EP0063963B1 - Verfahren und Vorrichtung zum Ummanteln von Drähten - Google Patents

Verfahren und Vorrichtung zum Ummanteln von Drähten Download PDF

Info

Publication number
EP0063963B1
EP0063963B1 EP82302193A EP82302193A EP0063963B1 EP 0063963 B1 EP0063963 B1 EP 0063963B1 EP 82302193 A EP82302193 A EP 82302193A EP 82302193 A EP82302193 A EP 82302193A EP 0063963 B1 EP0063963 B1 EP 0063963B1
Authority
EP
European Patent Office
Prior art keywords
die
filament
exit
entrance
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82302193A
Other languages
English (en)
French (fr)
Other versions
EP0063963A1 (de
Inventor
George D. Hilker
Verne L. Lausen
Jerry L. Grimes
Roger D. Wright
James E. Bodette
Keith D. Bultemeier
Jessie H. Coon
Donny R. Disque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phelps Dodge Industries Inc
Original Assignee
Phelps Dodge Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phelps Dodge Industries Inc filed Critical Phelps Dodge Industries Inc
Priority to AT82302193T priority Critical patent/ATE15566T1/de
Publication of EP0063963A1 publication Critical patent/EP0063963A1/de
Application granted granted Critical
Publication of EP0063963B1 publication Critical patent/EP0063963B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying

Definitions

  • This invention relates to a method of coating a filament, for example magnet wire, and more particularly to such a method and apparatus for applying a coating of flowable, hardenable resin material to a continuously moving filament to a required thickness in a single pass.
  • a filament may be magnet wire, which has usually been manufactured by passing a bare copper or aluminium conductor or a previously insulated copper or aluminium conductor through a bath of liquid enamel (a solution of resin material in a solvent) and then through an oven for driving off the solvent from the enamel and/or curing the resin material, leaving a resin material coat on the conductor.
  • the cost of the solvent used in applying the resin material from the solution is usually significant.
  • the application of a layer of resin material to a filament from solution usually requires several successive coats in order to result in a concentric coat of a required thickness. For example, six coats may be required for a 0.08 mm coating, although in some applications as many as 24 coats have been required. Also, multiple coats of some materials cannot be applied successfully from solution, due to lack of good adhesion and wetting between coats.
  • Austrian Patent Specification No. 318,037 discloses an apparatus for applying insulating material to a wire: such material may be a solvent-free resin.
  • This known apparatus has a parallel-sided wire-intake passage at the inner end of which is a simple die. This is followed in the direction of wire motion by a small chamber to which insulating material is fed. The chamber is in turn followed by a passage through which the wire is fed to another simple die.
  • European Patent Specification No. 0009312 discloses a method and apparatus for manufacturing magnet wire in which a metered amount of hardenable resin material is applied on to the conductor, which then passes into a frusto-conical entry zone of a die which has a throat. As the conductor with the resin material thereon passes into the entry zone the material largely fills the entry zone and forms a rotating annular support between the conductor and the inwardly convergent wall of the entry zone, so as to centre the conductor in the throat with a concentric coating of the resin material on the conductor.
  • a method of coating a filament for example magnet wire, in which a flowable, hardenable resin material is applied to a continuously moving filament to a required thickness in a single pass whereby a filament may be drawn or otherwise formed, coated and spooled in a continuous operation, the method comprising:-
  • a method for manufacturing a filament for example magnet wire, in a continuous process by which a coating of flowable, hardenable resin material may be applied concentrically to a moving filament in thicknesses of about 0.40 mm or less.
  • the filament can be a bare copper or aluminium conductor of round or rectangular configuration, or an insulated conductor upon which a top coat or an intermediate coat of resin material is applied. Coatings of 0.013 mm or 0.025 mm can also be applied by the method of the invention.
  • magnet wire can be manufactured by continuously drawing the wire to size, annealing the wire if necessary, insulating the wire with one or more coats of the flowable, hardenable resin material, curing the resin material if necessary, hardening the resin material, and spooling the wire for shipment, without interruption, at speeds limited only by the filament pay-out and take-up devices used.
  • the method of the invention uses the flowable, hardenable resin material to centre the filament in a die, and the size of the die controls the thickness of the coat to be applied. In the method of the invention, only the resin material being applied to the filament is in contact with the filament. Thus, the mechanical wear normally associated with centering dies used in extrusion processes is avoided.
  • the method of the invention can be used to apply a coating several times thinner than is possible with conventional extrusion apparatus, and a coating of a material different than those conventionally extruded onto filaments.
  • curing is no longer required; and thus the need for curing, catalytic burners and the like, as well as concern regarding atmospheric pollution, are avoided.
  • Coated filaments, such as magnet wire, made by the method of the invention have coatings which are surprisingly concentric and continuous when compared to filaments made by conventional methods.
  • the invention also includes apparatus for the manufacture of a coated filament, for example magnet wire, the apparatus comprising one or two die devices, the or each die device including an entrance die and an exit die and a die block, the die block being between the dies, the entrance die having a throat portion, an entrance opening larger than the throat portion and connected thereto by a converging interior wall and an exit opening larger than the throat portion and connected thereto by a diverging interior wall, the exit die having a throat portion and an entrance opening larger than the throat portion and connected thereto by a converging interior wall, the die block having an interior passage communicating with the exit opening of the entrance die and the entrance opening of the exit die thereby defining a flowable material centering chamber between the diverging interior wall and the passage and the converging interior wall.
  • the apparatus 10 includes a filament pay-out device 12, a filament heater 14, a coating material dispenser 16, a coating die 18, a hardener 20, and a filament take-up device 22.
  • the filament 24 is shown broken at 26, 28 and 30.
