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FSB filed Critical FSB
Publication of EP0076716A1 publication Critical patent/EP0076716A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a refrigeration installation with multi-compressors.
  • a known compound refrigeration unit 1 usually comprises, on the one hand, a low pressure moiocompressor 2 which sucks expanded refrigerant gas at the pressure Po from the points of use 3 at a single low evaporation temperature for example -38 ° C., the compresses to the pressure Pm and discharges it into an intermediate bottle 4 where the compressed refrigerant gas is desuperheated, and on the other hand a high pressure motor compressor 5 which sucks desuperheated refrigerant gas from the bottle 4, compresses it to the pressure Pk and discharges it into a condenser 6.
  • the condensed condenser coming from the condenser 6 accumulates in the form of liquid in a tank 7 and passes partly in a coil 8 arranged in the lower zone of the intermediate bottle 4, and partly through a pressure reducer 9 in the bottle 4 where, by evaporation, it desuperheats your vapors of compressed compressed refrigerant by the low pressure compressor 2, and under cools the liquid refrigerant current which borrows the coil 8 to go and relax through the pressure reducer 10 in the points of use 3 at a single low evaporation temperature -38 ° C for example .
  • a refrigeration installation produced according to the invention is a refrigeration installation with multi-compressors having in its refrigeration circuit, at least on the one hand a low pressure stage and a high pressure stage which have their own points of use and whose common suction collectors of the motor compressors are maintained at pressures, equal respectively to the evaporation pressures tl and t2 of the points of use of these two stages, the capacity and the number of the compressors of the low-pressure stage are provided to supply correctly with refrigerant the points of use specific to this stage, and the capacity and the number of compressors of the high pressure stage are determined to supply the points of use of these two stages correctly with refrigerant, the refrigerant gas discharged from the low pressure stage being admitted into the common suction manifold of the high pressure stage at the same time as the expanded refrigerant gas coming from the own points of use of this high pressure stage,
  • the compound refrigeration installation 11 comprises a low pressure stage 12 and a high pressure stage 13 having respectively points of use 14 at an evaporation temperature tl , equal to -38 ° C, and points of use 15 at an evaporation temperature t2, equal to -10 ° C.
  • the low pressure stage 12 comprises two motor compressors 16, 17 whose total capacity is sufficient to supply refrigerant to the points of use 14 while the high pressure stage comprises three motor compressors 18, 19, 20 whose total capacity is determined for supply the refrigeration points 14 and 15 of the two stages 12 and 13 correctly.
  • the common suction manifold 21 of the compressors 16, 17 of the low pressure stage is maintained at a pressure equal to the evaporation pressure - 38 ° C at the points of use 14.
  • the motor compressors 16 and 17 draw in expanded refrigerant gas coming from the points of use 14 and discharge it through their common discharge line 22 and an oil separator 23, into a common suction manifold 24 of the high pressure stage motor compressors 13.
  • the motor compressors 18, 19, 20 from the high pressure stage 13 suck in refrigerant gas being in their suction manifold 24 and discharge it through their common discharge pipe 25 and an oil separator 26, into a condenser 27.
  • the refrigerant gas condensed in the form of liquid passes from the condenser 27 into a reservoir 28 common to the two stages 12 and 13 which feeds under the same high pressure both the points of use 14 and 15 of these two stages.
  • a counter-current exchanger 29 is mounted between these two stages 12 and 13 for firstly under cooling the stream of liquid refrigerant supplying the points of use 14 of the low pressure stage 12 and secondly desuperheating the refrigerant gas discharged by the low pressure stage 12 into the suction manifold 24 of the high pressure stage 13.
  • the superheated expanded refrigerant gas coming from the points of use at evaporation temperature -10 ° C. is not cooled or desuperheated before to be vacuumed and compressed by motor compressors.
  • the casings of the compressors of the motor compressors 16 and 17 of the low pressure stage 12 are connected to each other by a large section pipe 32 whose dual function is to allow the oil to balance in the compressor crankcases and to have the same pressure in these crankcases.
