EP0060791A1 - Utilisation d'anodes de plomb à armatures dans l'élaboration électrolytique du zinc en solution de sulfate, et procédé de préparation - Google Patents

Utilisation d'anodes de plomb à armatures dans l'élaboration électrolytique du zinc en solution de sulfate, et procédé de préparation Download PDF

Info

Publication number
EP0060791A1
EP0060791A1 EP82400468A EP82400468A EP0060791A1 EP 0060791 A1 EP0060791 A1 EP 0060791A1 EP 82400468 A EP82400468 A EP 82400468A EP 82400468 A EP82400468 A EP 82400468A EP 0060791 A1 EP0060791 A1 EP 0060791A1
Authority
EP
European Patent Office
Prior art keywords
lead
anodes
zinc
silver
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82400468A
Other languages
German (de)
English (en)
Other versions
EP0060791B1 (fr
Inventor
Noel Dreulle
Alain 1153 boulevard de la République van Ceulen
Claude Eusebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asturienne France SA
Original Assignee
Asturienne France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asturienne France SA filed Critical Asturienne France SA
Priority to AT82400468T priority Critical patent/ATE15700T1/de
Publication of EP0060791A1 publication Critical patent/EP0060791A1/fr
Application granted granted Critical
Publication of EP0060791B1 publication Critical patent/EP0060791B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the invention relates to lead anodes intended for the electrolytic production of zinc from acidic aqueous sulphate solutions and comprising a reinforcement.
  • the invention also relates to a method of manufacturing such anodes.
  • the nature of the metal constituting the insoluble anodes is chosen as a function of the following considerations: the anodes must resist corrosion in a sulfuric medium and in the presence of nascent oxygen, and the bias voltage acquired by the anode must be low. Indeed, in the production of a metal by electrolysis, the cost of energy is an important element of the cost price, and the energy yield of electrolytic reduction, which is partly determined by the anode polarization, does not can be overlooked.
  • the problems relating to insoluble anodes are frequently envisaged in the context of electrolytic deposits of coverings with metals of high value, where the energy costs are less involved, while the qualities of the deposited metal are greater.
  • the electrolytic production of metals is a heavy industry, where the problems of tonnages and handling acquire serious importance.
  • This lead contains from 0.25 to 1.0 by weight of silver, which improves the mechanical strength of the anodes (increase in rigidity and hardness) as well as resistance to corrosion in the presence of impurities from the baths, in particular chlorides.
  • the lead anodes are generally rectangular plates with geometric surfaces ranging from 0.55 to 1.7 square meters, thicknesses correspondingly from 8 to 16 mm approximately, and weights from 50 to 300 kg. It is specified that the anodic surfaces of the plates are double the geometric surfaces, the two plate faces being active as anode.
  • an electrolysis hall producing 100,000 tonnes of zinc per year uses 2,376 tonnes of lead for the anodes, containing nearly 12 tonnes of silver, or nearly 10,900 plates with a unit weight of 218 kg. In an installation of this type the investment in anodes can reach 20% of the total investment.
  • Electrodes with a mechanically robust metal stiffening frame, enclosed in a lead sheath. It is common in electrochemistry in general to use electrodes with an active surface suitable for the electrochemical application, plated on a core or an armature whose nature has been chosen to respond to a particular situation (price, compatibility with the active surface , machining facilities, mechanical strength, electrical conductivity, and others).
  • French patent application No. 78 22839 published under number 2 399 490 proposes lead anodes formed from bundles of aluminum rods sheathed with silver lead. These anodes are intended to, in addition to saving lead to silver, allow better circulation of the electrolyte, but are not likely to replace conventional anodes in existing installations. Furthermore, it emerges from the description of this application that these sheathed aluminum anodes are more fragile than conventional anodes.
  • the invention relates to a lead anode for the production of zinc, which is lightened thanks to an internal frame, the nature of the frame being such that the gains resulting from the reduction are not compensated by an additional manufacturing cost of the anodes, by the appearance of operating incidents, or an accelerated decommissioning. Of course it is essential that the frame cannot cause pollution of the baths.
