EP0061183B1 - Procédé pour obtenir la connexion solide aux vitres isolantes - Google Patents

Procédé pour obtenir la connexion solide aux vitres isolantes Download PDF

Info

Publication number
EP0061183B1
EP0061183B1 EP82102318A EP82102318A EP0061183B1 EP 0061183 B1 EP0061183 B1 EP 0061183B1 EP 82102318 A EP82102318 A EP 82102318A EP 82102318 A EP82102318 A EP 82102318A EP 0061183 B1 EP0061183 B1 EP 0061183B1
Authority
EP
European Patent Office
Prior art keywords
conveyance
insulating glass
parallel
heat
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82102318A
Other languages
German (de)
English (en)
Other versions
EP0061183A1 (fr
Inventor
Karl Lenhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT82102318T priority Critical patent/ATE14298T1/de
Publication of EP0061183A1 publication Critical patent/EP0061183A1/fr
Application granted granted Critical
Publication of EP0061183B1 publication Critical patent/EP0061183B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67339Working the edges of already assembled units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67339Working the edges of already assembled units
    • E06B3/6736Heat treatment
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67365Transporting or handling panes, spacer frames or units during assembly
    • E06B3/67369Layout of the assembly streets
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67365Transporting or handling panes, spacer frames or units during assembly
    • E06B3/67373Rotating panes, spacer frames or units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67365Transporting or handling panes, spacer frames or units during assembly
    • E06B3/67386Presses; Clamping means holding the panes during assembly

