EP0063978B1 - Compact differential coupler for a monopulse radar - Google Patents

Compact differential coupler for a monopulse radar Download PDF

Info

Publication number
EP0063978B1
EP0063978B1 EP82400631A EP82400631A EP0063978B1 EP 0063978 B1 EP0063978 B1 EP 0063978B1 EP 82400631 A EP82400631 A EP 82400631A EP 82400631 A EP82400631 A EP 82400631A EP 0063978 B1 EP0063978 B1 EP 0063978B1
Authority
EP
European Patent Office
Prior art keywords
plane
coupler
branches
magic
differential coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400631A
Other languages
German (de)
French (fr)
Other versions
EP0063978A1 (en
Inventor
Pierre Blanchard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0063978A1 publication Critical patent/EP0063978A1/en
Application granted granted Critical
Publication of EP0063978B1 publication Critical patent/EP0063978B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port

Definitions

  • the present invention relates to a compact differential coupler for monopulse radar.
  • the angular tracking by monopulse process has been developed and consists in carrying out the angular measurements by processing each return pulse from the objective by a directivity aerial multiple.
  • an antenna formed by a parabolic reflector and two identical horns placed symmetrically with respect to the focus of the reflector.
  • Each horn is connected to a receiver. If the target is on the focal axis of the aerial, the signals received by the two receivers will be identical. On the other hand, if the target is not on the focal axis, the receivers linked to the two horns will not receive the same signals. The comparison of the signals received in each receiver must then make it possible to locate the position of the target relative to the focal axis, by means of appropriate signal processing.
  • the angles In a monopulse tracking radar, the angles must be measured in elevation and in bearing; air is therefore organized to provide a sum channel, a site difference channel and a deposit difference channel.
  • the primary monopulse source in a monopulse amplitude comparison antenna provides four signals on four guides which make it possible to carry out radar tracking, after processing these signals. Behind this primary monopulse source is placed a differential coupler consisting of four magic Tees grouped according to the diagram shown in Figure 1.
  • the source sends four waves A, B, C and D respectively on the four channels 1, 2, 3 and 4 of the coupler.
  • Channel E receives the sum of the powers of the signals collected by the four channels 1 to 4: A + B + C + D.
  • Channel AS performs the high-low difference AS: (A + B) (C + D) and the channel AG performs the right-left difference, ⁇ G: (A + C) - (B + D).
  • the emission is done by the channel s, the aerial then behaving like a single lobe aerial and the reception is done on the three channels s, AS and A G.
  • the channel E receives a signal of maximum power while the difference channels AS and AG receive nothing.
  • this signal received by the channel s is not appreciably changed, but there appears on the AS and AG channels depointing signals in elevation and / or in bearing whose power is not negligible.
  • a differential coupler consisting of magic Tees.
  • the magic tees 5, 6, 7 and 8 are produced separately and then assembled by connection guides 9 and 10 for example and junction flanges 11, 12, 13, 14.
  • a differential coupler thus produced is bulky because of the addition of the guides connecting the Tees, expensive by the large number of parts to be machined and adjusted and finally does not always have good decoupling, the symmetry of the parts and of the connections does not being not perfect, in particular because of the parasitic capacities of the edges of the junction flanges.
  • the magic tees that constitute it are grouped by a mechanic brazing process making it possible to produce relatively space-saving but expensive assemblies. At the time of soldering, a significant waste occurs and inevitably introduces deformations causing poor symmetry.
  • the present invention provides a compact differential coupler, consisting of four magic Tees and machinable by a numerically controlled machine.
  • this compact differential coupler for monopulse radar consisting of four magic Tees, comprises two metal parts symmetrical with respect to a plane assembled opposite one another along this plane of symmetry n and machined from so that their assembly constitutes the four magic Tees, two of which are of the plane fork H type, the third is of the coaxial load type and the fourth is of the plane fork type E.
  • this coupler consists of two metal parts which are symmetrical with respect to a plane and which can be machined entirely by milling machine with digital control.
  • the two metal parts constituting this coupler are assembled by screws, a metal plate being placed between the two parts in the plane of symmetry, at the level of the two magic tees of the H plane fork type.
  • FIG. 3 represents the diagram of a compact differential coupler according to the invention. It includes two magic tees 15 and 16 of the H plane fork type, a Tee 17 of the coaxial load type and a Tee 18 of the flat fork type E. Tees 15 and 16 each include two input channels 19 and 20 for Tee 15 and 21 and 22 for Tee 16 - which are usually connected to the channels of a monopulse source associated with the coupler and two output channels, one 23 or 24 leading to the two input channels of the Tee 17 with coaxial load and the other 25 or 26 directly connected to the input channels 27 and 270 of the tee fork E plane 18.
  • the tee 17 has one of its two output channels is loaded by a coaxial load 28 and its other output channel 29 provides the deposit difference channel ⁇ G of the coupler.
  • the outlet channel 30 of the flat fork tee E 18 carries out the site difference path AS of the coupler and the other channel 31 carries out the sum channel E of the coupler.
  • FIG. 4 An embodiment of such a differential coupler in compact form is shown in Figure 4. It consists mainly of two metal parts 32 and 33 symmetrical with respect to a plane x, assembled along this plane by a set of screws 34. These two parts are machined so as to produce the four magic Tees of the coupler, previously described.
  • the tracks 19 to 22 are produced by cavities dug on one of the sides of each of the two metal parts 32 and 33. Also, during their assembly to constitute the coupler, it is necessary to place between these two parts a metal plate 39 in their plane of symmetry ⁇ . At the level of the tracks to properly separate the different tracks themselves, the plate 39 has a greater thickness, allowing it to better adapt to the cavities.
  • FIG. 5 represents one of the two main components of the coupler produced according to the invention, in this case part 33.
  • the elements bearing the same references in FIGS. 4 and 5 are identical and provide the same functions.
  • the part 33 comprises two cavities hollowed out on one of its sides and which are closed by the metal plate 39, mentioned above and represented in dotted lines in the figure, thus producing the channels 20 and 22 for entry of the Tees 15 and 16. Perpendicularly at these tracks, two other cavities are dug in each of the two parts 32 and 33, producing during their assembly the tracks 23 and 24 of the tee 17 with coaxial load, of which the outlet track 29 constituting the difference track AG deposit is dug at across the entire thickness of part 33.
  • the outlet channels 25 and 26, shown diagrammatically in FIG. 3 of the Tees 15 and 16 are produced from the union of the cavities 40 and 41 dug in the extension of the tracks 20 and 22 and similar cavities dug in the other metal part 32 , symmetrically with respect to the plane ⁇ .
  • These two tracks 25 and 26 lead to the two tracks 27 and 270 of the flat tee tee E 18, the outlet track 31 of which produces the sum track s of the coupler consists of the union of a cavity 42 dug in the part 33 and d 'a cavity symmetrical with respect to the plane ⁇ dug in the part 32.
  • the site difference path AS of the coupler is produced by a cavity dug perpendicular to the plane ⁇ , through the entire thickness of the part 32, not shown in the figure.