  • the invention provides a lead anode, intended for the electrolytic production of zinc, from aqueous sulphate solutions and comprising a reinforcement, characterized in that this reinforcement is made of a metal chosen from the group comprising titanium and zirconium trapped between two layers of lead.
  • titanium and zirconium have mechanical properties, lightness and rigidity, which are practically equaled only by light alloys (aluminum, magnesium), these being unusable in the intended application. They are available on the market at a non-excessive price. Above all, they exhibit excellent corrosion resistance by passivation. If the anode reinforcement is exposed due to shocks or arcs consecutive to a short circuit, the anodic passivation protects the exposed metal, and locally suppresses the flow of current by establishment of a contact potential higher than that of lead coating.
  • Perforated reinforcements by perforation, weaving, made of expanded metal, will preferably be used, in order to obtain the desired rigidity of the reinforcement by using less metal; moreover the openings and asperities of the reinforcement improve the adhesion of the lead layer.
  • the invention proposes a method for manufacturing such anodes with internal armatures, which consists in placing the outer layers of lead at a temperature above 100 ° C. At temperatures above 100 °, lead is more malleable (plasticity and creepability increased, more favorable recrystallization properties).
  • the lamination of a complex formed by the armature between two lead sheets will be suitably between 100 ° and 250 ° C.
  • the anode thus produced weighs 66.9 kg, comprising 4.1 kg of titanium and 62.8 kg of lead at 0.5 X silver, or 0.314 kg of silver. This corresponds to 49.2 kg per square meter including 3 kg of titanium and 46.2 kg of lead at 0.5% silver (0.23 kg of silver).
  • the lead to silver saving is therefore 114 kg (0.57 kg of silver) per square meter.
  • an experimental cell was used equipped with the five anodes of Example 1, and with four cathodes, each between two successive anodes, and having an active surface of 8.52 dm 2 (geometric surface 4.26 dm 2 ).
  • the power supply is stabilized in current at an adjustable value, the voltage between anodes and cathodes being measured.
  • the bath initially formed in the cell to contain 170 g / 1 of free sulfuric acid and zinc sulfate at a concentration of 40 g / 1 counted as zinc metal, is maintained at these concentrations by adding a neutral solution zinc sulphate, contribution controlled by the conductivity of the bath; the cell is also equipped with an overflow.
  • the excess bath which flows through this overflow usually called cell acid or return acid, constitutes purge of deconcentration in free acid, and is collected, and samples (average samples) which are dosed to control the operation of the experimental facility.
  • Example 2 The use of anodes according to Example 2 makes it possible to immobilize only about 30% of the quantity of lead and silver immobilized in conventional installations.
  • the weight of the anodes is reduced to 31% of the conventional weight. Given the current price of titanium frameworks, investments in anodes would be reduced by 45%.
  • the reinforcing structures were perforated sheet metal, wire mesh and woven metal, and expanded metal. With the perforated sheet, rolling around 200 ° is suitable, and a preparation of the sheet by etching has proved to be advantageous.
  • the filling of lead by casting lead in a mold where the reinforcement is kept centered is particularly recommended when the reinforcement structure is loose (expanded metal, large mesh netting).
  • the tight mesh and weaving can be covered with lead by spraying molten lead, by a known process. Lining by immersion in molten lead of suitably prepared preceding armature structures gives good results if the temperature of the molten lead and the rate of emersion are precisely controlled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Les anodes, prévues pour l'élaboration électrolytique de zinc à partir de solutions aqueuses acides de sulfate, comportent une peau constituée du métal classique d'anode, le plomb à 0,25-1,0% d'argent, et une armature de rigidification en titane ou zirconium. La réduction d'épaisseur des anodes rendue possible par la présence de l'armature conduit à une économie sensible de plomb à l'argent immobilisé, et à une réduction du poids unitaire des anodes. La résistance à la corrosion anodique en milieu sulfurique du plomb est maintenue, et la résistance à la corrosion par passivation de l'armature permet une mise à nu accidentelle de l'armature sans inconvénient. Pour fabriquer les anodes, les armatures sont garnies de plomb à une température supérieure à 100° C, par laminage de feuilles de plomb, par coulée en moule ou encore par pulvérisation de plomb fondu.