Definitions

  • the invention is concerned with the problem of connecting two or more individual glass panes to form an insulating glass pane with the interposition of a metal spacer frame and at the same time sealing the insulating glass pane by means of a hot glue.
  • infrared radiators are used to heat the hot glue, which are arranged on both sides of the double pane (insulating glass pane). Since a system for assembling insulating glass panes must be suitable for the production of insulating glass panes with a wide variety of formats (the edge lengths of the panes typically vary between 0.3 m and 2.5 m in panes produced according to the generic method), one used to the state of the art Technology belonging device a continuous furnace, which has two mutually parallel fields of closely arranged, permanently burning infrared emitters, the size of the fields being adapted to the largest possible disc formats. Between the two fields, the insulating glass panes are heated by diffuse infrared radiation.
  • the working speed of the device consisting of a continuous furnace and a continuous press should not be slower than the speed of the other stations of the production line in which the continuous furnace and the continuous press are integrated.
  • the permanent heat loss must be dissipated, which is expensive.
  • heat-resistant materials have to be used in the continuous furnace, which makes the conveyor particularly expensive.
  • thermal insulation must be used, which the useless radiation, i. H. collect the radiation passing through the insulating glass pane and the radiation passing the insulating glass pane, and finally the heat generated must be removed from the room in which the continuous furnace is installed.
  • the invention has for its object to provide a method that allows to heat the hot glue between the individual glass panes of an insulating glass pane with less installed heating power, with less heat loss and with little equipment and time and then press the insulating glass panes.
  • the invention solves this problem with a method for producing the firm bond of insulating glass panes, the individual glass panes of which are connected by spacer frames coated with hot glue on three sides and at the same time are kept at a distance, by heating the hot glue in the space between the individual glass panes and the side surfaces of the spacer frame by simultaneously both sides Irradiating the insulating glass with heat radiation from elongated heat radiators, in particular with short-wave infrared radiation from elongated infrared light emitters, and then pressing the insulating glass panes to their final thickness as long as the hot glue is still hot, in that the heat radiation is only during one time to heat the hot glue to its working temperature sufficient time interval is generated and bundled and is aimed essentially only at the edge region of the insulating glass panes.
  • the radiant heat is only applied locally where it is needed, as a result of which the radiation duration and the installed electrical power of a person working according to the method Vorrich are low.
  • the heat radiators are only switched on at intervals, namely not longer than the edge of an insulating glass pane between them, the energy consumption also drops sharply compared to the prior art.
  • Radiation types that can be bundled and allow heating up of hot glue strands in reasonable time periods can be considered as heat radiation.
  • Short-wave infrared radiation which is emitted by so-called infrared light emitters, is particularly suitable. Infrared light emitters have the property which is very valuable for the invention, requiring practically no heating-up time when switched on; rather, radiators provide the full heating power almost immediately after switching on.
  • thermal insulation measures can be reduced to a minimum and the ventilation of a device for carrying out the method can be carried out by convection instead of with a ventilation device required in the prior art.
  • the invention therefore no longer uses two fields of heat radiators whose diffuse radiation field is traversed by the insulating glass panes as a whole, but instead linear radiators arranged in a targeted manner from both sides to the edge regions of the insulating glass panes and the position of which constantly changes with the changing pane formats is adjusted.
  • heating of the insulating glass panes is possible both when the insulating glass pane is at a standstill and in a continuous process.
  • the hot-melt strands along the individual spacer frame legs are irradiated and heated as a whole with the disc at rest, ie. that is, in a device operating according to the method, the disks are stopped for irradiation (claim 4).
  • this is not a disadvantage in terms of working speed, because the infrared light emitters available today have power outputs of up to 60 W / cm. this enables the hot glue to heat up to its working temperature within a few seconds.
  • the cycle times resulting therefrom for devices operating according to the method are not higher than the cycle times of other stations in an insulating glass production line with which a device according to the invention must work.
  • a quite simple device through which the insulating glass panes are guided lying or standing on a conveyor, is characterized in that at least two parallel and facing each other, straight-line heat radiators are provided parallel or at right angles to the conveying direction and on both sides parallel to the conveying plane of the insulating glass panes, and that a pair of pressure beams is arranged next to the heat radiators, the pressure beams of which run parallel to the heat radiators, and that at least one pivoting device is provided for pivoting the insulating glass panes by 90 ° (claim 5).
  • the transport of the disks can be done in the usual way, that is, for. B. lying on roller tables or standing on a roller table or a conveyor belt, wherein in the case of standing transport the disks are usually based on a support wall (roller wall, air cushion wall or the like). Because of the smaller footprint, the transport of standing insulating glass panes is preferred (so-called vertical system).
  • the conveying plane of an insulating glass pane is understood to mean a plane lying in the conveyed insulating glass pane and parallel to the pane surfaces.
  • One pair of lamps is arranged so that the incoming insulating glass pane dips with one of its edges into the space between the lamps and then stops. Then the emitters are switched on for a predetermined period of time in which they heat up the hot-melt strand running on this edge of the pane. Subsequently, by moving the disc or the pressure beam, which are preferably coupled to the radiators next to which they are arranged and are jointly displaceable (claim 22), the edge of the disc with the heated hot-melt strand is brought between the pressure beam, for which purpose a displacement path of a few centimeters is sufficient, and the edge of the pane is pressed to the final thickness.
  • the disk After the release of the disk by the press beam, the disk is transferred to a known swivel device, swiveled by 90 ° and brought with the second edge between the infrared radiators by means of the conveyor device. The processes are repeated until all four edges of the insulating glass pane are pressed together. The disc is then removed.
  • the processes are controlled in the usual way by switches which respond to the position of the pane, in particular switches which respond in a contactless manner, and by time switches.
  • the two emitters can run parallel to the conveying direction. Each disc must then be swiveled three times through 90 °.
  • the two radiators are preferably arranged at right angles to the conveying direction; in this case, the two edges of the disks running perpendicular to the conveying direction can first be heated and pressed in succession. The disc is then pivoted through 90 ° and the other two disc edges, which now run perpendicular to the conveying direction, are machined. Overall, only one swivel process is required.
  • radiators running in the conveying direction two or four units can sensibly be used, with radiators running at right angles to the conveying direction, two units of radiators and press beams can be used.
  • each edge of the pane is processed in a different unit; with two units, two opposite edges of the insulating glass panes are processed in the same unit.