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

La présente invention est relative à un coupleur différentiel compact pour radar monopulse.The present invention relates to a compact differential coupler for monopulse radar.

La précision et la rapidité de mesure par le procédé de poursuite angulaire par scanning étant limitées, le procédé de poursuite angulaire par monopulse a été développé et consiste à effectuer les mesures angulaires en traitant chaque impulsion de retour de l'objectif par un aérien à directivité multiple.Since the accuracy and speed of measurement by the angular tracking by scanning process is limited, the angular tracking by monopulse process has been developed and consists in carrying out the angular measurements by processing each return pulse from the objective by a directivity aerial multiple.

On dispose par exemple une antenne formée d'un réflecteur parabolique et de deux cornets identiques placés symétriquement par rapport au foyer du réflecteur.There is for example an antenna formed by a parabolic reflector and two identical horns placed symmetrically with respect to the focus of the reflector.

Chaque cornet est relié à un récepteur. Si la cible se trouve sur l'axe focal de l'aérien, les signaux reçus par les deux récepteurs seront identiques. Par contre, si la cible n'est pas sur l'axe focal, les récepteurs liés aux deux cornets ne recevront pas les mêmes signaux. La comparaison des signaux reçus dans chaque récepteur doit alors permettre de situer la position de la cible par rapport à l'axe focal, grâce à un traitement de signaux approprié.Each horn is connected to a receiver. If the target is on the focal axis of the aerial, the signals received by the two receivers will be identical. On the other hand, if the target is not on the focal axis, the receivers linked to the two horns will not receive the same signals. The comparison of the signals received in each receiver must then make it possible to locate the position of the target relative to the focal axis, by means of appropriate signal processing.