  • the filament heater 14 may include an annealer whereby the effects of drawing or stretching the wire may be eliminated.
  • additional coating dies 18 and hardeners 20 may be inserted at the break 28 such that successive coats of different coating materials may be applied in a continuous manner.
  • filament is used herein for all strand materials.
  • “Filament” thus includes both copper and aluminium conductors, and also insulated copper and aluminium conductors which have been insulated with a base coat of insulating material, a tape of insulating material either spirally or longitudinally wrapped on the conductor, or other conventional insulating materials, and other strand materials desirably coated. While the embodiments herein described primarily relate to the manufacture of magnet wire, the apparatus of the invention is thought to have utility in coating other kinds of filaments than conductors or insulated conductors for the production of magnet wire.
  • meltable material is used herein for the general class of coating materials applied by the method and apparatus of the invention.
  • embodiments herein described refer to meltable coating materials which can be hardened by cooling the material to ambient temperatures
  • other coating materials which are flowable at elevated temperatures and pressures are contemplated as being within the general class of coating materials which can be applied.
  • These materials include materials which are initially flowable but are later hardened by curing or thermosetting the material and also coating materials which may include up to about 5% by weight of solvent to render them flowable and later hardenable by driving the solvent from the material.
  • various materials can be applied.
  • polyamides such as nylon, polyethylene terephthalates, polybutylene terephthalates, potyphenytene sulfide, polycarbonates, polypropylenes, polyethersulfone, polyether imides, polyether etherketone, polysulphones, epoxys, fluorcarbons including ethylene-chlorotrifluoroethylene and ethylene-tetrafluoroethylene, polyvinyl formal, phenoxys, polyvinyl butyrol, polyamide-imides, polyesters and combinations thereof.
  • polyamides such as nylon, polyethylene terephthalates, polybutylene terephthalates, potyphenytene sulfide, polycarbonates, polypropylenes, polyethersulfone, polyether imides, polyether etherketone, polysulphones, epoxys, fluorcarbons including ethylene-chlorotrifluoroethylene and ethylene-tetrafluoroethylene, polyvinyl formal, phenoxys, polyvinyl
  • the filament pay-out device 12 includes a first spool 32 on which the filament 24, preferably coated, is stored.
  • the spool 32 is mounted on a spindle 34 of the pay-out device 12 so as to rotate freely in the direction of the arrow 36.
  • the spool 32 has a brake 38 which restrains its rotation as the filament 24 is being pulled therefrom by the take-up device 22, so as to prevent entanglements. It is possible that in a magnet wire manufacturing plant where conductors are being rolled, drawn or otherwise reduced to the required filament size from ingots, the pay-out device 12 can be omitted, since the remaining apparatus can be used to coat the filament continuously in a single pass as the filament is supplied from the rolling and drawing apparatus.
  • the spools 32 in this instance can be the reels upon which bare copper and aluminium conductors are now transported from the rolling and drawing apparatus to the magnet wire manufacturing plant.
  • an annealer is used to eliminate the effects of working the conductor during rolling and drawing.
  • a filament heater 14 may be used solely to raise the temperature of the filament prior to application of the coating material, or it may be used to anneal the filament if hard, bare wire is used, or further to reduce the effects of the rolling and drawing, if required.
  • the filament heater 14 may be an annealer, or may be simply a filament heater.
  • the filament heater 14 comprises-a resistance coil 40, generally tubular in shape, and having opposite open ends 42 and 44.
  • the filament 24 is trained between the payout device 12 and the take-up device 22 through the coil 40.
  • the filament heater 14 also has a control 46 by which the temperature of the filament 24 can be controlled.
  • the filament heater 14 may also include a filament temperature measuring device such as a radiation pyrometer. Hereinafter in specific examples, the approximate wire temperatures given have been measured by such a device.
  • the coating die 18 is illustrated in Figs. 1 to 4.
  • the coating die 18 includes an entrance die 61, an exit die 62 and a die block 64.
  • Entrance die 61 is mounted in the forward portion of die block 64 by screws 66.
  • Exit die 62 is mounted in the rearward portion of die block 64 by screws 66'. Separating entrance die 61 and exit die 62 is an interior passage 65.
  • Die block 64 is provided with heater bores 68 in which heaters 70 are positioned. Each heater 70 may for example be a tubular calrod heater.
  • the die block 64 has a thermocouple bore 72 in which a thermocouple 74 (Fig. 4) may be placed. Further, die block 64 has a nozzle bore 75 to which the nozzle 54 of material applicator 16 is connected.
  • die temperatures are given with regard to specific examples; these die temperatures are measured by the thermocouple 74.
  • Heaters 70 are connected by conductors to a heater 76.
  • Heater 76 is provided with paired controls 78 whereby the temperature of the entrance die 61 and the exit die 62 can each be raised above ambient temperature (for each die) and controlled, respectively, as required.