  • the oil recovered by the oil separator 26 as well as gaseous refrigerant entrained by the oil are brought into an oil tank 33, the lower part of which is connected to the casings of the motor-compressors 18, 19, 20 by a pipe 34 and float devices 35, 36, 37 and the upper part is connected to the common suction manifold 24 of the compressors by a pipe 38 and a calibrated valve 39 which creates a pressure drop of approximately one bar for bringing the oil tank 33 to a pressure of one bar higher than the pressure in the casings of the motor compressors 18, 19, 20.
  • the oil in the tank 33 is thus brought under a pressure difference of one bar, in each one. of these casings through devices 35, 36, 37, the float of which maintains the oil at a preset level.
  • the compound refrigeration installation 40 comprises in its refrigeration circuit, on the one hand like that of the first example (FIG. 2) a low pressure stage 41 and a high pressure stage 42 mounted in compound with their own points of use 43, 44 whose evaporation temperatures are respectively -38 ° C and -10 ° C, and on the other hand by a second high pressure stage 45 having its own points of use whose evaporation temperature t3 of the order of -3 ° C to -8 ° C, t3 chosen in this example is equal to -6 ° C.
  • the low pressure stage 41 comprises two motor compressors 47, 48, a common suction manifold 49, an oil separator 50 and a common discharge line 51.
  • the first high pressure stage 42 comprises three motor compressors 52, 53, 54 and a common collector suction 55 which receives both refrigerant gas coming from its own points of use 44 and refrigerant gas discharged from the low pressure stage 41.
  • An exchanger 56 mounted between these two stages 41 for sub-cooling the liquid refrigerant supplying the points of use 43 of the low pressure stage 41 and desuperheating the refrigerant gas discharged from this low pressure stage and the expanded gas coming from the points of use 44 of this first high pressure stage 42 in the common suction manifold 55.
  • the second high pressure stage 45 comprises three motor compressors 57, 58, 59, a common suction manifold 60, independent of the suction manifold 55 of the first high pressure stage 42 and a common discharge line 61 for all the six motor compressors of these two high pressure stages 42 and 45.
  • the suction manifold 55 of the first high pressure stage 42 is maintained at a pressure equal to the evaporation pressure -10 ° C of its points of use 44 while the suction manifold 60 of the second high pressure stage 45 is maintained at a pressure equal to an evaporation pressure -6 ° C of its own points of use 46.
  • the refrigerant gas compressed by the motor compressors of the two high pressure stages 42, 45 is discharged through the common discharge pipe 61 and an oil separator 62 in a condenser 63 common to the three stages 41, 42, 45.
  • the refrigerant in the form of liquid from the condenser 63 accumulates in a reservoir 64 common to these three stages 41, 42, 45 before going to supply the points of use 43, 44, 46 respectively under the same high pressure.
  • a known independent refrigeration plant having points of use at an evaporation temperature of -10 ° C. or a refrigeration plant 11 of the first example illustrated in FIG. 2 can at its points of use 15 also supply points of use at a higher evaporation temperature t3 for example -5 ° C or -6 ° C.
  • a higher evaporation temperature t3 for example -5 ° C or -6 ° C.
  • Evaporation at -5 ° C brings a gain of around twenty percent in refrigeration efficiency at points of use at -5 ° C compared to evaporation at -10 ° C at points of use with valves at constant pressure to maintain -5 ° C evaporation in the evaporator.
  • the casings of the compressors of the low pressure stage 41 are also connected to each other, as in those of the first example, by a pipe of large section 65 so as to have in these crankcases have the same pressure and a preset oil level while in the high pressure stages 42, 45, the crankcases of the motor compressors are connected by float devices and a common line 66 to the lower part of an oil tank 67, the upper part of which is connected to the common suction manifold 55 of the high-pressure first stage motor-compressors 42, through a pipe 68 and a calibrated valve 69 which creates, like that in the first example, a pressure drop of approximately one bar for put the oil tank 67 at a pressure one bar higher than the pressure in the compressor housings.