Dans un radar de poursuite monopulse, la mesure des angles doit être faite en site et en gisement; l'aérien est donc organisé pour fournir une voie somme, une voie différence site et une voie différence gisement.In a monopulse tracking radar, the angles must be measured in elevation and in bearing; air is therefore organized to provide a sum channel, a site difference channel and a deposit difference channel.

La source primaire monopulse dans une antenne monopulse à comparaison d'amplitude fournit quatre signaux sur quatre guides qui permettent d'effectuer une poursuite radar, après exploitation de ces signaux. Derrière cette source primaire monopulse est placé un coupleur différentiel constitue de quatre Tés magiques groupés suivant le schéma représenté sur la figure 1.The primary monopulse source in a monopulse amplitude comparison antenna provides four signals on four guides which make it possible to carry out radar tracking, after processing these signals. Behind this primary monopulse source is placed a differential coupler consisting of four magic Tees grouped according to the diagram shown in Figure 1.

La source envoie quatre ondes A, B, C et D respectivement sur les quatre voies 1, 2, 3 et 4 du coupleur. La voie E reçoit la somme des puissances des signaux recueillis par les quatre voies 1 à 4:A + B + C + D. La voie A S effectue la différence haut-bas A S: (A + B)(C + D) et la voie A G effectue la différence droite-gauche,Δ G: (A + C) - (B + D). On est ainsi ramené à un problème plan, pour chacune des ecartométries site et gisement.The source sends four waves A, B, C and D respectively on the four channels 1, 2, 3 and 4 of the coupler. Channel E receives the sum of the powers of the signals collected by the four channels 1 to 4: A + B + C + D. Channel AS performs the high-low difference AS: (A + B) (C + D) and the channel AG performs the right-left difference, Δ G: (A + C) - (B + D). We are thus brought back to a plan problem, for each of the site and deposit ecartometries.

L'émission se fait par la voie s, l'aérien se comportant alors comme un aérien à lobe unique et la réception se fait sur les trois voies s, A S et A G. Lorsque l'objectif est parfaitement pointé, la voie E reçoit un signal de puissance maximale tandis que les voies différences A S et A G ne reçoivent rien. Lorsqu'un dépointage faible existe, ce signal reçu par la voie s n'est pas sensiblement change, mais il apparait sur les voies A S et A G des signaux de dépointage en site et/ou en gisement dont la puissance n'est pas négligeable.The emission is done by the channel s, the aerial then behaving like a single lobe aerial and the reception is done on the three channels s, AS and A G. When the objective is perfectly pointed, the channel E receives a signal of maximum power while the difference channels AS and AG receive nothing. When a weak depointing exists, this signal received by the channel s is not appreciably changed, but there appears on the AS and AG channels depointing signals in elevation and / or in bearing whose power is not negligible.

Suivant leur signe, on sait si le dépointage a lieu vers le haut ou vers le bas pour la voie difference site0 S, vers la droite ou vers la gauche pour la voie différence gisement A G.According to their sign, we know if the depointing takes place up or down for the site difference path S 0, to the right or to the left for the deposit difference path A G.

Actuellement, il existe deux types de réalisation d'un coupleur différentiel constitué de Tés magiques. Suivant le premier type, représenté, sur la figure 2, les Tés magiques 5, 6, 7 et 8 sont réalisés séparément puis assemblés par des guides de liaison 9 et 10 par exemple et des brides de jonction 11, 12, 13, 14. Un coupleur différentiel ainsi réalisé est encombrant à cause de l'adjonction des guides reliant les Tés, onéreux par le grand nombre de pièces à usiner et à ajuster et enfin ne présente pas toujours un bon découplage, la symétrie des pièces et des raccordements n'étant pas parfaite, notamment en raison des capacités parasites des arêtes des brides de jonction.Currently, there are two types of embodiment of a differential coupler consisting of magic Tees. According to the first type, shown in FIG. 2, the magic tees 5, 6, 7 and 8 are produced separately and then assembled by connection guides 9 and 10 for example and junction flanges 11, 12, 13, 14. A differential coupler thus produced is bulky because of the addition of the guides connecting the Tees, expensive by the large number of parts to be machined and adjusted and finally does not always have good decoupling, the symmetry of the parts and of the connections does not being not perfect, in particular because of the parasitic capacities of the edges of the junction flanges.