  • two units of pairs of radiators and pressure beams can also be provided and arranged in such a way that two edges of each insulating glass pane can be processed at the same time.
  • the units consisting of pairs of radiators and associated pairs of press beams can be arranged at right angles to one another, so that two adjacent edges of the insulating glass panes can be machined.
  • a swiveling process in which the disc is swiveled by 90 ° (claim 8).
  • an arrangement is particularly preferred in which the pairs of emitters and press beams are parallel to one another; With this arrangement, any crossing of radiators in the area of the window corners is avoided.
  • At least one pair of emitters, together with the associated pair of press beams, must be displaceable in parallel, so that adaptation to changing pane formats is possible (claim 9).
  • the displacement of the emitters and pairs of pressure beams can be carried out automatically by sensing the size of each incoming insulating glass pane by means of sensors and using the measurement signal to control a servo drive which carries out the required displacement.
  • two groups of two radiator pairs and press beam pairs can be arranged one behind the other in the transport direction, in a manner analogous to the arrangement according to claims 6 and 7, with a pivoting device for the insulating glass panes in between lies, so that to increase the throughput of the device two disks can always be processed at the same time. If the first two edges of a pane are machined, it is pivoted and handed over to the second group for machining the other two edges, so that the first group can already accommodate the following pane (claim 10).
  • a device for carrying out the method according to the invention through which the insulating glass panes are guided lying or standing on a conveyor device and which does not require a pivoting device for the insulating glass panes, is the subject of claim 11 characterized in that two pairs of mutually parallel and facing each other, rectilinear, arranged on both sides parallel to the conveying plane of the insulating glass panes are provided, of which one pair runs parallel and the other pair perpendicular to the conveying direction, and in that a pair of pressure beams is arranged next to each pair of radiant heaters, the Press beams run parallel to the heat radiators, at least one of the units formed from a heat radiator and from the associated press beam pair being displaceable parallel to itself and parallel to the conveying plane.
  • the device contains only two units made of a pair of press beams and infrared radiators, one of which is oriented in the conveying direction and the other is oriented transversely thereto. If the insulating glass pane first reaches a unit running parallel to the conveying direction, then the pane edge parallel to the conveying direction is first machined, then the unit is shifted to the opposite pane edge (or - in a kinematic reversal - the pane is shifted until its opposite edge is in the effective range of the heat radiators) Press beam unit is) and this processed.
  • the insulating glass pane is then conveyed further and its front edge reaches the effective area of the unit consisting of a pair of heat radiators and a pressure beam that runs perpendicular to the conveying direction.
  • the disc is conveyed on until the rear edge of the disc comes into the effective range of the unit; after processing the rear edge of the disc, the disc is removed.
  • an alternative device through which the insulating glass panes are guided lying or standing on a conveyor, according to the invention, is characterized in that two pairs of mutually parallel and facing each other, rectilinear, arranged on both sides parallel to the conveying plane of the insulating glass panes parallel to the conveying direction and two further such pairs are provided perpendicular to the conveying direction, such that either an insulating glass pane can be machined on all four edges or two insulating glass panes on two edges each, and that a pair of pressure beams is arranged next to each pair of heat radiators, the pressure beams of which run parallel to the heat radiators, wherein at least one of the units formed from a pair of heat radiators and from the associated press beam pair is displaceable parallel to itself and parallel to the conveying plane.
  • the front disk edge is processed first, then the rear disk edge and then the two disk edges running in the conveying direction. If you have the two units connected directly to one another in space, you can even process the rear edge of the disc at the same time with one of the disc edges running in the conveying direction.
  • Such devices require only moderate installed electrical power (claim 12).
  • An increase in throughput can be achieved in such devices working without a pivoting device by arranging two units of heat radiators and pairs of pressure beams in parallel and transversely to the conveying direction in the conveying direction in such a way that two insulating glass panes can be processed simultaneously (claim 13).
  • the arrangement in the quadrant is somewhat more complex than the arrangement of the angular units at such a distance that two insulating glass
  • a displacement in the conveying direction is one of the to provide units running transversely to the conveying direction if both the front and the rear edge of an insulating glass pane are to be processed simultaneously.
  • This can e.g. B. happen that one of the transverse to the direction of the heat radiator pressure beam units shortly before and the other unit shortly behind the two parallel to the conveying direction heat radiator press beam units.
  • the front edge of an incoming insulating glass pane can first be processed.
  • the disc is then transported into the area of the two units parallel to the conveying direction, where the two edges of the discs parallel to the conveying direction are processed. At the same time, the following pane can be processed on its front edge.
  • the first disc is then transported further for processing its rear edge into the work area of the rear heat radiator press beam pair unit, which has reached the heat radiators parallel to the conveying direction and runs transversely to the conveying direction, while at the same time the second disc advances into the working area of the units parallel to the conveying direction and the subsequent one
  • the third disc advances with its front edge into the working area of the front unit, which runs in front of the heat radiators which are parallel to the conveying direction and runs transversely to the conveying direction (claim 16).
  • the two units running transversely to the conveying direction both in front of or behind the two units running parallel to the conveying direction (claim 17). If the transverse to the conveying units z. B. are located behind the units running parallel to the conveying direction, then the two edges parallel to the conveying direction are processed by an incoming insulating glass pane. Subsequently, the front edge of the disk is moved and processed in the working area of the front unit running transversely to the conveying direction, while at the same time the following disk runs into the working area of the units parallel to the conveying direction and is processed there.
  • the first disc then advances until its rear edge lies in the working area of the rear, transverse to the conveying direction, while at the same time the second disc in the working area of the front, transverse to the conveying direction and a subsequent third disc in the working area of the units parallel to the conveying direction advances u. s. w.
  • the two units running transversely to the conveying direction can also be connected to form a compact, higher-level unit (claim 22).
  • an alternative device through which the insulating glass panes are guided lying or standing on a conveyor, is characterized according to the invention in that four rod-shaped or tubular heat radiators are provided on both sides parallel to the conveying plane of the insulating glass panes, at least two of which are parallel to themselves are displaceable in the conveying plane and which together form a square of variable size, and that a press, preferably a static press, is arranged behind the square in the conveying direction.