Abstract

Installation frigorifique à multimotocompresseurs à un étage basse pression (12) et au moins un étage haute pression (13) montés en compound comprenant d'une part des points d'utilisation (14, 15), propres à chacun de ces étages et à températures d'évaporation respectivement différentes et d'autre part un circuit frigorifique alimentant l'ensemble de ces points d'utilisation, en réfrigérant liquide sous une même haute pression, issu d'un réservoir de réfrigérant condensé (28), commun à ces étages.

Description

  • La présente invention concerne une installation frigorifique à multimotocompresseurs.
  • Pour obtenir une basse température inférieure à -35°C environ, il est connu de subdiviser dans une centrale frigorifique, la compression en deux étages pour éviter des inconvénients d'un rapport de compression élevé dans un fonctionnement à un seul étage. Ces inconvénients sont aussi bien d'ordre thermodynamique que d'ordre constructif. En effet une chaleur de surchauffe élevée risque de conduire à une décomposition du médium de graissage et une grande différence de pression risque de compromettre l'étanchéité des clapets des motocompresseurs de la centrale. Cependant dans des centrales frigorifiques compounds ou à étages en cascade connues, existent fréquemment des points d'utilisation à une seule basse température d'évaporation. Dans une installation frigorifique à points d'utilisation à températures différentes d'évaporation réalisée selon des solutions connues, une telle centrale frigorifique compound est associée à d'autres centrales à circuits frigorifiques indépendants donnant respectivement des températures d'évaporation demandées. Il existe ainsi dans cette installation autant de circuits frigorifiques que de centrales associées et l'installation frigorifique réalisée selon ces solutions connues s'avère onéreuse aussi bien en coût de construction qu'en celui de fonctionnement.
  • La présente invention ayant pour but d'éviter ces inconvénients, permet de réaliser une installation frigorifique à multimotocompresseurs, économique à points d'utilisation à températures différentes d'évaporation présentant un bon fonctionnement mécanique et un excellent rendement frigorifique. Selon l'invention une installation frigorifique à multimotocompresseurs, ayant un étage basse pression et au moins un étage haute pression, montés en compound comprend d'une part des points d'utilisation, propres à chacun de ces étages et à températures d'évaporation respectivement différentes, et d'autre part un circuit frigorifique alimentant l'ensemble de ces points d'utilisation, en réfrigérant liquide sous une même haute pression, issu d'un réservoir de réfrigérant condensé, commun à ces étages.
  • Pour mieux faire comprendre l'invention, on décrit ci-après à titre indicatif un certain nombre d'exemples de réalisation illustrés par des dessins ci-annexés dont :
    • -la figure 1 représente un schéma d'une centrale frigorifique compound connue,
    • -la figure 2 représente une vue schématique d'un premier exemple de réalisation selon l'invention, d'une installation frigorifique compound, à points d'utilisation à températures différentes d'évaporation, et
    • -la figure 3 représente une vue schématique d'un deuxième exemple de réalisation selon l'invention d'une installation frigorifique compound à points d'utilisation à températures différentes d'évaporation.
  • Une centrale frigorifique compound 1 connue comprend habituellement, d'une part un moiocompresseur basse pression 2 qui aspire du gaz réfrigérant détendu à la pression Po des points d'utilisation 3 à une seule basse température d'évaporation par exemple -38°C, le comprime jusqu'à la pression Pm et le refoule dans une bouteille intermédiaire 4 où le gaz refrigérant comprimé se désurchauffe, et d'autre part un motocompresseur haute pression 5 qui aspire du gaz réfrigérant désurchauffé de la bouteille 4, le comprime à la pression Pk et le refoule dans un condenseur 6. Le réfrigérant condensé venant du condenseur 6 s'accumule sous forme de liquide dans un réservoir 7 et passe en partie dans un serpentin 8 disposé dans la zone inférieure de la bouteille intermédiaire 4, et en partie à travers un détendeur 9 dans la bouteille 4 où, par évaporation, il désurchauffe tes vapeurs de réfrigérant comprimé refoulé par le motocompresseur basse pression 2, et sous refroidit le courant de réfrigérant liquide qui emprunte le serpentin 8 pour aller se détendre à travers le détendeur 10 dans les points d'utilisation 3 à une seule basse température d'évaporation -38°C par exemple.
  • Selon une technique connue, pour réaliser une installation frigorifique à points d'utilisation à deux températures différentes d'évaporation par exemple -38°C et -10°C, on associe une centrale frigorifique compound 1 ci-dessus avec une autre centrale à circuit frigorifique indépendant, de type connu, non représentée donnant du froid à une seule température d'évaporation -lO°C. Un des grands inconvénients de cette solution connue est déjà rappelée dans un paragraphe précédent.