Description

  • L'invention se rapporte à des anodes de plomb destinées à l'élaboration électrolytique de zinc à partir de solutions aqueuses acides de sulfate et comportant une armature. L'invention se rapporte également à un procédé de fabrication de telles anodes.
  • A l'heure actuelle la majeure partie du zinc élaboré à partir de minerai est obtenue par hydrométallurgie avec production de zinc métallique par électrolyse de solutions aqueuses acides de sulfate, dans des cuves équipées d'anodes insolubles. Les bains d'électrolyse contiennent de l'acide sulfurique libre, et le dépôt de zinc à la cathode s'accompagne à l'anode d'un dégagement d'oxygène et formation d'acide sulfurique libre.
  • La nature du métal constituant les anodes insolubles est choisie en fonction des considérations suivantes : les anodes doivent résister à la corrosion en milieu sulfurique et en présence d'oxygène naissant, et la tension de polarisation acquise par l'anode doit être basse. En effet, dans l'élaboration d'un métal par électrolyse, le coût de l'énergie est un élément important du prix de revient, et le rendement énergétique de réduction électrolytique, qui est déterminé en partie par la polarisation d'anode, ne peut être négligé. Les problèmes relatifs aux anodes insolubles sont fréquemment envisagés dans le cadre des dépôts électrolytiques de recouvrements par des métaux de valeur élevée, où les coûts d'énergie interviennent moins, tandis que les qualités du métal déposé sont plus importantes. En outre l'élaboration électrolytique de métaux est une industrie lourde, où les problèmes de tonnages et de manutention acquièrent une importance sérieuse.
  • Les contraintes de résistance à la corrosion et de polarisation anodique faible ont conduit à choisir, de façon pratiquement universelle le plomb pour constituer le métal d'anode. Ce plomb contient de 0,25 à 1,0 en poids d'argent, qui améliore la tenue mécanique des anodes (augmentation de la rigidité et de la dureté) ainsi que la résistance à la corrosion en présence d'impuretés des bains, notamment chlorures.
  • Les anodes de plomb sont généralement des plaques de forme rectangulaire avec des surfaces géométriques allant de 0,55 à 1,7 mètre carré, des épaisseurs allant corrélativement de 8 à 16 mm environ, et des poids de 50 à 300 kg. On précise que les surfaces anodiques des plaques sont doubles des surfaces géométriques, les deux faces de plaque étant actives comme anode. Comme ordre de grandeur, un hall d'électrolyse produisant 100.000 tonnes de zinc par an met en oeuvre pour les anodes 2 376 tonnes de plomb, contenant près de 12 tonnes d'argent, soit près de 10 900 plaques d'un poids unitaire de 218 kg. Dans une installation de ce type l'investissement en anodes peut at- teindre 20 % de l'investissement total. Il est clair qu'une réduction de poids des anodes aurait des répercussions sensibles sur le capital investi, ainsi que sur les frais relatifs aux manutentions (chaque anode est extraite du bain 6 à 8 fois par an, ce qui représente pour l'ensemble de 220 à 300 manipulations journalières). Mais les propriétés mécaniques du plomb utilisé ne permettent pas de réduire l'épaisseur des plaques sans risquer des déformations aux manutentions et en opération, et des détériorations prématurées.
  • On peut envisager d'utiliser des anodes composites avec une armature de raidissement en métal mécaniquement robuste, enfermée dans une gaine de plomb. Il est courant en électrochimie en général d'utiliser des électrodes avec une surface active adaptée à l'application électrochimique, plaquée sur une âme ou une armature dont la nature a été choisie pour répondre à une situation particulière (prix, compatibilité avec la surface active, facilités d'usinage, tenue mécanique, conductivité électrique, et autres).
  • Ainsi la demande de brevet français n° 78 22839 publiée sous le numéro 2 399 490, propose des anodes de plomb formées de faisceaux de tiges d'aluminium gainées de plomb à l'argent. Ces anodes sont prévues pour, outre les économies de plomb à l'argent, permettre une meilleure circulation de l'électrolyte, mais ne sont pas susceptibles de remplacer les anodes classiques dans les installations existantes. En outre il ressort de la description de cette-demande que ces anodes en aluminium gainées sont plus fragiles que les anodes classiques.
  • Dans sa conception générale, l'invention a pour objet une anode en plomb pour l'élaboration du zinc, qui soit allégée grâce à une armature intérieure, la nature de l'armature étant telle que les gains résultant de l'allègement ne soient pas compensés par un surcoût de fabrication des anodes, par l'apparition d'incidents en fonctionnement, ou une mise hors d'usage accélérée. Bien entendu il est primordial que l'armature ne puisse provoquer une pollution des bains.