  • Beam presses, roller presses and roller presses which can be used in the context of the invention, have long been used successfully in the production of an insulating glass type in which the metallic spacer frames between the panes are coated on both sides with a butyl rubber strand.
  • the hot melt adhesives used in the invention after being activated by heating, are considerably softer and less tough than butyl rubber strands. Therefore, the height and the uniformity of the pressing pressure with insulating glass glued with hot glue must be kept under control much more carefully than with insulating glass glued with butyl rubber.
  • the hot glue can in places to such an extent from the space between a spacer and the adjacent glass plate are squeezed out so that there is direct contact between the glass plate and the spacer. However, this must be avoided under all circumstances.
  • a surface press is understood to mean such a press which can completely cover the individual insulating glass pane on both sides and with which the insulating glass pane is statically pressed as a whole by a single press stroke, that is to say in one step.
  • the insulating glass panes are pressed between two plane-parallel plates, but it is also possible to use a perforated press plate, e.g. B.
  • the arrangements of the emitters can be selected in a corresponding manner as in the examples according to claims 5-19, with those arrangements being particularly preferred which require a particularly short period of time between the end of the heating of a hot-melt adhesive strand and the pressing process.
  • the adjacent heat radiators and pressure beam pairs are preferably arranged immovably relative to one another (claim 22).
  • the pane or, preferably, the unit consisting of the heat radiator and the press beam pair can be moved around the center distance between the heat radiator and the adjacent press beam (claim 23) .
  • a replacement of the static pressing means pressing bar or press surface by a continuous press for the parallel to the conveying direction edges or all four edges of the insulating glass panes is quite possible, although, from the viewpoint of the presser t olges the static pressing is preferred.
  • a device that can work with a continuous press and through which the insulating glass panes are led lying or standing on a conveyor is characterized according to the invention in that four pairs of mutually facing heat radiators are provided parallel to the conveyor plane, two pairs of which are parallel and two pairs run at right angles to the conveying direction, whereby at least one of the pairs parallel to the conveying direction can be moved parallel to itself and to the conveying plane to adapt to different Isoller glass pane dimensions, that in addition to heat radiators running at right angles to the conveying direction, one each also forms in the form of press beam pairs At right angles to the conveying direction of the pressing beam is arranged, and that a continuous press for the two disc edges running in the conveying direction adjoins the heating zone formed from the heat radiators running parallel to the conveying direction 24).
  • the heat radiators running at right angles to the conveying direction can preferably be moved synchronously with the insulating glass panes in the conveying direction (claim 25) and because a continuous press connects to the heating zone with the heat radiators, the insulating glass panes can also be machined at least partially in one pass, e.g. . B.
  • the invention is also outstandingly suitable for producing triple insulating glass panes, if the heat radiators parallel to the spacer frame legs are not arranged next to these legs in such a way that the main radiation direction is in the runs at right angles to the conveying plane and meets the side surfaces of the spacer frame legs, but by arranging the heat radiators parallel to the spacer frame legs, but in an inclined position such that the heat radiation hits the side surfaces of the spacer frame legs at an angle different from 90 ° (claim 2), in such a way that the respective edge joints lie in the shadow of the spacer frames. Particularly suitable angles are between 40 ° and 70 °.
  • the heat radiators usually have a preferred direction of radiation; they are then appropriately arranged so that the spacer frame legs to be irradiated are approximately in the direction of the maximum radiation intensity.
  • the two side surfaces of two spacer frame legs of a triple insulating glass pane lying side by side in the same direction can be irradiated in a targeted manner at the same time with a single heat radiator.
  • infrared reflectors on the back are recommended, for reasons of handling, mechanical stability and the heat flow density that can be achieved, in particular double infrared heaters with a U-shaped heating wire running in two parallel channels of the heater tube and with one-sided electrical connection.
  • the insulating glass panes 7 are moved on the conveyor belt 1 in the conveying direction 2 step by step through the device.
  • four units 3 of heat radiators 12 and pressure bars 14 are arranged along the conveyor belt 1, namely the radiators 12 and the pressure bars 14 are on both sides of the conveyor belt 1 and thus also on both sides the continuous insulating glass panes 7 (see FIG. 2, where only one half of such a unit 3 is shown).
  • Infrared light radiators are preferably used as heat radiators 12, which have oval quartz glass tubes with a double chamber divided by a web; the heating wire is arranged in a U-shape, i. H. it runs forward in one chamber and back in the other chamber; the electrical connections are therefore only available at one end of the tube.
  • the infrared light emitter is mirrored on the back and accommodated in a groove 11 of a carrier 15 running parallel to the conveying direction 2.
  • the carrier 15 with the heat radiator 12 is attached at the height of the spacer frame 8.
  • the distance is preferably between 2.5 and 5 cm.
  • the hot glue 9 is heated to its working temperature in a few seconds; then the unit 3 is lifted by the path a (FIG. 2), so that the press bars 14, which are arranged and guided below the heat radiator 12 in a recess 13 of the carrier 15 extending to the conveying direction 2, reach the height of the spacer frames 8, and the static pressing process is triggered by pushing the pressing bar 14 on both sides of the conveyor belt 1.
  • the disc 7 is then moved out of the working area of the first unit 3 by the conveyor belt and arrives at a swivel device 4.
  • the device has three such swivel devices 4 in the middle between two of the units 3.
  • the swivel device consists in the example shown on both sides of the conveyor belt 1 arms arranged at right angles to one another, the apex and fulcrum of which are at the level of the conveyor belt 1.
  • the arms carry suction cups which grip the disc 7 and pivot in the direction of arrow 6 by 90 ° in each case.
  • the pivoted disc 7 is then advanced to the next unit 3, etc., until all four edges are pressed.
  • the device can thus process four disks 7 simultaneously. If the associated reduction in throughput can be accepted, two swivel devices 4 and three units 3 can be dispensed with. After pivoting a disc 7, the drive of the conveyor belt 1 is then reversed and the disc 7 is moved back to the single unit 3. This is done three times in succession until all four edges of a disk 7 are pressed. Then the disc 7 is removed.
  • a unit 3a or 3b which runs parallel to the conveying direction 2 and runs perpendicular to the conveying direction 2 and parallel to the conveying plane (ie parallel to the insulating glass panes 7), is combined from a pair of press beams and a pair of heat radiators to form angle units 23 'and 23 ".
  • the first Angle unit 23 ' the lower and front edge of the insulating glass pane 7 are heated, then by moving the pane 7 by the distance a (Fig.
  • the angle unit 23 has the same shape as the angle unit 23 'from which it emerged by rotation through 90 ° counter to the direction of rotation 6 of the swivel device 4.
  • the device is suitable for processing two insulating glass panes 7 at the same time.
  • two angle units 23 'and 23 are also provided one behind the other, but in a complementary arrangement, so that rotation of the disks 7 is not necessary.
  • the first angle unit 23' processes the front and lower edge of the disk, the second angle unit 23 "the upper and rear edge of the pane.