  • the entrance die 61 includes an entrance opening 80, a throat 82 and a converging interior wall 84 which connects the throat 82 and the entrance opening 80. Entrance die 61 also has an exit opening 86 and a diverging interior wall 88 interconnecting the throat 82 and the exit opening 86.
  • the entrance die 61 may be constructed as illustrated in two-piece fashion, having a central piece 90 including a throat portion of harder and more wear-resistant material, and exterior piece 90' which includes both the entrance opening 80 and the exit opening 86.
  • the exit die 62 includes an entrance opening 92, a throat 93 and a converging interior wall 94 which interconnects the throat 93 and the entrance opening 92. Converging interior wall 94 part defines a die chamber 95 as will be mentioned hereinafter. Exit die 62 also has an exit opening 96 and a diverging interior wall 97 that interconnects the throat 93 and the exit opening 96.
  • the exit die 62 may be constructed as illustrated in two-piece fashion having a central piece 98 including a throat portion of harder and more wear resistant material than the exterior piece 98' which includes both the entrance opening 92 and exit opening 96.
  • the converging walls 84 and 94 define an angle A with filament 24 of from 5 to 40 degrees and throats 82 and 93 are tapered from converging walls 84 and 94 to diverging walls 88 and 97 so as to define an angle with the filament 24 of 1 to 2 degrees.
  • the flowable material applicator 16 (Fig. 1) has a hopper 48 by which the material is supplied to the applicator, a material reservoir 50 in which the material may be stored, and a positive displacement pump which pressurizes reservoir 50 and dispenses the flowable material through a nozzle 54.
  • reservoir 50 is provided with a heater and a control device 56 by which the temperature of the material in the reservoir can be controlled.
  • An additional control device 58 is associated with the positive displacement pump to control the amount of flowable material passing through nozzle 54.
  • the fluid material applicator 16 may be an extrusion apparatus having the features above described. In those applications in which the flowable material is rendered more flowable by the use of a small amount of solvent, both the coating material and the solvent may be fed into the applicator via the hopper 48 and the reservoir 50 may have a mixing apparatus with a separate control 60.
  • the central die chamber 95 (Fig. 2) is defined by the diverging wall 88 of entrance die 61, the converging interior wall 94 of exit die 62, and the walls of interior passage 65 of die block 64. Die chamber 95 is positioned between throat 82 and throat 93.
  • the nozzle 54 is connected to nozzle bore 75 so that coating material in reservoir 50 may be injected into the central die chamber 95 under pressure by material applicator 16.
  • the filament 24 is trained between the pay out device 12 and the take-up device 22 through the entrance die 61, the central die chamber 95, and the exit die 62.
  • the hardener 20 (Fig. 1) hardens the coat of material on the filament 24 prior to spooling the coated filament or magnet wire by the take-up device 22.
  • the hardener 20 includes a trough 100 having opposite open ends 102 and 104. The trough is positioned such that the filament 24 can be trained to enter the open end 102, pass through the trough 100, and leave at the open end 104. As shown, the trough 100 is sloped downwardly towards the open end 102 and provided with a source of cooling fluid, such as water 108, adjacent open end 104 and a drain 110 adjacent open end 102. In some cases a water quench using the hardener 20 is needed. In other cases a quench is not required and the cooling fluid is not used. In these other cases, either a flow of ambient air or of refrigerated air is trained on the coated filament 24.
  • successive, spaced coating dies 18 are used.
  • the particular coating die used depends on the material to be applied.
  • Each coating die will have a material applicator 16 associated with it and may also have a hardener 20 associated with it.
  • the term "coating station” is used herein to refer to the assemblage of a material applicator 16, a coating die, and a hardener 20.
  • the latter comprises a second reel 32 on which the coated filament 24 is spooled for shipment.
  • the two reels 32 may be conventional spools on which coated filaments are usually shipped.
  • Each spool 32 is mounted for rotation on a spindle 34 and driven in the direction of the arrow 112.
  • a spool driver 114 Connected to the second spool 32 is a spool driver 114 which drives the second spool 32 to pull the filament 24 from the first spool or reel 32.
  • a continuous supply of the filament 24 is provided either by the pay-out device 12 as illustrated in Fig. 1, or from a rolling and drawing operation. If supplied from a rolling and drawing operation, the filament 24 is annealed to remove the effects of rolling and drawing.
  • the filament 24 is then heated if required, depending on the coating material used and the wire properties needed.
  • the filament 24 may be heated by the heating device 14 to a temperature from ambient temperature to the decomposition temperature of the coating material.
  • the filament is heated to a temperature from just below to about the melting point of the coating material.
  • the filament is maintained from the ambient temperature to slightly above ambient temperature.
  • the central die chamber 95 is then filled with a flowable material.
  • the flowable material is stored in the reservoir 50 at a flowable temperature and pressure and is injected into the chamber 95 by applicator 16. Once the chamber 95 has been filled, the material therein will assume the pressure of the flowable coating material in the reservoir 50.