  • Une installation frigorifique réalisée selon l'invention, à points d'utilisation à températures différentes d'évaporation par exemple à deux basses températures d'évaporation tl et t2 avec tl inférieure à t2, est une installation frigorifique à multimotocompresseurs ayant dans son circuit frigorifique, au moins d'une part un étage basse pression et un étage haute pression qui ont leurs propres points d'utilisation et dont les collecteurs communs d'aspiration des motocompresseurs sont maintenus à des pressions, égales respectivement aux pressions d'évaporation tl et t2 des points d'utilisation de ces deux étages, la capacité et le nombre des motocompresseurs de l'étage basse pression sont prévus pour alimenter correctement en réfrigérant les points d'utilisation propres à cet étage, et la capacité et le nombre de motocompresseurs de l'étage haute pression sont déterminés pour alimenter correctement en réfrigérant les points d'utilisation de ces deux étages, le gaz réfrigérant refoulé de l'étage basse pression étant admis dans le collecteur commun d'aspiration de l'étage haute pression en même temps que le gaz réfrigérant détendu venant des points d'utilisation propres de cet étage haute pression, et d'autre part des dispositifs pour assurer un sous refroidissement du réfrigérant liquide alimentant les points d'utilisation de l'étage basse pression et une désurchauffe du gaz réfrigérant refoulé de l'étage basse pression pour que l'entrée de ce dernier dans le collecteur commun d'aspiration de l'étage haute pression maintienne la température du mélange gazeux qui s'y trouve à un niveau de désurchauffe souhaité.
  • Dans un premier exemple de réalisation de l'invention, illustré dans la figure 2, l'installation frigorifique compound 11 comprend un étage basse pression 12 et un étage haute pression 13 ayant respectivement des points d'utilisation 14 à une température d'évaporation tl, égale à -38°C, et des points d'utilisation 15 à une température d'évaporation t2, égale à -10°C.
  • L'étage basse pression 12 comprend deux motocompresseurs 16, 17 dont la capacité totale est suffisante pour alimenter en réfrigérant les points d'utilisation 14 tandis que l'étage haute pression comporte trois motocompresseurs 18, 19, 20 dont la capacité totale est déterminée pour alimenter correctement en réfrigérant les points d'utilisation 14 et 15 des deux étages 12 et 13. Le collecteur commun d'aspiration 21 des motocompresseurs 16, 17 de l'étage basse pression est maintenu à une pression égale à la pression d'évaporation -38°C des points d'utilisation 14. Les motocompresseurs 16 et 17 aspirent du gaz réfrigérant détendu venant des points d'utilisation 14 et le refoulent à travers leur conduite commune de refoulement 22 et un déshuileur 23, dans un collecteur commun d'aspiration 24 des motocompresseurs de l'étage haute pression 13. Le collecteur d'aspiration 24, maintenu à une pression égale à la pression d'évaporation -10°C des points d'utilisation 15, reçoit à la fois du gaz réfrigérant détendu venant de ces points d'utilisation 15 et du gaz réfrigérant refoulé de l'étage basse pression 12. Les motocompresseurs 18, 19, 20 de l'étage haute pression 13 aspirent du gaz réfrigérant se trouvant dans leur collecteur d'aspiration 24 et le refoulent à travers leur conduite commune de refoulement 25 et un déshuileur 26, dans un condenseur 27. Le gaz réfrigérant condensé sous forme de liquide passe du condenseur 27 dans un réservoir 28 commun aux deux étages 12 et 13 lequel alimente sous une même haute pression à la fois les points d'utilisation 14 et 15 de ces deux étages. Un échangeur 29 à contre courant est monté entre ces deux étages 12 et 13 pour d'une part sous refroidir le courant de réfrigérant liquide alimentant les points d'utilisation 14 de l'étage basse pression 12 et d'autre part désurchauffer le-gaz réfrigérant refoulé par l'étage basse pression 12 dans le collecteur d'aspiration 24 de l'étage haute pression 13. Dans cet échangeur 29, une partie du liquide réfrigérant venant du réservoir 28 traversant un détendeur 30 est injecté à contre courant dans le corps de l'échangeur 29 pour sous refroidir le courant de réfrigérant liquide allant de ce réservoir 28 aux points d'utilisation 14 à température d'évaporation -38°C tandis que le réfrigérant détendu dans le corps de l'échangeur 29 est injecté à travers une vanne 31 dans le courant de gaz réfrigérant refoulé par l'étage basse pression 12 et le désurchauffe à un niveau choisi avant son entrée dans le collecteur commun d'aspiration 24 de l'étage haute pression 13.
  • Il en résulte que le gaz détendu venant des points d'utilisation 15 propres à l'étage haute pression est également désurchauffé. Dans une comparaison entre deux installations frigorifiques de capacité équivalente dont l'une est une installation réalisée selon une technique connue consistant en un regroupement côte à côte d'une centrale compound à points d'utilisation à une température d'évaporation -38°C et d'une centrale à circuit frigorifique indépendant à points d'utilisation à température d'évaporation -10°C, et l'autre est une installation 11 réalisée selon l'invention décrite dans un paragraphe précédent, on remarque que grâce à une désurchauffe volontaire du gaz détendu venant des points d'utilisation 15 de l'étage haute pression 13 et du gaz refoulé de l'étage basse pression 12 de l'installation 11 une appréciable économie d'énergie dépensée est réalisée dans la production du froid dans ces points d'utilisation à températures d'évaporation -38°C et -10°C. En effet à cause de l'indépendance des circuits frigorifiques dans l'installation réalisée, selon la technique connue, le gaz réfrigérant détendu surchauffé venant des points d'utilisation à température d'évaporation -10°C n'est pas refroidi ou désurchauffé avant d'être aspiré et comprimé par des motocompresseurs.