  • the second angle unit 23 must not only be movable by the distance a (FIG. 2) transversely to the conveying direction 2, but also to adapt to different disc heights, which are automatically measured at the beginning of the device and can be input to a servomotor.
  • the device according to FIG. 5 uses a horizontal and a vertical unit 3a or 3b made up of a pair of heat radiators and press beams at a distance from one another.
  • the unit 3a is arranged above the conveyor belt 1.
  • Each arriving disc 7 is stopped under the unit 3a and then gradually raised by a lifting device, whereby the upper and lower edges successively reach the working area of the unit 3a and are heated and pressed.
  • the disc 7 is lowered again onto the conveyor belt 1 and moved to the second unit 3b, where first the front and then the rear edge of the disc 7 are processed in the manner already described.
  • the device is suitable for processing two disks 7 at the same time. Of course, one could also move the first unit 3a up and down instead of lifting and lowering the disks 7. This device works with very little effort.
  • the device according to FIG. 6 has a higher throughput compared to that shown in FIG. 5, because it permits the simultaneous processing of three insulating glass panes 7.
  • it first has two units 3a arranged one above the other and parallel to the conveying direction 2, of which the upper one can also be moved up and down to adapt to different disc heights.
  • a disc 7 is stopped between these two units 3a and processed simultaneously on the upper and lower edge of the disc.
  • the disk 7 is removed until its front edge reaches the working area of a first unit 3b running transversely to the conveying direction 2.
  • the disk 7 is conveyed on until it reaches the working area of a second, downstream unit 3b with its rear edge.
  • the front edge of a first subsequent disk 7 is processed in the front unit 3b and between the units 3a the upper and lower edge of a second subsequent disk 7 is processed.
  • the two units 3b are rigidly connected to one another, but can also be separate.
  • FIG. 6 shows a modification of the device from FIG. 7.
  • the two units 3b running transversely to the conveying direction 2 are separated and arranged in front of and behind the two horizontal units 3a.
  • the first of the units 3b again works the front, the second of the units 3b the rear edge of the pane.
  • the device is very compact.
  • the device according to FIG. 8 is a modification of the device from FIG. 6, namely that the two units 3b running transversely to the conveying direction 2 are not combined to form a superordinate unit, but rather are spaced one behind the other so that. the front and rear edge of a disc 7 can be processed simultaneously. For this, at least one of the units 3b must be displaceable in the conveying direction 2.
  • the device is suitable for the simultaneous processing of two disks 7.
  • FIG. 9 shows the principle of a device in which the insulating glass panes 7 can be processed in one pass. It contains two pairs of heat radiators 12a parallel to the conveying direction 2, of which one pair, the upper one in FIG. 9, can be moved up and down to adapt to different disc heights. It also contains two pairs of blue perpendicular to the conveying direction 2 fenden heat radiators 12b, which can be moved separately synchronously with the discs 7. An incoming pane 7 is automatically measured and the height of the upper radiator 12a is adjusted accordingly. In the starting position, the two radiators 12b are located on the left edge of the heating zone.
  • Fig. 10 shows a vertically operating device in which the insulating glass panes 7 are pressed partly statically and partly in a continuous process.
  • the insulating glass panes 7 first reach two vertical units 3b, which are arranged one behind the other at a small distance and consist of pairs of heat radiators and pressure beams.
  • Each insulating glass pane 7 is first statically heated and pressed with its front edge in the first vertical unit 3b, then conveyed further in the direction of arrow 2 until its rear edge reaches the area of the second vertical unit 3b and is statically heated and pressed there , while at the same time the front edge of the subsequent insulating glass pane 7 is processed in the first vertical unit 3b.
  • insulating glass pane 7 Downstream of the vertical units are two pairs of horizontal heat radiators 12, of which the upper pair is adjustable in height. Between the heat radiator pairs 12, the two horizontal edges of an insulating glass pane 7 are heated continuously and then pass into a continuous roller press 17 immediately downstream of the heat radiators 12 acts; one part of this belt or roller press is installed stationary in the area of the lower pane edge and the upper part of the belt or roller press is expediently arranged in a height-adjustable manner together with the upper heat radiator 12. If insulating glass panes 7 are machined, the horizontal edges of which are shorter than the horizontal heat radiators, then the horizontal pane edges can of course also be heated statically instead of in a continuous process.
  • FIG. 11 A device similar to FIG. 10 is shown in FIG. 11, but the horizontal heat radiators 12 are arranged at such a great distance from the vertical units 3b that during the heating of an insulating glass pane 7 between the horizontal heat radiators 12 the subsequent insulating glass pane is already heated in the second unit 3b and can be pressed. In total, three insulating glass panes 7 can be processed simultaneously in this device.
  • the continuous press 17 can also be advantageously used for the press quality by means of a statically operating surface press, e.g. B.
  • a plate press 18 can be used as in the example of the following Fig. 12.
  • FIG. 12 shows a device with four pairs of heat radiators 12c-f arranged in the square.
  • a pair of emitters 12c is arranged so as not to be displaceable along the conveyor belt 1 and, with its tips, at which no feed lines emerge, abuts the jackets of a vertically arranged, vertically displaceable pair of emitters 12d; this in turn abuts with its tips, from which no supply lines emerge, against the jackets of an upper pair of radiators 12e, which runs parallel to the conveying direction 2 and can be displaced both horizontally and vertically; this in turn abuts with its tips, from which no supply lines emerge, against the jackets of a vertically, horizontally and horizontally displaceable pair of radiators 12f, which in turn abuts with the tips of the jackets of the lower pair of radiators 12c.
  • This quarters can be adapted to most disc sizes.
  • all four edges of an insulating glass pane are heated at the same time.
  • the emitters 12c-f are switched off and the disk is conveyed to a downstream static press 18, where it is pressed as a whole to its final thickness between two press plates.
  • Fig. 13 shows in detail the section of the arrangement of a double infrared illuminator 12 obliquely to a triple insulating glass pane 7.
  • the mirrored reflector 12 is arranged in a cross-sectionally approximately U-shaped, beveled aluminum reflector 19, which additionally shields the radiator 12 and the Heat radiation additionally bundles on the two spacer frames 8.
  • the opening of the reflector 19 extends right up to the insulating glass pane 7. Because of the oblique arrangement of the radiator 12 with its main radiation direction 21 at an angle of approximately 45 ° to the plane of the insulating glass pane 7, the side surfaces of the two spacer frames 8 facing the radiator 12 can be subjected to heat radiation at the same time will.
  • the emitters 12 are displaceable in the direction of the arrow 20, for displacing the main radiation direction 21, especially when changing from double to triple insulating glass panes, also in the direction of arrow 22 parallel to the pane surface.
  • a radiator 12 of the same type On the opposite side of the insulating glass pane 7 there is a radiator 12 of the same type in a mirror-image arrangement, which has only been omitted for the sake of simplicity.
  • Corresponding devices which are also suitable for producing triple insulating glass panes, can also be realized with units in which heat radiators 12 are used, not the heat radiators 12 arranged on both sides of the panes 7, but the edge joints 10 of the panes 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Claims (26)