  • the pump must have an adequate capacity to maintain pressures up to about 2000 psi (17,79 MPa) in reservoir 50 and chamber 95.
  • the control 58 By use of the control 58, the responsiveness to pressure changes desired can be controlled.
  • controls 56 and 78 the temperature of the material in the reservoir 50 and chamber 95 can be controlled.
  • the pressurized temperature of the flowable material in the central die chamber 95 must be carefully controlled for several reasons.
  • both the pressure and temperature of the flowable material relate to the viscosity and/or flow characteristics of the flowable material, and must be such that the viscosity and/or flow characteristics of the flowable material performs its centering function relative to the exit die 62 and produces a concentric coating (as will be discussed), wets the filament to be coated, and adheres to the filament.
  • the pressure and the temperature of the flowable material is too low, excessive filament stretching may occur by virtue of die 18 resisting unduly the movement of the filament. It is for these reasons that the applicator 16 has the controls 56, 58, and 60.
  • the coating material is then applied to the filament 24 by passing it through die 18.
  • the coating material within the die chamber functions to center the filament 24 within the throat portions 82 and 93 of dies 61 and 62.
  • filaments 24 that are coated by the method and apparatus of the invention have a surprisingly concentric and continuous coat of coating material thereon.
  • a non-concentric and discontinuous coating of material is applied to the filament 24.
  • the action of the flowable material in the central die chamber 95 is not fully understood, but it does result in filaments having coatings of virtually perfect concentricity and continuity thereon.
  • the coating material in the central die chamber 95 is believed to have movement adjacent the throat 93 of the exit die 62.
  • throat portion 82 of the entrance die 61 prevents the flowable material in the chamber 95 from leaking from die 18 through die 61.
  • throat portion 82 will have a diameter of from 0.08 mm to 0.38 mm larger than the diameter of filament 24.
  • the throat portion 93 regulates the thickness of the coating material left on the filament 24 leaving the die 18.
  • the size of the throat portion 93 varies in accordance with the size of the filament 24 and the required thickness of the coating material to be applied.
  • the method of the invention has been successfully used with filaments ranging from 0.25 mm diameter to 9.5 mm diameter rod.
  • Conductors of rectangular and other cross-section can also be coated, with the throat portions 82 and 93 of the entrance die 61 and exit die 62 respectively, provided of geometrically appropriate shape. Coatings from 0.013 mm to 0.41 mm thick can be applied by the method of the invention.
  • the throat portion 93 will have a diameter in most cases from the required diameter to a diameter which is 0.05 mm larger than the required diameter of the coated filament 24 of magnet wire.
  • the coated filament 24 is then passed through the hardener 20 to harden the coating material. While the structure and operation of the hardener has been described above, it should be emphasized that its operation depends upon the coating material used. A water quench or an air quench may be used.
  • the hardener 20 may be a filament heater 14 or a conventional curing oven (not shown). In all cases, the type of hardener 20 used and the temperature of the cooling liquid, air or other fluid will depend on the coating material and the speed at which the coated filament passes through the hardener 20.
  • the speed at which the driver 114 drives the second spool 32 of the take-up device 22 in the embodiment of Fig. 1, is limited by the pay-out 12 and take-up 22 devices themselves when applying any of the coating materials mentioned herein.
  • the speed at which the take-up device 22 is driven by the driver 114 is solely by the take-up device 22 itself.
  • Examples in which conductors of various sizes have been coated with coating material in accordance with the invention are tabulated in the following Table.
  • the Table relates to the production of magnet wire.
  • the Table tabulates the properties of the coating material and the conductor, the process conditions, and the physical and electrical properties of the magnet wire produced.
  • the magnet wire produced by the apparatus and method of the invention meets the requirements of magnet wire made by existing commercial processes.
  • the Table tabulates the physical and electrical properties of various magnet wires manufactured in accordance with the invention.
  • a surprising characteristic of all magnet wires made in accordance with the invention is the concentricity of the coating applied to the filament and the continuity thereof. Both the concentricity and continuity are a surprising result when compared to magnet wires made by existing commercial processes, without regard to the means by which the filament 24 is centered within the coating die 18.
  • Magnet wire produced by known commercial processes, such as the application of coatings from solution periodically result in non-concentric coatings and non-continuous coatings. In fact, the continuity of coatings applied from solution is such that reliance upon a single coating of magnet wire insulation is unknown; and for this reason multiple coatings are used.
  • Magnet wire having a single coat is a commercial reality due to the concentricity and thickness of the coatings that can be applied by the apparatus and method of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Claims (24)