Suivant le second type de réalisation d'un coupleur différentiel, les Tés magiques qui le constituent sont groupés par un procédé de mécanobrasure permettant de réaliser des ensembles relativement peu encombrants mais chers. Au moment de la brasure, un déchet important se produit et introduit inévitablement des déformations provoquant une mauvaise symétrie.According to the second type of embodiment of a differential coupler, the magic tees that constitute it are grouped by a mechanic brazing process making it possible to produce relatively space-saving but expensive assemblies. At the time of soldering, a significant waste occurs and inevitably introduces deformations causing poor symmetry.

Pour remédier à ces inconvénients, la présente invention réalise un coupleur différentiel compact, constitué de quatre Tés magiques et usinable par une machine à commande numérique.To overcome these drawbacks, the present invention provides a compact differential coupler, consisting of four magic Tees and machinable by a numerically controlled machine.

Selon une caractéristique de l'invention, ce coupleur différentiel compact pour radar monopulse constitué par quatre Tés magiques, comprend deux pièces métalliques symétriques par rapport à un plan assemblées en regard l'une de l'autre suivant ce plan de symétrie n et usinées de sorte que leur assemblage constitue les quatre Tés magiques, dont deux sont du type fourchette plan H, le troisième est du type à charge coaxiale et le quatrième est du type fourchette plan E.According to a characteristic of the invention, this compact differential coupler for monopulse radar consisting of four magic Tees, comprises two metal parts symmetrical with respect to a plane assembled opposite one another along this plane of symmetry n and machined from so that their assembly constitutes the four magic Tees, two of which are of the plane fork H type, the third is of the coaxial load type and the fourth is of the plane fork type E.

Selon une autre caractéristique de l'invention, ce coupleur est constitué de deux pièces métalliques symétriques par rapport à un plan et usinables entièrement par fraiseuse à commande numérique.According to another characteristic of the invention, this coupler consists of two metal parts which are symmetrical with respect to a plane and which can be machined entirely by milling machine with digital control.

Selon une troisième caractéristique, les deux pièces métalliques constituant ce coupleur sont assemblées par des vis, une plaque métallique étant placée entre les deux pièces dans le plan de symétrie, au niveau des deux Tés magiques du type fourchette plan H.According to a third characteristic, the two metal parts constituting this coupler are assembled by screws, a metal plate being placed between the two parts in the plane of symmetry, at the level of the two magic tees of the H plane fork type.

D'autres caractéristiques et avantages de l'invention apparaîtront dans la description qui suit, illustrée par les figures suivantes qui, outre la figure 1 représentant le schema genéral d'un coupleur et la figure 2 montrant une realisation d'un coupleur selon l'art antérieur, représentent:.

  • - la figure 3: le schéma d'un coupleur différentiel compact selon l'invention;
  • - la figure 4: une réalisation d'un coupleur différentiel compact selon l'invention;
  • - la figure 5: une des deux pièces métalliques constituant principalement le coupleur selon l'invention.
Other characteristics and advantages of the invention will appear in the description which follows, illustrated by the following figures which, in addition to FIG. 1 representing the general diagram of a coupler and FIG. 2 showing an embodiment of a coupler according to the prior art, represent :.
  • - Figure 3: the diagram of a compact differential coupler according to the invention;
  • - Figure 4: an embodiment of a compact differential coupler according to the invention;
  • - Figure 5: one of the two metal parts mainly constituting the coupler according to the invention.