1. Procédé de fabrication de barrière solide pour vitrage isolant. Les volumes sont reliés par un cadre intercalaire revêtu d'un encolleur enduit à chaud maintenant un écart constant. L'encolleur est enduit à chaud dans l'espaceur d'air séparant les volumes et les faces latérales du cadre intercalaire par rayonnement bilatéral simultané du volume produit par de longs rayonneurs. Ce rayonnement infra-rouge de courte portée est produit par de longs rayonneurs infra-rouge. Ensuite, les volumes sont pressés à leur épaisseur définitive alors que l'encolleur est alors chaud, ce qui se caractérise par le fait que le rayonnement n'est produit, ramassé et émis que pendant un court laps de temps au cours duquel l'encolleur atteint sa température de travail avant d'être dirigé sur la zone des bords des volumes de vitrage isolant.
2. Procédé conforme à la première revendication, laquelle se caractérise par le fait que le rayonnement sera dirigé suivant un angle de 90° par rapport au plan du volume de vitrage contre lequel on appliquera le cadre intercalaire. Ce rayonnement sera projeté contre les côtés de l'intercalaire appuyés contre les jointures des bords de chaque côté.
3. Procédé conforme aux revendications 1 ou 2, caractérisé par le fait que le volume est pressé de façon statique.
4. Procédé conforme à l'une des revendications 1 à 3, suivant lequel au moins deux bords du volume, se déplaçant perpendiculairement par rapport à l'axe de passage, les quatre si possible, seront exposés au rayon de façon statique.
5. Disposition permettant l'application d'un procédé conforme à l'une des revendications ci- dessus, suivant lequel les volumes de vitrage isolant défilent horizontalement ou verticalement. On prévoiera au moins deux rayonneurs linéaires (12) parallèles et opposés ou montés à angle droit par rapport au sens de passage (2) et parallèlement de chaque côté du plan de passage des volumes de vitrage isolant (7) et une paire de mâchoires de pressage située en aval. Les mâchoires (14) seront montées dans le sens des rayonneurs (12) et de même qu'un dispositif de retournement (4), au minimum, permettant la rotation des volumes (7) de 90° à chaque passage.
6. Dispositif conforme à la revendication 5, suivant laquelle, dans le cas de rayonneurs (12) parallèles au sens de passage (12), deux ou quatre paires de rayonneurs opposés (12) combinés à des paires de mâchoires de pressage (14) seront montées les unes derrière les autres à une certaine distance. On prévoiera entre chaque paire de rayonneurs (12) un dispositif de retournement (4).
7. Dispositif conforme à la revendication 5, prévoyant d'installer des rayonneurs (12) verticaux, par rapport au sens de passage, deux paires de rayonneurs (12) opposés et de paires de mâchoires (14) montées les unes derrière les autres à une certaine distance du plan de passage (2) de même qu'un dispositif de retournement (4) toutes les deux paires de rayonneurs (12).
8. Dispositif conforme à la revendication 5, prévoyant au moins deux paires de rayonneurs (12) opposés et disposés à angle droit par rapport au sens de passage et un même nombre de paires de mâchoires (14) avec un dispositif de retournement (4).
9. Dispositif conforme à la revendication 5, prévoyant que tous les groupes de deux paires de rayonneurs opposés (12) ainsi que leurs mâchoires de pressage (14) dont il faudra pouvoir régler l'écartement, soient montées en parallèle. Un dispositif de retournement (4) sera également prévu.
10. Dispositif conforme à la revendication 8 ou 9, prévoyant que tous les groupes de deux paires de rayonneurs (12) avec leurs mâchoires de pressage (14) soient disposés dans le sens de passage (2) en respectant un certain écartement, les uns derrière les autres, avec un dispositif de retournement (4) pour faire pivoter les volumes de 90° (7).
11. Dispositif permettant un procédé correspondant à l'une des revendications 1 à 4, prévoyant que les volumes de vitrage isolant défilent horizontalement ou verticalement dans le sens de passage. Deux paires de rayonneurs linéaires (12) parallèles et opposés linéaires, seront montés parallèlement de chaque côté par rapport au plan de passage des volumes (7) de vitrage isolant. Une paire sera montée en parallèle et l'autre verticalement par rapport au sens de passage (2). Chaque paire de rayonneurs (12) s'accompagnera d'une paire de mâchoires de pressage (14), dont les mâchoires (14) seront montées en parallèle par rapport aux rayonneurs (12). Au moins. une des unités (3) formées d'un rayonneur (12) et d'une poutre (14) devra être réglable en parallèle par rapport à son axe et à celui du plan de passage.
12. Dispositif permettant un procédé conforme à l'une des revendications 1 à 4 et prévoyant que les volumes de vitrage isolant défilent horizontalement ou verticalement entre deux paires de rayonneurs (12) linéaires, opposées et montées en parallèle et parallèlement aux deux côtés des volumes de vitrage isolant (7) dans le sens de passage (2) et deux autres verticalement par rapport au sens de passage (2). Ainsi, un volume (7) pourra être simultanément traité sur les quatre côtés ou deux volumes (7) sur deux côtés. En outre, chaque paire de rayonneurs (12) s'accompagnera d'une paire de mâchoires de pressage (14) dont les mâchoires (14) seront montées parallèlement aux unités (3) formées par les paires de rayonneurs (12) et les paires de mâchoires de pressage (14) réglables en parallèle par rapport à leur axe et celui du niveau de passage.
13. Dispositif conforme aux revendications 11 ou 12, prévoyant que l'unité (3a) formée d'une paire de rayonneurs (12) et d'une paire de mâchoires de pressage (14) montée parallèlement au sens de pasage (2) sera disposée à une certaine distance de l'unité voisine en aval par rapport au sens de passage (2). Cette unité voisine sera montée verticalement par rapport au sens de passage (2) et également formée d'une paire de rayonneurs (12) et d'une paire de mâchoires de pressage (14). Cette distance doit être supérieure à la longueur de tranche maximale d'un volume (7) pour lequel le dispositif est prévu.