  • Dans ce but l'invention propose une anode de plomb, destinée à l'élaboration électrolytique de zinc, à partir de solutions aqueuses de sulfate et comportant une armature, caractérisée en ce que cette armature est en un métal choisi dans le groupe comprenant titane et zirconium emprisonnée entre deux couches de plomb.
  • Ces métaux, titane et zirconium présentent des propriétés mécaniques, légèreté et rigidité, qui ne sont pratiquement égalées que par les alliages légers (aluminium, magnésium), ceux- ci étant inutilisables dans l'application visée. Ils sont disponibles sur le marché à un prix non excessif. Et surtout, ils présentent une tenue à la corrosion excellente par passivation. Si l'armature d'anode vient à être mise à nu à la suite de chocs ou d'arcs consécutifs à un court-circuit, la passivation anodique protège le métal mis à nu, et supprime localement le passage de courant par établissement d'un potentiel de contact supérieur à celui du revêtement de plomb.
  • Les avantages de faible densité, de prix et de disponibilité commerciale sont particulièrement marqués pour le titane qui sera préféré.
  • On utilisera de préférence des armatures ajourées, par perforation, tissage, en métal déployé, afin d'obtenir la rigidité désirée de l'armature en utilisant moins de métal ; de plus les ajours et aspérités de l'armature améliorent l'adhérence de la couche de plomb.
  • Sous un autre aspect l'invention propose un procédé de fabrication de telles anodes à armatures internes, qui consiste à mettre en place les couches extérieures de plomb à une température supérieure à 100°C. Aux températures supérieures à 100°, le plomb est plus malléable (plasticité et aptitude au'fluage augmentées, propriétés de recristallisation plus favorables).
  • Notamment le laminage d'un complexe formé par l'armature entre deux feuilles de plomb se fera convenablement entre 100° et 250°C.
  • Il est également possible de recouvrir l'armature avec du plomb en cours de solidification, soit par immersion de l'armature dans le plomb fondu, par surmoulage du plomb dans un moule convenable, ou projection de plomb fondu par pulvérisation sur l'armature.
  • Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre à titre d'exemple.
  • Exemple 1. Fabrication expérimentale
  • Pour déterminer les conditions de fabrication et d'utilisation d'anodes pour installations industrielles, on a réalisé dans un premier temps des anodes expérimentales de la façon suivante :
    • Une plaque de titane d'épaisseur 1,0 mm, de longueur 250 mm et de largeur 150 mm, percée de trous de 6 mm de diamètre à entr'axe de 10 mm (taux d'ajourage 30 % environ) est placée en sandwich entre deux plaques de plomb à 0,5 % d'argent, de mêmes longueur et largeur que la plaque de titane, et d'épaisseur 2,86 mm. Cet ensemble, porté à 200°C, a été laminé dans le sens dela longueur, avec une distance entre cylindres de laminoir de 5 mm. Après laminage on a effectué un détourage au ras de l'armature de titane ; le sandwich présente alors les cotes suivantes : longueur 264 mm, largeur 150,5 mm, épaisseur totale 5,05 mm, épaisseur de l'armature de titane 0,95 mm. Puis on a exécuté sur la tranche du sandwich un cordon de soudure thermique avec, comme métal d'apport, du plomb à 0,5 °o d'argent.
  • Cinq anodes ont été ainsi réalisées pour mise en oeuvre dans une cellule d'électrolyse de laboratoire, deux anodes présentant des défauts de recouvrement, respectivement de 1 et 4 cm2 de surface, exécutés volontairement par enlèvement local de plomb.
  • Les essais de fonctionnement qui seront décrits plus loin ayant été concluants, des anodes pour installations industrielles seront fabriquées ainsi :
  • Exemple 2. Fabrication
  • Pour remplacer des anodes de plomb de surface géométrique 1,36 m2 et d'épaisseur 14 mm, ayant un poids de 218 kg soit 160,3 kg/m2 et contenant 0,5 % d'argent (1,09 kg soit 0,80 kg/m2) on réalise des anodes comme suit :
    • De part et d'autre d'une plaque de titane de 1,0 mm d'épaisseur, de 1,50 m de longueur et 0,86 m de largeur, et percée de trous de 6 mm de diamètre à entr'axe de 10 mm, en alignements orientés à 45° de la longueur on dispose deux feuilles de plomb à 0,5 % d'argent, d'épaisseur 2,86 mm et de mêmes dimensions que la plaque de titane. L'ensemble porté à 200°C est laminé à cette température entre cylindres de laminoir distants de 5,0 mm. L'anode est ensuite détourée à ses dimensions définitives (1,58 m x 0,86 m) puis garnie sur ses tranches d'un cordon de soudure avec du plomb à 0,5 % d'argent comme métal d'apport.