  • Pour obtenir un bon fonctionnement mécanique par un graissage correct des motocompresseurs, dans l'installation 11 illustrée à la figure 2, les carters des compresseurs des motocompresseurs 16 et 17 de l'étage basse pression 12 sont reliés entre eux par une conduite de grosse section 32 dont la double fonction est de permettre à l'huile de s'équilibrer dans les carters des compresseurs et d'avoir dans ces carters une même pression. Dans l'étage haute pression 13 de l'installation 11, l'huile recupérée par le déshuileur 26 ainsi que du réfrigérant gazeux entraîné par l'huile sont amenés dans un réservoir d'huile 33 dont la partie inférieure est reliée aux carters des motocompresseurs 18, 19, 20 par une conduite 34 et des dispositifs à flotteur 35, 36, 37 et la partie supérieure est reliée au collecteur commun d'aspiration 24 des motocompresseurs par une conduite 38 et un clapet taré 39 qui crée une perte de charge de un bar environ pour mettre le réservoir d'huile 33 à une pression de un bar supérieure à la pression dans des carters des motocompresseurs 18, 19, 20. L'huile du réservoir 33 est ainsi amenée sous une différence de pression de un bar, dans chacun. de ces carters à travers des dispositifs 35, 36, 37 dont le flotteur assure un maintien de l'huile à un niveau préréglé.
  • Dans un deuxième exemple de réalisation de l'invention, schématiquement illustré à la figure 3, l'installation frigorifique compound 40 comprend dans son circuit frigorifique, d'une part comme celle du premier exemple (figure 2) un étage basse pression 41 et un étage haute pression 42 montés en compound avec leurs points d'utilisation propres 43, 44 dont les températures d'évaporation sont respectivement -38°C et -10°C, et d'autre part par un deuxième étage haute pression 45 ayant ses propres points d'utilisation dont la température d'évaporation t3 de l'ordre de -3°C à -8°C, t3 choisie dans cet exemple est égale à -6°C. L'étage basse pression 41 comprend deux motocompresseurs 47, 48, un collecteur commun d'aspiration 49, un déshuileur 50 et une conduite commune de refoulement 51. Le premier étage haute pression 42 comprend trois motocompresseurs 52, 53, 54 et un collecteur commun d'aspiration 55 qui reçoit à la fois du gaz réfrigérant venant de ses propres points d'utilisation 44 et du gaz réfrigérant refoulé de J'étage basse pression 41. Un échangeur 56 monté entre ces deux étages 41 pour sous refroidir le réfrigérant liquide alimentant les points d'utilisation 43 de l'étage basse pression 41 et désurchauffer le gaz réfrigérant refoulé de cet étage basse pression et du gaz détendu venant des points d'utilisation 44 de ce premier étage haute pression 42 dans le collecteur commun d'aspiration 55. Le deuxième étage haute pression 45 comprend trois motocompresseurs 57, 58, 59, un collecteur commun d'aspiration 60, indépendant du collecteur d'aspiration 55 du premier étage haute pression 42 et une conduite commune de refoulement 61 pour l'ensemble des six motocompresseurs de ces deux étages haute pression 42 et 45.
  • Le collecteur d'aspiration 55 du premier étage haute pression 42 est maintenu à une pression égale à la pression d'évaporation -10°C de ses points d'utilisation 44 tandis que le collecteur d'aspiration 60 du deuxième étage haute pression 45 est maintenu à une pression égale à une pression d'évaporation -6°C de ses propres points d'utilisation 46. Le gaz réfrigérant comprimé par les motocompresseurs des deux étages haute pression 42, 45 est refoulé à travers la conduite commune de refoulement 61 et un déshuileur 62 dans un condenseur 63 commun aux trois étages 41, 42, 45.
  • Le réfrigérant sous forme de liquide issu du condenseur 63 s'accumule dans un réservoir 64 commun à ces trois étages 41, 42, 45 avant d'aller alimenter sous une même haute pression respectivement les points d'utilisation 43, 44, 46.
  • Une centrale frigorifique indépendante connue ayant des points d'utilisation à une température d'évaporation -10°C ou une installation frigorifique 11 du premier exemple illustré dans la figure 2 peut au niveau de ses points d'utilisation 15 alimenter également des points d'utilisation à une température d'évaporation t3 plus élevée par exemple -5°C ou -6°C. En effet, d'après les courbes normales de rendement d'un compresseur frigorifique, une évaporation à -5°C par exemple par rapport à celle à -10°C amène, pour une même température de condensation, une appréciable augmentation de production calorifique de l'ordre d'une vingtaine de pourcents et seulement une relativement faible augmentation de l'énergie consommée de l'ordre d'une dizaine de pourcents. Une évaporation à -5°C apporte un gain d'une vingtaine de pourcents en rendement frigorifique sur des points d'utilisation à -5°C par rapport à une évaporation à -10°C sur des points d'utilisation comportant des vannes à pression constante pour maintenir dans l'évaporateur une évaporation -5°C.
  • Pour obtenir un graissage correct des motocompresseurs dans l'installation frigorifique 40, les carters des compresseurs de l'étage basse pression 41 sont également reliés entre eux, comme dans ceux du premier exemple, par une conduite de grosse section 65 de manière à avoir dans ces carters une même pression et un niveau prérèglé d'huile tandis que dans les étages haute pression 42, 45, les carters des motocompresseurs sont reliés par des dispositifs à flotteur et une conduite commune 66 à la partie inférieure d'un réservoir d'huile 67 dont la partie supérieure est branchée au collecteur commun d'aspiration 55 des motocompresseurs du premier étage haute pression 42, à travers une conduite 68 et un clapet taré 69 qui crée comme celui dans le premier exemple une perte de charge de un bar environ pour mettre le réservoir d'huile 67 à une pression de un bar supérieure à la pression dans des carters des compresseurs.