La figure 3 représente le schema d'un coupleur différentiel compact selon l'invention. Il comporte deux Tés magiques 15 et 16 du type à fourchette plan H, un Té 17 du type à charge coaxiale et un Té 18 du type fourchette plan E. Les Tés 15 et 16 comprennent chacun deux voies d'entrée 19 et 20 pour le Té 15 et 21 et 22 pour le Té 16 - qui sont habituellement reliées aux voies d'une source monopulse associée au coupleur et deux voies de sortie, l'une 23 ou 24 aboutissant aux deux voies d'entrée du Té 17 à charge coaxiale et l'autre 25 ou 26 directement reliée aux voies d'entrée 27 et 270 du Té fourchette plan E 18. Le Té 17 a l'une de ses deux voies de sortie est chargée par une charge coaxiale 28 et son autre voie de sortie 29 réalise la voie différence gisement ΔG du coupleur. La voie de sortie 30 du Té fourchette plan E 18 réalise la voie différence site AS du coupleur et l'autre voie 31 réalise la voie somme E du coupleur.FIG. 3 represents the diagram of a compact differential coupler according to the invention. It includes two magic tees 15 and 16 of the H plane fork type, a Tee 17 of the coaxial load type and a Tee 18 of the flat fork type E. Tees 15 and 16 each include two input channels 19 and 20 for Tee 15 and 21 and 22 for Tee 16 - which are usually connected to the channels of a monopulse source associated with the coupler and two output channels, one 23 or 24 leading to the two input channels of the Tee 17 with coaxial load and the other 25 or 26 directly connected to the input channels 27 and 270 of the tee fork E plane 18. The tee 17 has one of its two output channels is loaded by a coaxial load 28 and its other output channel 29 provides the deposit difference channel ΔG of the coupler. The outlet channel 30 of the flat fork tee E 18 carries out the site difference path AS of the coupler and the other channel 31 carries out the sum channel E of the coupler.

Une réalisation d'un tel coupleur différentiel sous forme compacte est représentée sur la figure 4. Il est constitué principalement de deux pièces métalliques 32 et 33 symétriques par rapport à un plan x, assemblées suivant ce plan par un jeu de vis 34. Ces deux pièces sont usinées de façon à réaliser les quatre Tés magiques du coupleur, précédemment décrit.An embodiment of such a differential coupler in compact form is shown in Figure 4. It consists mainly of two metal parts 32 and 33 symmetrical with respect to a plane x, assembled along this plane by a set of screws 34. These two parts are machined so as to produce the four magic Tees of the coupler, previously described.

Sur cette figure sont représentées les deux voies 19 et 20 pour le Té 15 et 21 et 22 pour le Té 16 qui sont branchées sur les voies d'une source monopulse associée au coupleur. Afin que ces quatre voies 19 à 22 soient exactement en phase à l'entrée du coupleur, on place deux déphaseurs 35 et 36 constitués par des plaquettes 27 et 38 de matériau diélectrique qui sont introduites plus ou moins profondément dans les voies. On remarque également sur la figure la charge coaxiale 28 fermant la voie de sortie 280 du Té 17, dessinée en pointillés de même que la voie 29 correspondant à la voie différence gisement ΔG du coupleur.In this figure are shown the two channels 19 and 20 for the Tee 15 and 21 and 22 for the Tee 16 which are connected to the channels of a monopulse source associated with the coupler. So that these four channels 19 to 22 are exactly in phase at the input of the coupler, two phase shifters 35 and 36 are placed, constituted by plates 27 and 38 of dielectric material which are introduced more or less deeply into the channels. We also note in the figure the coaxial load 28 closing the output path 280 of the tee 17, drawn in dotted lines, as well as the path 29 corresponding to the difference in deposit ΔG path of the coupler.

Comme on le verra sur la figure 5, les voies 19 à 22 sont réalisées par des cavités creusées sur un des côtés de chacune des deux pièces métalliques 32 et 33. Aussi, lors de leur assemblage pour constituer le coupleur, il est nécessaire de placer entre ces deux pièces une plaque métallique 39 dans leur plan de symétrie π. Au niveau des voies pour bien séparer les différentes voies elles-mêmes, la plaque 39 présente une épaisseur plus grande, permettant à celleci de mieux s'adapter aux cavités.As will be seen in FIG. 5, the tracks 19 to 22 are produced by cavities dug on one of the sides of each of the two metal parts 32 and 33. Also, during their assembly to constitute the coupler, it is necessary to place between these two parts a metal plate 39 in their plane of symmetry π. At the level of the tracks to properly separate the different tracks themselves, the plate 39 has a greater thickness, allowing it to better adapt to the cavities.