  • L'anode ainsi fabriquée pèse 66,9 kg, comprenant 4,1 kg de titane et 62,8 kg de plomb à 0,5 X d'argent, soit 0,314 kg d'argent. Ceci correspond à 49,2 kg au mètre carré dont 3 kg de titane et 46,2 kg de plomb à 0,5 % d'argent (0,23 kg d'argent).
  • L'économie de plomb à l'argent est donc de 114 kg (0,57 kg d'argent) par mètre carré.
  • Exemple 3. Utilisation
  • Pour les essais de fonctionnement on a utilisé une cellule expérimentale équipée des cinq anodes de l'exemple 1, et de quatre cathodes, chacune entre deux anodes successives, et présentant une surface active de 8,52 dm2 (surface géométrique 4,26 dm2). La source d'alimentation électrique est stabilisée en courant à une valeur ajustable, la tension entre anodes et cathodes étant mesurée. Le bain, constitué au départ dans la cellule pour contenir 170 g/1 d'acide sulfurique libre et du sulfate de zinc a une concentration de 40 g/1 comptée en zinc métal, est maintenu à ces concentrations par apport d'une solution neutre de sulfate de zinc, apport asservi à la conductivité du bain ; la cellule est en outre équipée d'un trop plein. L'excès de bain qui s'écoule par ce trop plein, dit usuellement acide de cellule ou acide de retour, constitue purge de déconcentration en acide libre, et est recueilli, et on effectue des prélèvements (échantillons moyens) qui sont dosés pour contrôler le fonctionnement de l'installation expérimentale.
  • La seule variable retenue pour les essais a été la densité de courant ; en effet, on peut constater que les concentrations en acide sulfurique libre et en sulfate de zinc diffèrent peu d'une installation à l'autre dans le monde, et que dans les gammes pratiquées les variations de concentration sont pratiquement sans effet sur le processus électrochimique anodique.
  • Par ailleurs les essais ont été conduits par périodes d'activité de 48 heures environ à courant constant, après quoi les cathodes étaient extraites, pesées et débarrassées du zinc déposé, tandis que les anodes étaient laissées dans le bain, sans passage de courant. Les résultats sont présentés dans le tableau suivant.
    Figure imgb0001
  • Les valeurs du tableau sont pratiquement identiques aux valeurs que l'on obtient avec les anodes classiques en plomb massif à même teneur en argent.
  • ) Après 56 jours d'essais, comprenant 40 jours de fonctionnement actif cumulé, et 16 jours d'arrêt cumulé les anodes ont été retirées de la cellule, lavées, brossées et examinées. Les surfaces de plomb à l'argent ne présentaient aucune altération anormale. Le titane mis à nu (défauts provoqués) était intact et aucune amorce de décollement du plomb autour de ces défauts n'était visible.
  • L'ensemble de ces essais manifeste que sous les aspects de fonctionnement électrochimique et de résistance à la corrosion les anodes à armature de titane sont équivalentes aux anodes en plomb massif.
  • L'utilisation d'anodes selon l'exemple 2 permet de n'immobiliser que 30 % environ de la quantité de plomb et d'argent immobilisé dans les installations classiques. Le poids des anodes est réduit à 31 % du poids classique. Compte tenu du prix actuel des armatures de titane, les investissements en anodes seraient réduits de 45 %.
  • Un certain nombre d'essais ont été exécutés pour évaluer les procédés de fabrication les plus efficaces en rapport avec les structures d'armature. Les structures d'armature étaient la tôle perforée, les grillage et métal tissé, et le métal déployé. Avec la tôle perforée, le laminage vers 200° convient, et une préparation de la tôle par dépolissage s'est avérée intéressante.
  • Le garnissage de plomb par coulée du plomb dans un moule où l'armature est maintenue centrée est particulièrement recommandé lorsque la structure d'armature est lâche (métal déployé, grillage à grandes mailles).
  • Les grillages et tissages serrés peuvent être recouverts de plomb par pulvérisation de plomb fondu, par un procédé connu. Le garnissage par immersion dans le plomb fondu des structures d'armature précédentes convenablement préparées donne de bons résultats si la température du plomb fondu et la vitesse d'émersion sont contrôlées avec précision.
  • Des essais avec le zirconium à la place du titane ont confirmé que le comportement mécanique et électrochimique du zirconium était au moins aussi bon qu'avecle titane. La densité supérieure du zirconium (6,5) ne joue pratiquement pas sur le poids des anodes (1,3 kg de supplément au m soit 2 %) mais se répercute quelque peu sur le tonnage utilisé (45 % en supplément).
  • Bien entendu l'invention n'est pas limitée aux exemples décrits, mais en embrasse toutes les variantes d'exécution.