Claims (6)

1. Installation frigorifique à multimotocompresseurs ayant un étage basse pression (12, 41) et au moins un étage haute pression (13, 42) montés en compound, caractérisée en ce qu'elle comprend d'une part des points d'utilisation (14, 15, 43, 44, 46), propres à chacun de ces étages et à températures d'évaporation respectivement différentes (tl, t2, t3), et d'autre part un circuit frigorifique alimentant l'ensemble de ces points d'utilisation en réfrigérant liquide sous une même haute pression, issu d'un réservoir de réfrigérant condensé (28, 64), commun à ces étages.
2. Installation selon la revendication l, caractérisée en ce qu'elle comprend un circuit frigorifique ayant dans l'étage basse pression (12, 41) un collecteur commun d'aspiration (21, 49) des motocompresseurs (16, 17, 47, 48) recevant du gaz réfrigérant détendu venant des points d'utilisation (14, 43) de cet étage, et maintenu à une pression égale à la pression d'évaporation -38°C de ces points d'utilisation (14, 43) et dans l'étage haute pression (13, 42), un collecteur commun d'aspiration (24, 55) des motocompresseurs (18, 19, 20, 52, 53, 54), recevant à la fois du gaz réfrigérant détendu venant des points d'utilisation (15, 44) de cet étage (13, 42) et du gaz réfrigérant refoulé de l'étage basse pression (12, 41), et maintenu à une pression égale à la pression d'évaporation -10°C de ces points d'utilisation (15, 44).
3. Installation selon l'une des revendications 1 et 2, caractérisée en ce qu'elle comprend dans son circuit frigorifique un deuxième étage haute pression (45) ayant avec le premier étage haute pression (42) une conduite commune de refoulement (61) pour les motocompresseurs (52, 53, 54, 57, 58, 59) un condenseur commun (63), un réservoir commun pour réfrigérant condensé (64) qui alimente sous une même haute pression en réfrigérant liquide l'ensemble des points d'utilisation (43, 44, 46) de l'étage basse pression (41) et des deux étages haute pression (42, 45), et un collecteur commun d'aspiration (60) pour les motocompresseurs du deuxième étage haute pression (45) recevant du gaz réfrigérant détendu des points d'utilisation (46) de cet étage (45) et maintenu à une pression égale à la pression d'évaporation t3 de ces derniers points d'utilisation (46).
4. Installation selon la revendication 3, caractérisée en ce qu'elle comprend un circuit frigorifique ayant dans le deuxième étage haute pression (45) des points d'utilisation (46) ayant une température d'évaporation de l'ordre de -3°C à -8°C.
5. Installation selon l'une des revendications 1 à 4, caractérisée en ce qu'elle comprend dans son circuit frigorifique un réservoir d'huile (33, 67) alimentant en huile les carters des motocompresseurs à travers des dispositifs à flotteurs (35, 36, 37) et un clapet taré (39, 69) créant une différence de pression entre ce réservoir d'huile (33, 67) et les carters de ces motocompresseurs.
6. Installation selon l'une des revendications 1 à 5, caractérisée en ce qu'elle comprend dans son circuit frigorifique un échangeur (29, 56) à contre courant pour sous refroidir le courant de réfrigérant liquide alimentant les points d'utilisation (14, 43) et désurchauffer le gaz réfrigérant refoulé de l'étage basse pression (12, 41) dans le collecteur d'aspiration (24, 55) de l'étage haute pression (13, 42) et du gaz détendu venant des points d'utilisation (15, 44) de cet étage haute pression (13, 42) dans ce collecteur d'aspiration (24, 55).
EP82401687A 1981-09-25 1982-09-16 Installation frigorifique à multimotocompresseurs Withdrawn EP0076716A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8118136 1981-09-25
FR8118136A FR2513747A1 (fr) 1981-09-25 1981-09-25 Installation frigorifique a multimotocompresseurs

Publications (1)

Publication Number Publication Date
EP0076716A1 true EP0076716A1 (fr) 1983-04-13

Family

ID=9262479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82401687A Withdrawn EP0076716A1 (fr) 1981-09-25 1982-09-16 Installation frigorifique à multimotocompresseurs

Country Status (3)

Country Link
EP (1) EP0076716A1 (fr)
ES (1) ES8308627A1 (fr)
FR (1) FR2513747A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2557962A1 (fr) * 1984-01-11 1985-07-12 Copeland Corp Dispositif de refrigeration a deux etages, au fonctionnement souple et au rendement eleve
FR2598788A1 (fr) * 1986-05-15 1987-11-20 Copeland Corp Dispositif de refrigeration.
US4748820A (en) * 1984-01-11 1988-06-07 Copeland Corporation Refrigeration system
WO1990000709A1 (fr) * 1988-07-08 1990-01-25 Olson Ref. - H Olson Refrigeration Ab Agregat de refroidissement intermediaire pour installations de refroidissement et de congelation
EP1050723A2 (fr) * 1999-05-05 2000-11-08 Linde Aktiengesellschaft Système frigorifique et procédé de fonctionnement d'un système frigorifique
WO2006022829A1 (fr) * 2004-08-09 2006-03-02 Carrier Corporation Circuit de réfrigération à co2 avec sous-refroidissement de l’agent réfrigérant liquide contre la vapeur instantanée de la bouteille accumulatrice et méthode pour exploiter celui-ci
WO2007016944A1 (fr) * 2005-08-08 2007-02-15 Carrier Corporation Systeme frigorifique comprenant plusieurs dispositifs frigorifiques de consommation
EP2021703A2 (fr) * 2006-06-01 2009-02-11 Carrier Corporation Unité de compresseur à étages multiples pour système de réfrigération
EP3064866A1 (fr) * 2015-03-04 2016-09-07 Heatcraft Refrigeration Products LLC Configuration de compresseur surdimensionné modulé pour dérivation de gaz éclair dans un système de réfrigération de dioxyde de carbone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE281761C (fr) *
FR458034A (fr) * 1912-07-27 1913-10-01 Societe De Moteurs A Gaz Et D Industrie Mecanique Perfectionnements apportés à l'établissement des installations frigorifiques
DE1501115A1 (de) * 1951-01-28 1969-10-09 Refrigeration Specialties Co Kaeltesystem
FR2182137A1 (fr) * 1972-04-27 1973-12-07 Svenska Rotor Maskiner Ab
FR2341109A1 (fr) * 1976-02-13 1977-09-09 Doomernik Cornelis Accumulateur de froid
US4151724A (en) * 1977-06-13 1979-05-01 Frick Company Pressurized refrigerant feed with recirculation for compound compression refrigeration systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE281761C (fr) *
FR458034A (fr) * 1912-07-27 1913-10-01 Societe De Moteurs A Gaz Et D Industrie Mecanique Perfectionnements apportés à l'établissement des installations frigorifiques
DE1501115A1 (de) * 1951-01-28 1969-10-09 Refrigeration Specialties Co Kaeltesystem
FR2182137A1 (fr) * 1972-04-27 1973-12-07 Svenska Rotor Maskiner Ab
FR2341109A1 (fr) * 1976-02-13 1977-09-09 Doomernik Cornelis Accumulateur de froid
US4151724A (en) * 1977-06-13 1979-05-01 Frick Company Pressurized refrigerant feed with recirculation for compound compression refrigeration systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2557962A1 (fr) * 1984-01-11 1985-07-12 Copeland Corp Dispositif de refrigeration a deux etages, au fonctionnement souple et au rendement eleve
US4748820A (en) * 1984-01-11 1988-06-07 Copeland Corporation Refrigeration system
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
FR2598788A1 (fr) * 1986-05-15 1987-11-20 Copeland Corp Dispositif de refrigeration.
WO1990000709A1 (fr) * 1988-07-08 1990-01-25 Olson Ref. - H Olson Refrigeration Ab Agregat de refroidissement intermediaire pour installations de refroidissement et de congelation
EP1050723A3 (fr) * 1999-05-05 2002-08-14 Linde Aktiengesellschaft Système frigorifique et procédé de fonctionnement d'un système frigorifique
EP1050723A2 (fr) * 1999-05-05 2000-11-08 Linde Aktiengesellschaft Système frigorifique et procédé de fonctionnement d'un système frigorifique
WO2006022829A1 (fr) * 2004-08-09 2006-03-02 Carrier Corporation Circuit de réfrigération à co2 avec sous-refroidissement de l’agent réfrigérant liquide contre la vapeur instantanée de la bouteille accumulatrice et méthode pour exploiter celui-ci
WO2007016944A1 (fr) * 2005-08-08 2007-02-15 Carrier Corporation Systeme frigorifique comprenant plusieurs dispositifs frigorifiques de consommation
EP2021703A2 (fr) * 2006-06-01 2009-02-11 Carrier Corporation Unité de compresseur à étages multiples pour système de réfrigération
EP2021703A4 (fr) * 2006-06-01 2012-02-15 Carrier Corp Unité de compresseur à étages multiples pour système de réfrigération
EP3064866A1 (fr) * 2015-03-04 2016-09-07 Heatcraft Refrigeration Products LLC Configuration de compresseur surdimensionné modulé pour dérivation de gaz éclair dans un système de réfrigération de dioxyde de carbone
CN105937815A (zh) * 2015-03-04 2016-09-14 西克制冷产品有限责任公司 用于co2制冷系统的闪蒸气体旁路的调整的超大压缩机配置
US9726411B2 (en) 2015-03-04 2017-08-08 Heatcraft Refrigeration Products L.L.C. Modulated oversized compressors configuration for flash gas bypass in a carbon dioxide refrigeration system

Also Published As

Publication number Publication date
FR2513747B1 (fr) 1983-12-02
FR2513747A1 (fr) 1983-04-01
ES515937A0 (es) 1983-09-16
ES8308627A1 (es) 1983-09-16

Similar Documents

Publication Publication Date Title
KR100285665B1 (ko) 냉동장치
US20190368783A1 (en) Refrigeration System And Methods For Refrigeration
US6185944B1 (en) Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line
EA002617B1 (ru) Установка для сжижения природного газа
FR2545589A1 (fr) Procede et appareil de refroidissement et liquefaction d'au moins un gaz a bas point d'ebullition, tel que par exemple du gaz naturel
EP0076716A1 (fr) Installation frigorifique à multimotocompresseurs
FR2476240A1 (fr) Appareil de recuperation d'energie pour installation de compresseur de gaz
FR2510718A1 (fr) Station de soutirage de gaz
US5408835A (en) Apparatus and method for preventing ice from forming on a refrigeration system
CA2112831A1 (fr) Procede et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air
US5167130A (en) Screw compressor system for reverse cycle defrost having relief regulator valve and economizer port
EP2827068B1 (fr) Pompe à chaleur en cascade
US6349564B1 (en) Refrigeration system
CA2132367A1 (fr) Procede et ensemble de compression d'un gaz
WO2011055045A1 (fr) Système de vaporisation d'un fluide cryogénique avec des échangeurs centralisés
BE1009886A5 (fr) Procede et dispositif pour la production d'eau par condensation de l'humidite presente dans l'air atmospherique.
EP0080916A1 (fr) Installation frigorifique à rendement amélioré à multimotocompresseurs
FR2943125A1 (fr) Procede de liquefaction de gaz naturel a cycle combine
FR2556456A1 (fr) Installation frigorifique produisant du froid et du chaud
FR2560974A1 (fr) Installation de production de froid a moyen de stockage et de destockage du travail des motocompresseurs
SU781511A1 (ru) Способ работы компрессионной холодильной машины
SU826157A1 (ru) Двухступенчатая холодильная установка 1
CN212081732U (zh) 一种压缩式真空预冷装置
CN219243988U (zh) 一种引射回油系统
CN209819916U (zh) 一种螺杆配组双级压缩机组

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830614

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FSB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19881202

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SANZEY, EMILE

Inventor name: DEMAN, PIERRE