La figure 5 représente un des deux composants principaux du coupleur réalisé selon l'invention, en l'occurence la pièce 33. Les éléments portant les mêmes références sur les figures 4 et 5 sont identiques et assurent les mêmes fonctions. La pièce 33 comporte deux cavités creusées sur un de ses côtés et qui sont fermées par la plaque métallique 39, mentionnée plus haut et représentée en pointillés sur la figure, réalisant ainsi les voies 20 et 22 d'entrée des Tés 15 et 16. Perpendiculairement à ces voies, sont creusées deux autres cavités dans chacune des deux pièces 32 et 33, réalisant lors de leur assemblage les voies 23 et 24 du Té 17 à charge coaxiale, dont la voie de sortie 29 constituant la voie différence gisement AG est creusée à travers toute l'épaisseur de la pièce 33.FIG. 5 represents one of the two main components of the coupler produced according to the invention, in this case part 33. The elements bearing the same references in FIGS. 4 and 5 are identical and provide the same functions. The part 33 comprises two cavities hollowed out on one of its sides and which are closed by the metal plate 39, mentioned above and represented in dotted lines in the figure, thus producing the channels 20 and 22 for entry of the Tees 15 and 16. Perpendicularly at these tracks, two other cavities are dug in each of the two parts 32 and 33, producing during their assembly the tracks 23 and 24 of the tee 17 with coaxial load, of which the outlet track 29 constituting the difference track AG deposit is dug at across the entire thickness of part 33.

Les voies de sortie 25 et 26, schématisées sur la figure 3 des Tés 15 et 16 sont réalisées à partir de la réunion des cavités 40et 41 creusées dans le prolongement des voies 20 et 22 et de cavités similaires creusées dans l'autre pièce métallique 32, symétriquement par rapport au plan π. Ces deux voies 25 et 26 aboutissent aux deux voies 27 et 270 du Té fourchette plan E 18, dont la voie de sortie 31 réalisant la voie somme s du coupleur est constituée par la réunion d'une cavité 42 creusée dans la pièce 33 et d'une cavité symétrique par rapport au plan π creusée dans la pièce 32. La voie différence site AS du coupleur est réalisée par une cavite creusée perpendiculairement au plan π, à travers toute l'épaisseur de la pièce 32, non représentée sur la figure.The outlet channels 25 and 26, shown diagrammatically in FIG. 3 of the Tees 15 and 16 are produced from the union of the cavities 40 and 41 dug in the extension of the tracks 20 and 22 and similar cavities dug in the other metal part 32 , symmetrically with respect to the plane π. These two tracks 25 and 26 lead to the two tracks 27 and 270 of the flat tee tee E 18, the outlet track 31 of which produces the sum track s of the coupler consists of the union of a cavity 42 dug in the part 33 and d 'a cavity symmetrical with respect to the plane π dug in the part 32. The site difference path AS of the coupler is produced by a cavity dug perpendicular to the plane π, through the entire thickness of the part 32, not shown in the figure.

Ainsi vient d'être décrit un coupleur différentiel compact pour radar monopulse, constitué par quatre Tés magiques, et réalisé essentiellement à partir de l'assemblage de deux pièces métalliques symétriques par rapport à un plan. Grâce à la quasi symétrie de ces deux pièces, elles peuvent être usinées par une fraiseuse à commande numérique d'où une meilleure productivité de ce genre de coupleur.Thus has just been described a compact differential coupler for monopulse radar, constituted by four magic Tees, and produced essentially from the assembly of two metal parts symmetrical with respect to a plane. Thanks to the almost symmetry of these two parts, they can be machined by a numerically controlled milling machine, hence better productivity of this type of coupler.

L'avantage de ce procédé de fabrication réside dans le fait qu'une grande partie du programme de cette machine est commune à la réalisation des deux pièces, entraînant ainsi une excellente symétrie. L'assemblage de ces deux pièces se fait ensuite par un jeu de vis, réalisant alors un ensemble monobloc où les liaisons entre les quatre Tés magiques sont très réduites permettant un bon découplage donc des meilleurs performances techniques du coupleur. Enfin, cette réalisation est moins coûteuse que celles de l'art antérieur et permet d'obtenir un coupleur compact peu encombrant et d'une reproductibilité excellente, en bande de fréquence "X" aussi bien que pour toutes les bandes au dessus de la bande "S".The advantage of this manufacturing process lies in the fact that a large part of the program of this machine is common to the production of the two parts, thus resulting in excellent symmetry. The assembly of these two parts is then done by a set of screws, then making a one-piece assembly where the connections between the four magic Tees are very reduced allowing good decoupling therefore better technical performance of the coupler. Finally, this embodiment is less costly than those of the prior art and makes it possible to obtain a compact coupler that takes up little space and has excellent reproducibility, in frequency band "X" as well as for all the bands above the band. "S".