Claims (9)

1. Anode de plomb, destinée à l'élaboration électrolytique du zinc, à partir de solutions aqueuses de sulfate et comportant une armature, caractérisée en ce que cette armature est en un métal choisi dans le groupe comprenant titane et zirconium 5 et emprisonnée entre deux couches de plomb.
2. Anode selon la revendication 1, caractérisée en ce que l'armature est en titane.
3. Anode selon la revendication 1 ou la revendication 2, caractérisée en ce que l'armature est ajourée.
10 4. Procédé de fabrication d'anodes de plomb, destinées à l'élaboration électrolytique de zinc à partir de solutions aqueuses de sulfate, et comportant# une armature en un métal choisi dans le groupe comprenant titane et zirconium, emprisonnée entre deux couches de plomb, caractérisé en ce que les 15 couches de plomb sont mises en place à une température supérieure à 100°C.
5. Procédé suivant la revendication 4, caractérisé en ce que lesdites couches de plomb, étant constituées par des feuilles de plomb, sont mises en place par laminage à une température 20 comprise entre 100° et 2500C.
6. Procédé suivant la revendication 4, caractérisé en ce que lesdites couches de plomb sont mises en place par solidification de plomb fondu.
7. Procédé suivant la revendication 6, caractérisé en ce 25 que l'armature est immergée dans le plomb fondu.
8. Procédé suivant la revendication 6, caractérisé en ce que le plomb fondu est déversé dans un moule où est placée l'armature.
9. Procédé suivant la revendication 6, caractérisé en ce 30 que le plomb fondu est projeté pulvérisé sur l'armature.
EP82400468A 1981-03-18 1982-03-15 Utilisation d'anodes de plomb à armatures dans l'élaboration électrolytique du zinc en solution de sulfate, et procédé de préparation Expired EP0060791B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82400468T ATE15700T1 (de) 1981-03-18 1982-03-15 Verwendung von verstaerkten bleianoden fuer die elektrolytische behandlung von zink in sulfatloesung und verfahren zu deren herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8105396 1981-03-18
FR8105396A FR2502188B1 (fr) 1981-03-18 1981-03-18 Anodes de plomb a armatures pour l'elaboration electrolytique du zinc en solution de sulfate, et procede de preparation