14. Dispositif conforme aux revendications 12 ou 12, prévoyant - par rapport au sens de passage (2) - que l'unité (3a) montée verticalement dans le sens de passage (2), composée d'une paire de rayonneurs (12) et d'une paire de mâchoires de pressage (14) soit située juste à côté de l'unité (3a) montée parallèlement par rapport au sens de passage (2) composée d'une paire de rayonneurs (12) et d'une paire de mâchoires de pressage (14).
15. Dispositif correspondant aux revendications 12, 13 ou 14, prévoyant que les unités (3b) composées de paires de rayonneurs et de mâchoires de pressage montées à angle droit par rapport au sens de passage (2) soient montées en amont et/ou en aval des deux unités de paires de rayonneurs et de mâchoires de pressage montées parallèlement par rapport au sens de passage (2) à une certaine distance l'une de l'autre.
16. Dispositif correspondant à la revendication 15, prévoyant que l'une des unités composées de paires de rayonneurs et de paires de mâchoires de pressage (3b) montées à angle droit par rapport au sens de passage soit située immédiatement en amont des deux unités composées de paires de rayonneurs et de mâchoires de pressage (3a) montées parallèlement au sens de passage (2). L'autre unité sera située immédiatement en aval.
17. Dispositif correspondant à la revendication 16, prévoyant que les deux unités composées de paires de rayonneurs et de paires de mâchoires de pressage (3b) montées à angle droit par rapport au sens de passage (2) soient montées l'une à côté de l'autre, à une distance supérieure à la longueur maximale de tranche d'un volume de vitrage isolant pour lequel ce dispositif est prévu, par rapport aux deux unités composées de paires de rayonneurs et de paires de mâchoires de pressage (3a) montées en parallèle par rapport au sens de passage, soit en amont soit en aval.
18. Dispositif correspondant à la revendication 17, prévoyant que les deux unités composées de paires de rayonneurs et de paires de mâchoires (3b) montées à angle droit par rapport au sens de passage (2) travaillent de façon synchronisée.
19. Dispositif permettant un procédé correspondant à l'une des revendications 1 à 4, prévoyant que les volumes de vitrage isolant défilent horizontalement ou verticalement. Chaque groupe de quatre rayonneurs (12c-f) en forme de barre ou de tuyau sera disposé parallèlement par rapport au sens de passage (2). Au moins deux de ces rayonneurs seront réglables en parallèle par rapport à leur axe et celui du niveau de passage, les quatre formant donc un quadrilatère de dimension variable. On installera en outre, une presse (18) dans le sens de passage (2) et en aval du quadrilatère, de préférence une presse statique.
20. Dispositif correspondant à la revendication 19, prévoyant qu'au moins trois rayonneurs (12d-f) seront réglables en parallèle par rapport à leur axe et que deux rayonneurs (12e-f) seront réglables dans le sens transversal par rapport au niveau de passage, ils formeront un quadrilatère, mais les extrémités des rayonneurs (12c-f) sur lesquelles arrivent les raccordements électriques, ne devront jamais toucher le manteau du rayonneur voisin (12c-f).
21. Dispositif permettant l'application d'un procédé correspondant aux caractéristiques de la revendication 3, prévoyant que les volumes de vitrage isolant seront amenés verticalement ou horizontalement sur un convoyeur passant entre les rayonneurs disposés de chaque côté. Cette revendication prévoit également une presse située dans le sens de passage en aval des rayonneurs, destinée à presser les volumes pour les amener à leur épaisseur définitive. Pour ce faire, la presse a un effet statique sur les surfaces, il s'agira d'une presse à plateau.
22. Dispositif correspondant à l'une des revendications 5-18, prévoyant que le réglage des paires des unités (3) composées de paires de rayonneurs (12) et les paires de mâchoires de pressage (14) montées les unes à côté des autres, sera pratiquement fixe.
23. Dispositif correspondant à la revendication 22, prévoyant que les unités (13) composées de rayonneurs (12) et de paires de mâchoires de pressage (14) seront réglables par rapport à leur axe et à l'axe du plan de passage sur une distance correspondant à environ la moitié de la distance séparant une mâchoire de pressage (14) et un rayonneur (12).
24. Dispositif permettant l'application d'un procédé correspondant à l'une des revendications 1 à 4 suivant lesquelles les volumes de vitrage isolant seront amenés horizontalement ou verticalement dans le sens de passage. Parallèlement au plan de passage, quatre paires de rayonneurs (12a, 12b) seront prévues : deux paires (12a) seront montées parallèlement au sens de passage et deux paires (12b) à angle droit. Parmi les paires (12a) montées parallèlement au sens de passage (12), au moins une sera réglable en parallèle par rapport à son axe et à celui du plan de passage suivant les dimensions des volumes. Une mâchoire de pressage (14) sera montée à angle droit par rapport au sens de passage (2) à côté des rayonneurs (12) montés dans le sens de passage (2) pour former des paires de mâchoires de pressage. Une presse en continu sera montée . immédiatement en aval de la zone de chauffage composée des rayonneurs (12a,b) montés parallèlement au sens de passage (2), pour traiter les deux bords des volumes défilant dans le sens de passage (2).
25. Dispositif correspondant à la revendication 24, prévoyant en outre, que les paires de rayonneurs (12b) montés à angle droit par rapport au sens de passage (2) seront mobiles séparément et de façon synchrone avec les volumes de vitrage isolant (7) dans le sens de passage (2).
26. Dispositif correspondant à l'une des revendications 5-25, prévoyant que les rayonneurs infra-rouge (12) seront entourés d'un réflecteur (19), de préférence en aluminium, en forme de C ou de U, qui s'arrêtera juste avant la zone des bords des volumes de vitrage isolant.
EP82102318A 1981-03-21 1982-03-20 Procédé pour obtenir la connexion solide aux vitres isolantes Expired EP0061183B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82102318T ATE14298T1 (de) 1981-03-21 1982-03-20 Verfahren zum herstellen des festen verbundes von isolierglasscheiben.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3111166 1981-03-21
DE3111166 1981-03-21
DE3126996 1981-07-08
DE3126996A DE3126996A1 (de) 1981-03-21 1981-07-08 Verfahren zum herstellen des festen verbundes von isolierglasscheiben