1. Ein Verfahren zum Beschichten eines Filaments (24), z.B. Trafodraht, bei welchem ein fließfähiges, härtbares Harzmaterial (115) an einem kontinuierlich bewegten Filament bis zu einer benötigten Dicke in einem einzigen Durchlauf angebracht wird, wodurch ein Filament in einem kontinuierlichen Vorgang gezogen oder in anderer Weise geformt, beschichtet und aufgespult werden kann, das Verfahren enthaltend:
a) Durchführen des Filaments (24) durch eine stationäre Eintrittsdüse (61) mit einer Geschwindigkeit von 30,5 m/min. oder mehr;
b) Durchführen des Filaments durch eine stationäre Austrittsdüse (62) mit einer Geschwindigkeit von 30,5 m/min. oder mehr, wobei die Austrittsdüse einem Kehlungsabschnitt (93) und eine Eintrittsöffnung (92) hat, die größer als der Kehlungsabschnitt (93) ist und mit diesem durch eine konvergierende Innenwand (94) verbunden ist, wodurch zwischen dem Kehlungsabschnitt (93) und der Eintrittsöffnung (92) und dem Filament (24) und der konvergierenden Innenwand (94) ein Düsenhohlraum begrenzt wird, die Eintrittsdüse (61) und die Austrittsdüse (62) eine Düsenkammer (95) zwischen sich begrenzen und teilweise umschließen und das Filament innerhalb der Düsen von ihnen Abstand hat;
c) Füllen der Düsenkammer (95) mit einem fließfähigen, härtbarem Material (115), das weniger als 5 Gewichts-% Lösungsmittel aufweist, bei einer Temperatur oberhalb des Schmelzpunkts desselben,
d) Erhöhen des Drucks des Materials (115) in der Düsenkammer über den Atmosphärendruck
e) Durchführen des Filaments durch die Kammer (95) und dadurch Anbringen des fließfähigen Materials (115) auf dem Filament;
f) Zentrieren des Filaments im Kehlungsabschnitt (93) der Austrittsdüse (62) allein durch das Material (115) in der Düsenkammer (95); und
g) Abstreifen des überflüssigen fließfähigen Materials von dem Filament, eine konzentrische Beschichtung des Materials in einer Dicke zurücklassend, die die Erfordernisse der ANSI-NEMA Normenveröffentlichung Nr. MW 1000-1977 erfüllt.
2. Ein Verfahren nach Anspruch 1, bei dem die Eintrittsdüse (61) und die Austrittsdüse (62) in einem Düsenblock (64) gehalten sind, der Düsenblock und die Eintritts- und Austrittsdüsen die Düsenkammer (95) begrenzen und bei dem der genannte Füllungsschritt das Durchleiten des Materials (115) durch einen Kanal (75) in den Düsenblock umfaßt, wobei der Kanal die Düsenkammer fluidisch mit einem Materialbehälter (50) verbindet.
3. Verfahren nach Anspruch 1 oder 2, enthaltend den Schritt des Härtens des fließfähigen Materials (115) auf dem Filament (24), nachdem das Filament die Austrittsdüse (62) verlassen hat.
4. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Abstreifschritt den Schritt des Durchleitens des Filaments durch die Austrittsdüse (62) umfaßt, die ein Größenverhältnis in Bezug auf die Größe des Filaments derart aufweist, daß die Dicke des Beschichtungsmaterials (115) auf dem Filament beeinflußt wird.
5. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Zentrierschritt den Schritt des Beeinflussens der Viskosität des Materials (115) innerhalb der Düsenkammer (95) umfaßt.
6. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Zentrierschritt den Schritt des Beeinflussens des Drucks des Materials (115) innerhalb der Düsenkammer (95) umfaßt.
7. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem das fließfähige, härtbare Material ein unter Hitze erweichbares Material ist und der Zentrierschritt das Beeinflussen der Temperatur der Düsen (61, 62) umfaßt.
8. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem das fließfähige, härtbare Material ein unter Hitze erweichbares Material ist und der Zentrierschritt das Beeinflussen der Temperatur des Filaments umfaßt.
9. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Zentrierschritt das Hervorrufen einer Bewegung des Materials (115) innerhalb der Düsenkammer (95) umfaßt.
10. Ein Verfahren nach eine der vorhergehenden Ansprüche, bei dem das Filament aus der Gruppe ist: blanke Kupfer- und Aluminiumleiter; und isolierte Leiter, die eine zuvor aufgebrachte Grundisolierung aufweisen.
11. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem fließfähige, härtbare Material aus der Gruppe ist, enthaltend: Nylon, Polyäthylen, Terephthalate, Polybutylenterephthalate, Polyphenylsulfide, Polycarbonate, Polyptopylene, Polyethersulfon- Harze, Polyetherimide, Polyether, Etherketon-Harze, Polysulphone, Epoxyharze, Fluorcarbone, einschließlich Ethylen-Chlortriflourethylene und Ethylen-Tetraflourethylene, Polyvinylformalharze, Phenoxyharze, Polyvinylbutyrolharze, Polyamide-Imide, Polyesterharze und Kombinationen derselben.
12. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Material in der Düsenkammer eine Viskosität zwischen 5000 cps und 200 000 cps hat.
13. Ein Verfahren nach Anspruch 6, bei dem der Druck nicht größer als 140 kg/cm2 ist.
14. Ein Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Durchmesser des Filaments zwischen 0,25 mm und 9,50 mm liegt.
15. Ein Verfahren nach Anspruch 3, bei dem Dicke des härtbaren Materials zwischen 0,013 mm und 0,41 mm liegt.
16. Vorrichtung für die Herstellung eines beschichteten Filaments, beispielsweise Trafodraht, die Vorrichtung enthaltend ein oder zwei Düseneinrichtungen (18), wobei die oder jede Düseneinrichtung eine Eintrittsdüse (61) und eine Austrittsdüse (62) und einen Düsenblock (64) enthält, der Düsenblock zwischen den Düsen (61, 62) liegt, die Eintrittsdüse (61) einen Kehlungsabschnitt (82), eine Eintrittsöffnung (80), die größer als der Kehlungsabschnitt (82) ist und mit diesem durch eine konvergierende Innenwand (84) verbunden ist, und eine Austrittsöffnung (86), die größer als der Kehlungsabschnitt (82) ist und mit diesem durch eine divergente Innenwand (88) verbunden ist, aufweist, die Austrittsdüse (62) einen Kehlungsabschnitt (93) und eine Eintrittsoffnung (92), die größer als der Kehlungsabschnitt (93) ist und mit diesem durch eine konvergierende Innenwand (94) verbunden ist, aufweist, der Düsenblock (64) einen inneren Kanal (65) aufweist, der mit der Austrittsöffnung (86) der Eintrittsdüse (61) und der Eintrittsöffnung (92) der Austrittsdüse (62) in Verbindung ist und dadurch eine Fließmaterialzentrierkammer (95) zwischen der divergierenden Innenwand (88) und dem Kanal (65) und der konvergierenden Innenwand (94) ausbildet.
17. Vorrichtung nach Anspruch 16, enthaltend eine Filamentabgabeeinrichtung (12); eine Aufnahmeeinrichtung (22) für beschichtetes Filament, wobei die oder jede Düseneinrichtung (18) zwischen den Abgabe- und Aufnahmeeinrichtungen angeordnet ist; und die Eintritts- und Austrittsdüsen (61, 62) so angeordnet sind, daß ein Filament (24), das von der Abgabeeinrichtung (12) zur Aufnahmeeinrichtung (22) gezogen wird, in den Öffnungen und den Kehlungsabschnitten derselben aufnimmt; einen Behälter (50) für fließfähiges, härtbares Material; eine mit dem Behälter (50) verbundene Einrichtung (16) zum Füllen der Düsenkammer (95) mit Material (115) und zum Aufrechterhalten des Materials in der Düsenkammer bei erhöhten Drücken; und Einrichtungen, umfassend das Material in der Düsenkammer, zum Zentrieren des Filaments in den Kehlungsabschnitten (82, 93) der Düsen (61, 62).
18. Vorrichtung nach Anspruch 16, bei der die Eintrittsdüse (61) klein genug ist, um ein Austreten von Material aus der Düsenkammer (95) zu verhindern, während das Filament hindurchwandert, bei einem erhöhten Druck, und groß genug um ein Austreten zu ermöglichen, wenn das Filament in der Eintrittsdüse (61) bei dem genannten Druck unbewegt ist.
19. Vorrichtung nach einem der Ansprüche 16 bis 18, bei der die Eintrittsöffnung (80) einen ab 0,1 mm größeren Durchmesser als der Durchmesser des Filaments hat.
20. Vorrichtung nach Anspruch 17, enthaltend:
eine Zuführeinrichtung (16), die mit dem Behälter (50) verbunden ist, zum Füllen der Düsenkammer (95) mit Material (115) bei einem gewünschten Druck; und
wenn das Filament (24) in die Düseneinrichtung (18) eintritt, die Innenwand (84, 88) eine benachbarte Oberfläche bildet, an der das Material (115) einen Träger aus Beschichtungsmaterial hervorruft derart, daß das Filament die Düseneinrichtung nicht berührt und in den Düsenkehlungsabschnitten (82, 83) zentriert ist, um eine durchgehende und konzentrische Schicht aus Beschichtungsmaterial (115) auf dem Filament auszubilden.
21. Vorrichtung nach Anspruch 17, enthaltend Einrichtungen (14) zum Heizen des Filaments (24) zwischen der Abgabeeinrichtung (12) und der Düseneinrichtung (18), wobei die Heizeinrichtung (14) dazu eingerichtet ist, das Filament auf einen Temperaturbereich aufzuheizen, der von der Umgebungstemperatur bis zu der Temperatur reicht, bei der das Material sich zersetzt, und die Heizeinrichtung (14) an einer Stelle stromaufwärts vom Eintritt des Filaments in die Düseneinrichtung (18) angeordnet ist.
22. Vorrichtung nach Anspruch 17, enthaltend Einrichtungen (14) zum Heizen des Filaments zwischen der Abgabeeinrichtung und der Düseneinrichtung, und Einrichtungen (76) zum Heizen der Düseneinrichtung (18) und des Materials im Behälter (50) und der Düsenkammer (95).
23. Vorrichtung nach Anspruch 22, enthaltend Einrichtungen, einschließlich des Filaments, der Düseneinrichtung und der Behälterheizeinrichtung zum Beeinflussen der Viskosität des Materials (115) innerhalb der Düsenkammer (95).
24. Vorrichtung nach Anspruch 17, bei dem die Düseneinrichtung (18), die Befüllungs- und Aufrechterhaltungseinrichtung (16) und die Härteinrichtung 20 zusammen eine Filamentbeschichtungsstation bilden, wobei die Vorrichtung eine Mehrzahl solcher Beschichtungsstationen im Abstand zueinander und zu den Aufnahme- und Abg abeeinrichtungen (22, 12) enthält.
EP82302193A 1981-04-29 1982-04-28 Verfahren und Vorrichtung zum Ummanteln von Drähten Expired EP0063963B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82302193T ATE15566T1 (de) 1981-04-29 1982-04-28 Verfahren und vorrichtung zum ummanteln von draehten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25869081A 1981-04-29 1981-04-29
US258690 1999-02-26

Publications (2)

Publication Number Publication Date
EP0063963A1 EP0063963A1 (de) 1982-11-03
EP0063963B1 true EP0063963B1 (de) 1985-09-11

Family

ID=22981714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82302193A Expired EP0063963B1 (de) 1981-04-29 1982-04-28 Verfahren und Vorrichtung zum Ummanteln von Drähten

Country Status (3)

Country Link
EP (1) EP0063963B1 (de)
AT (1) ATE15566T1 (de)
DE (1) DE3266135D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4010306A1 (de) * 1990-03-30 1991-10-02 Mag Masch App Verfahren und vorrichtung zur herstellung von lackdraehten mit schmelzharzen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980053B2 (en) 2012-03-30 2015-03-17 Sabic Innovative Plastics Ip B.V. Transformer paper and other non-conductive transformer components
CN116665992B (zh) * 2023-07-28 2023-10-24 江苏安澜万锦电子股份有限公司 一种高速网络线缆生产设备及生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943151A (en) * 1960-06-22 1963-11-27 Lumalampan Ab Improvements in or relating to a method of insulating electric cables and conductingwires
AT318037B (de) * 1969-07-04 1974-09-25 M A G Maschinen Und Appbau Fuc Fertigungsanlage zur Isolierung von Drähten od.dgl. mit hochprozentigen Lacken
AT327306B (de) * 1969-11-13 1976-01-26 Fuchs & Co Ag In drahtlackier-anlagen verwendete lackauftrag-vorrichtung fur mehrere, parallel hindurchlaufende drahtzuge
US4393809A (en) * 1978-08-07 1983-07-19 Phelps Dodge Industries, Inc. Apparatus for manufacturing magnet wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4010306A1 (de) * 1990-03-30 1991-10-02 Mag Masch App Verfahren und vorrichtung zur herstellung von lackdraehten mit schmelzharzen
DE4010306C2 (de) * 1990-03-30 1999-06-10 Mag Masch App Verfahren und Vorrichtung zur Herstellung von Lackdrähten mit Schmelzharzen

Also Published As

Publication number Publication date
ATE15566T1 (de) 1985-09-15
DE3266135D1 (en) 1985-10-17
EP0063963A1 (de) 1982-11-03

Similar Documents

Publication Publication Date Title
US4391848A (en) Method for manufacturing magnet wire
US4826706A (en) Method and apparatus for manufacturing magnet wire
US4394417A (en) Magnet wire
US4379102A (en) Method for manufacturing electric wire having wire-enamel-type insulation
US4588546A (en) Wire coating process
US2175099A (en) Method and apparatus for producing coated rubber-insulated conductors
US4093414A (en) Single die co-extrusion apparatus for insulation
EP0009312B1 (de) Verfahren und Apparat zum Herstellen von Wicklungsdraht und auf diese Weise hergestellter Wicklungsdraht
US6676998B2 (en) Apparatus for continuous coating of wire
US4521173A (en) Apparatus for manufacturing magnet wire
US4497849A (en) Process for polymer coating electrical conductors
US4489130A (en) Magnet wire
EP0063963B1 (de) Verfahren und Vorrichtung zum Ummanteln von Drähten
US4258646A (en) Pressurized wire enamel applicator cell
US3112226A (en) Apparatus for coating wire
US4043851A (en) Method and apparatus for continuous production of NM cable
US2778404A (en) Method and apparatus for making bonded fiber glass shafts
US2366944A (en) Manufacture of insulated conductors or other coated bodies
CA1204570A (en) Method and apparatus for manufacturing magnet wire
US3503120A (en) Method of producing covered wire
US2930718A (en) Method and apparatus for coating an insulated conductor
CA2449582C (en) Capacitance controlling process
JP5973687B1 (ja) 熱可塑性樹脂の被覆方法及び被覆装置
JPS61193721A (ja) ワイヤ状鋼要素へのアルミニウム被覆のクラデイング法、アルミニウム被覆層付きワイヤ状鋼要素及びアルミニウム被覆層付きワイヤ状鋼要素が設けられた高分子化合物製物
JPH055652B2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19830425

ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 15566

Country of ref document: AT

Date of ref document: 19850915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3266135

Country of ref document: DE

Date of ref document: 19851017

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920421

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920423

Year of fee payment: 11

Ref country code: DE

Payment date: 19920423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920428

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 11

Ref country code: LU

Payment date: 19920430

Year of fee payment: 11

Ref country code: FR

Payment date: 19920430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920507

Year of fee payment: 11

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930428

Ref country code: GB

Effective date: 19930428

Ref country code: AT

Effective date: 19930428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930430

Ref country code: CH

Effective date: 19930430

Ref country code: BE

Effective date: 19930430

BERE Be: lapsed

Owner name: PHELPS DODGE INDUSTRIES INC.

Effective date: 19930430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82302193.6

Effective date: 19931110