Publications (2)

Publication Number Publication Date
EP0060791A1 true EP0060791A1 (fr) 1982-09-22
EP0060791B1 EP0060791B1 (fr) 1985-09-18

Family

ID=9256368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400468A Expired EP0060791B1 (fr) 1981-03-18 1982-03-15 Utilisation d'anodes de plomb à armatures dans l'élaboration électrolytique du zinc en solution de sulfate, et procédé de préparation

Country Status (10)

Country Link
US (1) US4437965A (fr)
EP (1) EP0060791B1 (fr)
JP (1) JPS57164997A (fr)
AT (1) ATE15700T1 (fr)
AU (1) AU552085B2 (fr)
CA (1) CA1169813A (fr)
DE (1) DE3266279D1 (fr)
ES (1) ES510520A0 (fr)
FR (1) FR2502188B1 (fr)
NO (1) NO160088C (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194321A1 (fr) * 1985-03-02 1986-09-17 Bleiindustrie GmbH vorm. Jung + Lindig Méthode de fabrication d'anodes de plomb destinées à l'élaboration électrolytique du zinc et anode de plomb ainsi réalisée
WO2000042241A1 (fr) * 1999-01-13 2000-07-20 Rsr Technologies, Inc. Anodes d'extraction electrolytiques permettant de produire rapidement un revetement d'oxyde protecteur

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455715B2 (en) * 2001-07-13 2008-11-25 Teck Cominco Metals Ltd. Heap bioleaching process for the extraction of zinc

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869618A (en) * 1958-07-24 1961-05-31 Ici Ltd Lead-acid storage cells
GB1394694A (en) * 1971-10-28 1975-05-21 Montedison Spa Lead acid accumulator or storage battery with supporting and/or connecting parts made of lihgt alloys
US3907659A (en) * 1974-04-04 1975-09-23 Holmers & Narver Inc Composite electrode and method of making same
FR2399490A1 (fr) * 1977-08-03 1979-03-02 Ammi Spa Anode pour cellules electrolytiques
FR2407278A1 (fr) * 1977-10-27 1979-05-25 Jeantet Anode pour chromage electrolytique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1302959A (en) 1919-05-06 Production of electrodes
US3844921A (en) 1972-12-18 1974-10-29 Exxon Production Research Co Anode containing pin-type inserts
DE2642559B1 (de) 1976-09-22 1978-02-23 Heraeus Elektroden Verfahren zur erneuerung wirksamer elektrodenflaechen von metallelektroden fuer elektrolysezellen
US4260470A (en) 1979-10-29 1981-04-07 The International Nickel Company, Inc. Insoluble anode for electrowinning metals
ZA817441B (en) 1980-11-21 1982-10-27 Imi Kynoch Ltd Anode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869618A (en) * 1958-07-24 1961-05-31 Ici Ltd Lead-acid storage cells
GB1394694A (en) * 1971-10-28 1975-05-21 Montedison Spa Lead acid accumulator or storage battery with supporting and/or connecting parts made of lihgt alloys
US3907659A (en) * 1974-04-04 1975-09-23 Holmers & Narver Inc Composite electrode and method of making same
FR2399490A1 (fr) * 1977-08-03 1979-03-02 Ammi Spa Anode pour cellules electrolytiques
FR2407278A1 (fr) * 1977-10-27 1979-05-25 Jeantet Anode pour chromage electrolytique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194321A1 (fr) * 1985-03-02 1986-09-17 Bleiindustrie GmbH vorm. Jung + Lindig Méthode de fabrication d'anodes de plomb destinées à l'élaboration électrolytique du zinc et anode de plomb ainsi réalisée
WO2000042241A1 (fr) * 1999-01-13 2000-07-20 Rsr Technologies, Inc. Anodes d'extraction electrolytiques permettant de produire rapidement un revetement d'oxyde protecteur