Claims (9)

1. Compact differential coupler for a monopulse radar constituted by four magic Ts, characterized in that it comprises two metallic pieces (32 and 33) symmetrical with respect to a plane (n) assembled opposite each other along said symmetry plane (π) and machined in such a manner that their assembly forms the four magic Ts (15 to 18), two of which (15 and 16) are of plane H fork type, the third (17) being of the type with coaxial load and the fourth (18) of the plane E fork type.
2. Differential coupler according to claim 1, characterized in that the two magic Ts (15 and 16) are such that for each of them:
- two branches (19 and 20) and (21 and 22) are connected to the branches of a monopulse source with which said coupler is associated,
- a third branch (23 and 24) is connected directly to the third magic T (17) to the output of which (29) the azimuthal difference channel (AG) of the coupler is connected,
- the fourth branch (25 and 26) is connected directly to the two branches (27 and 270) of the fourth magic T (18), in the two other branches (30 and 31) of which are formed respectively the elevational sum channel (e) and the difference channel (AS) of the coupler.
3. Differential coupler according to claim 2, characterized in that each of the branches (19-20) and (21-22) of the plane Hfork type magic Ts (15 and 16) is formed by two cavities hollowed respectively on one of the sides parallel to the plane (π) of each of the two pieces (32) and (33) symmetrically with respect to the plane (n) and closed by a metal plate (38) located in said symmetry plane (n).
4. Differential coupler according to claim 2, characterized in that the input branches (23 and 24) of the coaxial load T (17) are formed by two cavities hollowed respectively on one of the sides parallel to the plane (π) of each of the two pieces (32) and (33) perpendicularly to the branches (19 to 22) and symmetrical with respect to the plane (π).
5. Differential coupler according to claim 2, characterized in that one of the output branches (28) of the T (17) is closed by a coaxial load (28) located perpendicularly to the plane (π) and in the axis of the cavity forming the other output branch (29) corresponding to the azimuthal difference channel (AG) of the coupler.
6. Differential coupler according to claim 2, characterized in that the output branches (25 and 26) of the Ts (15 and 16) respectively are formed by cavities hollowed respectively on one of the sides parallel to the plane (n) of each of the two pieces (32) and (33).
7. Differential coupler according to any one of claims 1 to 6, characterized in that the two metal pieces (32 and 31) symmetrical with respect to the plane (x) can be machined entirely by digital control milling.
8. Differential coupler according to claim 3, characterized in that the two metal pieces (32 and 33) are assembled by screws (34).
9. Monopulse tracking radar comprising a differential coupler realised according to one of claims 1 to 8.
EP82400631A 1981-04-10 1982-04-06 Compact differential coupler for a monopulse radar Expired EP0063978B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8107205A FR2503938A1 (en) 1981-04-10 1981-04-10 COMPACT DIFFERENTIAL COUPLER FOR RADAR MONOPULSE
FR8107205 1981-04-10

Publications (2)

Publication Number Publication Date
EP0063978A1 EP0063978A1 (en) 1982-11-03
EP0063978B1 true EP0063978B1 (en) 1986-06-11

Family

ID=9257237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400631A Expired EP0063978B1 (en) 1981-04-10 1982-04-06 Compact differential coupler for a monopulse radar

Country Status (4)