Publications (2)

Publication Number Publication Date
EP0061183A1 EP0061183A1 (fr) 1982-09-29
EP0061183B1 true EP0061183B1 (fr) 1985-07-17

Family

ID=25792008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102318A Expired EP0061183B1 (fr) 1981-03-21 1982-03-20 Procédé pour obtenir la connexion solide aux vitres isolantes

Country Status (2)

Country Link
EP (1) EP0061183B1 (fr)
DE (2) DE3126996A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593527B2 (en) 2014-02-04 2017-03-14 Guardian Industries Corp. Vacuum insulating glass (VIG) unit with lead-free dual-frit edge seals and/or methods of making the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003517A1 (fr) * 1986-11-06 1988-05-19 Colin Maxwell Finch Procede et appareil de production d'un stratifie
US4820365A (en) * 1987-09-30 1989-04-11 Dimension Industries, Inc. Glass edge sealant curing system
AT398307B (de) * 1987-10-05 1994-11-25 Lisec Peter Vorrichtung zum anwärmen des randbereiches von glastafeln
US6054001A (en) * 1998-02-17 2000-04-25 Donnelly Corporation Vehicle assembly line-side heat activation of a "ready-to-install" window fixing adhesive for attachment of a vehicle window to a vehicle
US6203639B1 (en) 1998-02-17 2001-03-20 Donnelly Corporation Vehicle assembly line-side heat activation of a “ready-to-install” window fixing adhesive for attachment of a vehicle window to a vehicle
ES2194549T3 (es) 1998-11-05 2003-11-16 Luc Lafond Aparato y metodo para sellar unidades de vidrio aisladas.
US6793120B2 (en) 2002-01-17 2004-09-21 Donnelly Corporation Apparatus and method for mounting an electrical connector to a glass sheet of a vehicle window
DE102006002676A1 (de) 2006-01-19 2007-08-02 Thiele Glas Gmbh Ganzglasecke aus Isolierglas
CN101182136B (zh) * 2007-11-02 2011-02-16 刘华俊 一种真空玻璃的制造方法
US8500933B2 (en) * 2007-12-14 2013-08-06 Guardian Industries Corp. Localized heating of edge seals for a vacuum insulating glass unit, and/or unitized oven for accomplishing the same
US8512829B2 (en) 2007-12-14 2013-08-20 Guardian Industries Corp. Metal-inclusive edge seal for vacuum insulating glass unit, and/or method of making the same
US8506738B2 (en) * 2007-12-17 2013-08-13 Guardian Industries Corp. Localized heating via an infrared heat source array of edge seals for a vacuum insulating glass unit, and/or unitized oven with infrared heat source array for accomplishing the same
US8227055B2 (en) 2009-05-01 2012-07-24 Guardian Industries Corp. Vacuum insulating glass unit including infrared meltable glass frit, and/or method of making the same
US8802203B2 (en) 2011-02-22 2014-08-12 Guardian Industries Corp. Vanadium-based frit materials, and/or methods of making the same
US9309146B2 (en) 2011-02-22 2016-04-12 Guardian Industries Corp. Vanadium-based frit materials, binders, and/or solvents and methods of making the same
US8733128B2 (en) 2011-02-22 2014-05-27 Guardian Industries Corp. Materials and/or method of making vacuum insulating glass units including the same
US9359247B2 (en) 2011-02-22 2016-06-07 Guardian Industries Corp. Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US9290408B2 (en) 2011-02-22 2016-03-22 Guardian Industries Corp. Vanadium-based frit materials, and/or methods of making the same
US9458052B2 (en) 2011-02-22 2016-10-04 Guardian Industries Corp. Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US9822580B2 (en) 2011-02-22 2017-11-21 Guardian Glass, LLC Localized heating techniques incorporating tunable infrared element(s) for vacuum insulating glass units, and/or apparatuses for same
US9988302B2 (en) 2014-02-04 2018-06-05 Guardian Glass, LLC Frits for use in vacuum insulating glass (VIG) units, and/or associated methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1285686B (de) * 1965-08-20 1968-12-19 Libbey Owens Ford Glass Co Einrichtung zur Herstellung von Doppelglasscheiben
DE2501096B2 (de) * 1975-01-13 1976-10-28 Vennemann, Horst, 7180 Crailsheim Randleiste zur herstellung von isolierglasscheiben, mehrscheiben-isolierglas sowie verfahren zu seiner herstellung
DE2640153C3 (de) * 1976-09-07 1979-03-15 Karl Lenhardt-Maschinenbau, 7531 Neuhausen Durchlaufpresse mit mindestens einem einstellbaren Walzenpaar zum Verpressen von Mehrecheiben-Isolierglas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593527B2 (en) 2014-02-04 2017-03-14 Guardian Industries Corp. Vacuum insulating glass (VIG) unit with lead-free dual-frit edge seals and/or methods of making the same

Also Published As

Publication number Publication date
DE3264727D1 (en) 1985-08-22
EP0061183A1 (fr) 1982-09-29
DE3126996A1 (de) 1982-09-30

Similar Documents

Publication Publication Date Title
EP0061183B1 (fr) Procédé pour obtenir la connexion solide aux vitres isolantes
DE10157601B4 (de) Vorrichtung zur Erwärmung von Pressgut bei der Herstellung von Werkstoffplatten
EP1974396B1 (fr) Dispositif de mise en contact de cellules solaires, dispositif de maintien de bandes et dispositif de transport pour un dispositif de mise en contact de cellules solaires
DE2734419C2 (fr)
DE3303504A1 (de) Vorrichtung zum verkleben flaechenfoermiger textilstuecke
DE3827497A1 (de) Vorrichtung zur beschichtung von dreidimensionalen koerpern mit einer folie
DE69207904T2 (de) Luftabzug und vorpressvorrichtung für verbundglasscheiben
DE2248181C3 (de) Verfahren und Vorrichtung zum Verkleben flächenförmiger Textilstücke
DE69020720T2 (de) Vorrichtung zur Plattenbearbeitung unter Verwendung einer Raupenkette.
DE4116324A1 (de) Verfahren zum pressen und presse
EP2431172A1 (fr) Module de bloc de chauffage pour la fabrication de verre de sécurité composite
DE2646845B2 (de) Vorrichtung zum Biegen von Glasscheiben mit Hilfe von Preßwerkzeugen
DE4335673C1 (de) Verfahren und Vorrichtung zum Zusammenbauen von Isolierglasscheiben mit rahmenförmigen Abstandhaltern aus einer plastischen Masse
DE3420428A1 (de) Verfahren zum laminieren eines films und vorrichtung zur durchfuehrung des verfahrens
AT502830B1 (de) Wärmebehandlungsofen
DE2607504B2 (de) Vorrichtung zum Trocknen von dünnen Materialien in Stücken oder Bahnen im Durchlauf
AT398307B (de) Vorrichtung zum anwärmen des randbereiches von glastafeln
EP1157621B1 (fr) Procédé et dispositif pour coller des matériaux plans
DE2732085A1 (de) Durchlaufkaschierpresse
DE2345205C3 (de) Anlage zum Herstellen einer Sinterbahn aus Kunststoffpulver, insbesondere für die Fertigung von Separatoren für Akkumulatoren
DE1801195A1 (de) Verfahren und Vorrichtung zur Verbindung laenglicher Metallteile mit Metallblech
DD265610A5 (de) Verfahren und vorrichtung zum ausbauchen und haerten von glastafeln
EP1254019A1 (fr) Procede et dispositif permettant d'assembler des sections d'un materiau bande thermoplastique
DE19820293C1 (de) Vorrichtung zur Herstellung von Gummidichtungsringen
DE19830380A1 (de) Verfahren und Vorrichtung zum Zusammenfügen von Abschnitten eines thermoplastischen Bahnmaterials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR

17P Request for examination filed

Effective date: 19830326

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR LI

REF Corresponds to:

Ref document number: 14298

Country of ref document: AT

Date of ref document: 19850815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3264727

Country of ref document: DE

Date of ref document: 19850822

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930121

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940331

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950320