Also Published As

Publication number Publication date
CA1169813A (fr) 1984-06-26
NO820866L (no) 1982-09-20
AU552085B2 (en) 1986-05-22
ATE15700T1 (de) 1985-10-15
FR2502188B1 (fr) 1985-11-22
JPS6318673B2 (fr) 1988-04-19
AU8162382A (en) 1982-09-23
ES8303549A1 (es) 1983-02-01
FR2502188A1 (fr) 1982-09-24
DE3266279D1 (en) 1985-10-24
EP0060791B1 (fr) 1985-09-18
JPS57164997A (en) 1982-10-09
US4437965A (en) 1984-03-20
NO160088B (no) 1988-11-28
NO160088C (no) 1989-03-08
ES510520A0 (es) 1983-02-01

Similar Documents

Publication Publication Date Title
AU740002B2 (en) Metallurgical process for manufacturing electrowinning lead and lead alloy electrodes
Lunder et al. The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91
Clancy et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: a review
CN102703846B (zh) 热浸镀Zn-Al-Zr合金镀层及其热浸镀方法
CA1232227A (fr) Electrode enduite de plomb ou d'un alliage de plomb et methode de fabrication
Felder et al. Lead alloys for permanent anodes in the nonferrous metals industry
US20060003174A1 (en) Titanium material and method for manufacturing the same
WO2013143247A1 (fr) Anode de composite de plomb à base d'aluminium ou d'alliage de plomb et son procédé de fabrication
Moskalyk et al. Anode effects in electrowinning
DE69904237T2 (de) Elektrogewinnungs-Anoden mit einer sich schnell bildenden Oxid-Schutzschicht
JPS6233790A (ja) 活性化非晶質合金電極
EP0060791B1 (fr) Utilisation d'anodes de plomb à armatures dans l'élaboration électrolytique du zinc en solution de sulfate, et procédé de préparation
US4925539A (en) Metal fibers obtained by bundled drawing
JP2016204713A (ja) 負極材用アルミニウム合金及びその製造方法、ならびに、当該アルミニウム合金を含む負極を備える塩水アルミニウム電池
CN113106534A (zh) 铅合金电极板、制备方法以及阳极板
Bewer et al. Titanium for electrochemical processes
SA520411661B1 (ar) طريقة لإنتاج الفضة المعدنية عن طريق الترسيب الكهربائي
JPH05106075A (ja) 水溶液中で電気分解を行うための不溶性陽極
JP4323297B2 (ja) 電解銅粉の製造方法
WO2013143245A1 (fr) Matériau composite de plomb à base d'aluminium ou d'alliage de plomb et procédé de fabrication correspondant
DE2049966A1 (de) Verfahren zum Aufbringen eines Ruthe niumoxyduberzugs
FR2492415A1 (fr)
JPS6396299A (ja) 鉛合金製不溶性陽極
BE1002845A6 (fr) Procede de fabrication en continu d'une feuille de zinc de faible epaisseur.
JP3774262B2 (ja) 高純度電気銅の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19821117

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASTURIENNE FRANCE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 15700

Country of ref document: AT

Date of ref document: 19851015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3266279

Country of ref document: DE

Date of ref document: 19851024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930224

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930309

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930317

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930323

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930324

Year of fee payment: 12

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930331

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930407

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930414

Year of fee payment: 12

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940315

Ref country code: GB

Effective date: 19940315

Ref country code: AT

Effective date: 19940315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940331

Ref country code: CH

Effective date: 19940331

Ref country code: BE

Effective date: 19940331

BERE Be: lapsed

Owner name: ASTURIENNE FRANCE

Effective date: 19940331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940315

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201

EUG Se: european patent has lapsed

Ref document number: 82400468.3

Effective date: 19941010