Country Link
US (1) US4553113A (en)
EP (1) EP0063978B1 (en)
DE (1) DE3271631D1 (en)
FR (1) FR2503938A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511658B1 (en) 2008-01-16 2009-03-31 Infineon Technologies Ag High-efficiency differential radar system
ES2362761B1 (en) * 2009-04-28 2012-05-23 Ferox Comunications, S.L. MULTIPLEXOR OF CROSSED POLARIZATION.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2585173A (en) * 1948-07-01 1952-02-12 Raytheon Mfg Co Radio-frequency transmission line circuit
US2759154A (en) * 1954-11-10 1956-08-14 Sperry Rand Corp Waveguide hybrid network for monopulse comparator
US2973487A (en) * 1957-06-03 1961-02-28 Hughes Aircraft Co Waveguide hybrid structure
US3274604A (en) * 1958-12-12 1966-09-20 Bernard L Lewis Multi-mode simultaneous lobing antenna
US3320553A (en) * 1961-06-29 1967-05-16 Dean D Howard Polarization diversity antenna feed system
US3281720A (en) * 1964-02-21 1966-10-25 Emerson Electric Co Waveguide hybrid junction
FR1539766A (en) * 1967-07-13 1968-09-20 Csf New multimode monopulse source
US3568190A (en) * 1968-07-26 1971-03-02 North American Rockwell Full monopulse variable polarization feed bridge
US3643261A (en) * 1969-10-09 1972-02-15 Itt Apparatus and method of compensating a long highly dispersive traveling wave transmission line
FR2219533B1 (en) * 1973-02-23 1977-09-02 Thomson Csf
US3999151A (en) * 1975-09-08 1976-12-21 Western Electric Company, Inc. Crossguide hybrid coupler and a commutating hybrid using same to form a channel branching network
FR2405559A1 (en) * 1977-10-07 1979-05-04 Cit Alcatel BRANCHED WAVEGUID COUPLER
DE3111731A1 (en) * 1981-03-25 1982-10-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt MICROWAVE TRANSMISSION DEVICE WITH MULTI-MODE DIVERSITY COMBINATION RECEPTION

Also Published As

Publication number Publication date
EP0063978A1 (en) 1982-11-03
DE3271631D1 (en) 1986-07-17
FR2503938B1 (en) 1983-06-10
US4553113A (en) 1985-11-12
FR2503938A1 (en) 1982-10-15

Similar Documents

Publication Publication Date Title
EP0213646B1 (en) Modular microwave antenna units and antenna comprising such units
EP0415818B1 (en) Control of beam direction for antenna system with electronic scanning and beamforming by computation
EP0274074B1 (en) Feeding radiator for a communications antenna
EP0012055A1 (en) Microstrip monopulse primary feed and antenna using same
EP0150634B1 (en) Transducer for ultrasonic echography provided with an array of elements forming a convex surface
EP0307338B1 (en) Microwave plate antenna, especially for a Doppler radar
EP0205212A1 (en) Modular microwave antenna units and antenna composed of such units
FR2581256A1 (en) BROADBAND DIRECTIVE COUPLER FOR MICRO-TAPE LINE
FR2655204A1 (en) WAVEGUIDE SUPPLY NETWORK ANTENNA.
FR2491686A1 (en) MULTIMODE RADAR DIRECTIVE ANTENNA WITH DOUBLE POWER SUPPLY
EP0134611A1 (en) A flat microwave emitting or receiving antenna array, and microwave signal emitting or receiving system comprising a such flat antenna
EP0462864A1 (en) Device for feeding radiating elements of an antenna array and its application for an antenna of a landing help system type MLS
FR3069713B1 (en) ANTENNA INTEGRATING DELAY LENSES WITHIN A DISTRIBUTOR BASED ON PARALLEL PLATE WAVEGUIDE DIVIDERS
EP0063978B1 (en) Compact differential coupler for a monopulse radar
FR2461368A1 (en) MAGNETOSTATIC WAVE DEVICE HAVING AN EXCHANGE STRUCTURE WITH CONDUCTIVE BANDS
FR2846153A1 (en) ANTENNA SYSTEM, IN PARTICULAR FOR MONO-PULSE RADAR
FR2582449A1 (en) BROADBAND POLARIZATION DIPLEXER DEVICE AND ANTENNA ASSOCIATED WITH RADAR OR COUNTERMEASURE DEVICE COMPRISING SUCH A DEVICE
EP0020196A1 (en) Ringplate-type microwave array antenna with feeding system and its application in radars
EP0004215A1 (en) Multimode microwave source and monopulse antenna incorporating such a source
FR3101486A1 (en) MULTI-BAND ANTENNA
EP0072316A1 (en) Electronic scanning antenna with multiple ports and radar using such antenna
FR2538959A1 (en) Two-band microwave lens, its method of manufacture and two-band tracking radar antenna
EP0880196A1 (en) Compact monopulse source for an antenna with optical focusing
EP0335788A1 (en) Microwave phase shifter
CA1121473A (en) Multiple waveguide coupler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19830224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3271631

Country of ref document: DE

Date of ref document: 19860717

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010319

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010424

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020405

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020405

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD