EP0059675B1 - Dispositif de refroidissement rapide de tubes métalliques - Google Patents

Dispositif de refroidissement rapide de tubes métalliques Download PDF

Info

Publication number
EP0059675B1
EP0059675B1 EP82420026A EP82420026A EP0059675B1 EP 0059675 B1 EP0059675 B1 EP 0059675B1 EP 82420026 A EP82420026 A EP 82420026A EP 82420026 A EP82420026 A EP 82420026A EP 0059675 B1 EP0059675 B1 EP 0059675B1
Authority
EP
European Patent Office
Prior art keywords
tube
tank
tubes
deflector
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82420026A
Other languages
German (de)
English (en)
Other versions
EP0059675A1 (fr
Inventor
Philippe-François Perineau
Yves Lebreton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vallourec SA
Original Assignee
Vallourec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec SA filed Critical Vallourec SA
Priority to AT82420026T priority Critical patent/ATE10950T1/de
Publication of EP0059675A1 publication Critical patent/EP0059675A1/fr
Application granted granted Critical
Publication of EP0059675B1 publication Critical patent/EP0059675B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching

Definitions

  • the present invention relates to a device for cooling by immersion of hot metal tubes, devices which can, for example, intervene in the tube manufacturing cycle either immediately after hot forming of the tube, or for a specific heat treatment, such as for example quenching treatment.
  • metal tubes and in particular steel tubes
  • manufacture of metal tubes, and in particular steel tubes generally requires forming, heat treatment and finishing operations.
  • a first family of techniques consists in parade treatment.
  • the hot tube is cooled by a liquid distributed by a sprinkler ring around the tube.
  • This method often requires, to avoid longitudinal deformations of the tube, to advance the tube with a helical movement, to plug the ends to prevent any untimely entry of water. It often even requires, in order to obtain a homogeneity of treatment in the longitudinal direction, to carry out the cooling at the outlet of a reheating oven which maintains the adequate temperature substantially constant in the rear part of the tube during its advance movement.
  • the second family of techniques consists of immersion treatment.
  • the method consists in completely and quickly immersing in a cooling tank filled with a coolant, the hot tube taken out of the hot forming tool or the hot treatment oven.
  • This method has the advantage of being simple and rapid, but has the major drawback of subjecting the tube to irregular cooling conditions, both on the length and on the section, given, in particular, the very irregular penetration of the coolant inside the tube.
  • the products treated are thin tubes or with a high external diameter / thickness ratio, for example greater than 20, significant longitudinal deformations known as “in the sleeve of a shirt” making it impossible or considerably hampering the subsequent work of the tube. ; discomfort which, despite dressing operations, can be found on the quality of the finished products.
  • the present invention relates to a rapid cooling device by immersion of hot metal tubes of great length. This process does not have the drawbacks described above and leads to regular cooling.
  • the cooling device comprises means for transferring upstream the hot tubes, a quenching tank containing the cooling liquid, an immersion device, means for transferring the hot tubes onto the device. immersion, means of clamping the tube, means of recovery, removal and downstream transfer of the tubes. It comprises a longitudinal deflector in the general shape of a trough or angle iron, placed at the lower right and at a short distance from the tube without being in contact with it. This deflector precedes the tube in the manner of a bow at the time of its first contact with the coolant then, when it descends into the tank containing the liquid.
  • this first contact instead of being made by the lower generatrix of the tube, is made symmetrically along two lateral generatrices close to those corresponding to the section of the tube by a horizontal diametral plane.
  • the deflector creates swirls and a symmetrical circulation of the liquid around the tube.
  • the cooling device also includes a high-flow air injection system secured to one end of the tube to be treated. This system injects pressurized air into the tube during the descent into the tank and immersion maintenance phase.
  • a plurality of pipes for circulating and stirring the coolant is distributed longitudinally in the tank, the liquid of which is maintained at a homogeneous temperature close to room temperature before immersion.
  • the tube Before immersion, the tube is positioned longitudinally on the immersion device, air injection side, and kept fixed in this position by a shoe, in order to allow the subjection of the air introduction system.
  • a hot tube to dip or hyper dip at least one end of which ends in a straight cut substantially perpendicular to the axis of the tube, is brought by a horizontal conveyor and parallel to the axis of the tank.
  • the tube is positioned relative to the tank using a retractable stop located at the front or rear end of the tube.
  • the tube is then supported by a lateral transfer system consisting, for example, of tilting arms keyed onto a common shaft, which moves it from the conveyor position to the immersion system position.
  • the immersion device collects the tube which is immediately immobilized longitudinally in this position by a clamping system carried by the immersion device, controlled by a pneumatic cylinder located near the end used to position the end which is ends with a clean cut.
  • the air injection system constituted by an air nozzle is applied to the end of the tube on the side where it has been immobilized.
  • the tube is then suddenly immersed in the coolant by lowering the immersion device and then kept immersed for the time necessary to obtain the desired cooling.
  • the deflector creates, in contact with the coolant, a vacuum, which causes the lower generatrix of the tube to drop to a level lower than that of the coolant in the tank, before returning to contact. some cash.
  • the coolant passes over the wings of the deflector and simultaneously comes into contact with the tube along two lateral generators adjacent to the diametrically opposite generators. There is thus a symmetrical cooling from the first contact with the liquid.
  • an air nozzle carried by a flange forming a joint and abutting on the tube is introduced into the end of the tube which has a clean cut and which has been previously clamped. Air is injected at a high rate through this nozzle continuously during the entire treatment.
  • the nozzle with its flange remains immobilized at the end of the tube by a mechanical follower device associated with the tank.
  • the main purpose of the deflector is to make the circulation currents of the cooling fluid symmetrical during the descent phase. It is therefore important that, without being in contact with the tube, it is located at the immediate lower right of the latter. It can take several embodiments, for example the shape of a more or less open V-shaped angle iron, or, for example, the shape of a semi-circular rounded cradle or trough.
  • the deflector must be adapted to the size of the tubes to be treated. This can be obtained, among other things, by adjusting the width of its wings or, if it is in the form of an angle, by opening its folding angle or, finally, by adjusting the vertical distance which separates it from the tube.
  • the deflector extends, substantially continuously, over the entire length of the immersion device, but its construction can be such that it allows the passage of the supply and removal arm of the tubes.
  • the purpose of the air injection device in the tube is to avoid random introduction of the coolant into the tube.
  • the air flow and speed in the tube must be sufficient to ensure a large forced circulation.
  • the nozzle section and the air pressure at this level must be sufficient to ensure this circulation.
  • the section of the air nozzle must be adapted to the interior section of the tube to be quenched. Satisfactory operating conditions are obtained with the air under pressure from the network, that is to say of the order of 5 effective bars by using an internal section ratio of the tube to be cooled to nozzle section of the order of 3.
  • the coolant circulation and agitation injectors distributed longitudinally in the tank operate throughout the cooling period, from the start of the descent phase. This homogenizes the temperature of the coolant in the tank and promotes the removal of calories from the tube by the coolant.
  • the liquid in the tank is, moreover, recirculated at a constant level and its average temperature is maintained by a refrigeration system external to the quenching tank itself, at a value close to ambient temperature.
  • the tube is raised out of the coolant.
  • the air injection is then stopped, the air nozzle is uncoupled and the tube is freed from its clamping.
  • the tube is taken up by a removal device which lifts and laterally transfers the tube to lead to the later stages of manufacturing.
  • a conveyor parallel to the axis of the tank ensures this operation.
  • the removal device can, for example, consist of tilting arms and a momentary stop position can be provided to allow the drainage of the tube above the tank.
  • the device which is the subject of the invention can be designed so that the upstream and downstream conveyor systems are separate or combined. When combined, the tubes are brought in on the same side with respect to the tank and by the same means as the transfer of the tube to the manufacturing stations following.
  • the lateral transfer system from the conveyor tube to the immersion system, the immersion system and the tube take-up system for lateral transfer after quenching can be distinct or common in whole or in part, a single device ensuring then the two or three functions without departing from the scope of the present invention.
  • All the lateral transfer devices used in the context of the present invention are of known and traditional design.
  • the cooling device object of the invention, can be used as a quenching system, either at the outlet of the heating furnace, or at the outlet of the tube hot forming tool, such as, for example, a glass. It is particularly well suited to the treatment of thin tubes with a large external diameter to thickness ratio, generally greater than 20, and a long length, of the order of 10 to 20 m.
  • the quench line includes, fig. 1 and fig. 2, a conveyor 1 equipped with rollers 2 on which a tube to be treated 3 moves here of 0 100 mm.
  • the tank 4 is constructed parallel to the conveyor 1. It consists of a parallelepipedal block open at the top, made of sheet metal, placed on a base 5.
  • the level of the coolant in the tank is represented by 6.
  • the tank is filled with water whose temperature is maintained near ambient temperature by a conventional external device not shown.
  • a plurality of lateral tubes 7 for water inlets is distributed throughout the tank and is supplied by general piping 8. The evacuation of the tank, allowing the level to remain constant, is not shown.
  • the lateral transfer device conveyor-immersion system and the immersion system consists of seven arms 9 with two branches 10-11 which are evenly distributed over the entire length of the tank.
  • the branches 10 of the arms 9 ensure the removal and deposition of the tube 3 of the conveyor 1, the branches 11 constitute the immersion device.
  • the arms 9 are mounted on a common shaft 12 rotating in a plurality of bearings 13 mounted on beams 14 between the conveyor 1 and the tank 4. They are respectively marked 9a to 9g.
  • the arms 9 are mounted in alignment with the shaft 12 so that the tube is submerged horizontally. They are moved simultaneously by a jack 15 fixed in two extreme positions corresponding to the conveyor position for the branch 10 and immersion for the branch 11.
  • the branch 10 manipulates the tube by its rounded 16.
  • the branch 11 manipulates the tube by its internal angle 17, as shown in fig. 2.
  • An angle iron 18 is fixed on the branches 11 at a location located at the lower right of the tube 3 and close to the latter when the tube 3 arrives at level 6 of the liquid. This angle 18 extends over the entire length of the tank, from the first arm 9a to the last arm 9g.
  • a device for clamping the tube not shown, conventionally constituted by a jack acting on a movable arm, the whole carried on the arm listed 9g fig. 1, located in the immediate vicinity of the securing system of the air injection nozzle on the end of the tube, ensures the clamping of the tube 3 in the interior angle 17 of the arm 9g during immersion.
  • the device for securing the air injection nozzle 19 to the tube is shown in detail, FIGS. 3 and 4.
  • the entire system is carried by a special arm 20 mounted on the common shaft 12 and subjected to the same movements as the arms 9.
  • the arm 20 includes at 21 an interior angle similar to the angles 17 on which the tube 3 rests.
  • the air injection nozzle 19 is mounted on a flange 22 joining with the end 23 on the clamping side of the tube 3. This flange is carried by an arm 24 pivoting about an axis 25 integral with the arm 20.
  • the flange 22 is pushed permanently against the end 23 of the tube 3 having a straight cut and previously positioned longitudinally by the rod 26 moved by the spring 27, a stop being provided so that the rod does not come out of its bore .
  • this movement of the flange towards the tube is compensated by a contrary movement caused by the cam 28 acting on an idler cylindrical roller 29 mounted on the pivoting arm 24.
  • the cam mounted on the shaft 30 rotating around the two bearings 31- 32 fixed to the arm, is driven in rotation during the descent of said arm for the immersion of the tube 3 by the system of two bevel gears, one of which is fixed and the other is mounted on the camshaft 30.
  • the profile of the cam is such that the flange 22 is pressed against the end of the tube 3 in the submerged position, the nozzle 19 then being engaged in the tube 3, as shown in Figures 3 and 4, and spaced from the end of the tube in the high position, before immersion or after immersion, the front end of the air injection nozzle 19 being released from the tube 3 to allow lateral transfer thereof.
  • the nozzle 19 is mounted by thread on the flange 22 so as to be able to adapt the nozzle diameter to the inside diameter of the tube 3 to be treated.
  • the nozzle diameter is generally such that the ratio between the internal section of the tube 3 and the section of the nozzle 19 is of the order of 3.
  • the compressed air taken from the standard compressed air network at 5 bars in the workshop is brought to the nozzle 19 by a flexible conduit not shown.
  • FIGS. 5A, 5B, 6A and 6B show various nonlimiting embodiments of angles 18 used as a deflector.
  • Fig. 5A shows an embodiment in which the angle iron 18 consists of two parts, one fixed 39 fixed by welding to the arm 11 and two wings 40 and 41 adjustable. The width of the opening at the end of the angle iron is adjusted by sliding the thread-bolt assembly 42 in the notch 43 of the wings 40 and 41.
  • the angle iron 18 is of defined dimensions, but it is fixed to the arm 9 by a threaded rod-bolt assembly 44 sliding in a vertical slot 45 located at the right interior of the angle 17 in the branch of the arm 11.
  • the angles are attached in a coupled manner on either side of the branch 11.
  • the adjustment of the angles 18 is intended to make the circulation of water symmetrical during the descent in immersion of the tubes. It is therefore necessary that the adjustment of the angle is substantially adapted to the outside diameters of the tubes to be treated. This is obtained here by adjusting the wings or by the relative vertical position of the angle iron. Angles can also be used, the angular opening of the wings of which is adjustable.
  • the tube is thus transferred from 16 to 17 by rotation without sliding on the rectilinear part 46.
  • the system is designed in such a way that the immersion device constituted by the branch 11 and the angle 17 is not immersed when the tube comes from 16 to 17, while the rectilinear part 46 is substantially horizontal. At this level, the front end of the air nozzle 19 is set back enough to allow the free passage of the end of the tube 3.
  • the tube is then clamped by the jack acting on a movable arm mounted on the arm 9g.
  • the arm 9 then continues their rotation according to arrow F and, simultaneously, the air is injected into the tube 3.
  • the tube is rapidly immersed by continuing the rotation of the arms 9.
  • the nozzle holder flange 22 is pressed against the blunt end of the tube 3, thus allowing mainly air to enter the tube.
  • the tube 3 is kept submerged for the time necessary for it to cool down to the desired temperature.
  • the tube is then raised by rotation back from the arms 9. The air is blown into the tube until the horizontal portion 46 passes straight, which makes it possible to empty the tube 3 of all the water which would have could get inside.
  • the duration of the cycle depends on the tubes to be treated. It is of the order of 30 seconds, without counting the actual immersion time, which is a function of the nuance of the metal and the dimensions of the tube.
  • the installation described has proved to be particularly advantageous for tubes of great length (greater than or equal to 15 m), of diameter 70 to 150 mm, having a high diameter to thickness ratio of the order of 25. They leave the treatment without appreciable longitudinal deformation.
  • the operating cycle of the cooling device is such that it can be used either at the outlet of a heating oven, or at the outlet of a hot forming tool, such as for example a glass spinning press, in order to subject the metal to quenching or hyper quenching.
  • Fig. 7 shows in section an alternative embodiment of the cooling device in which the hot tubes 47 are brought by a roller conveyor on one side of the cooling tank 48 and discharged cold on the other side of the tank by a non-conveyor represented.
  • the arm 49 serves as a lateral transfer of the hot tube to the immersion device.
  • the immersion device is represented by the branch 51 of the arm 50 equipped with an angle iron 52, as in the embodiment described above.
  • the immersion is done by rotation of the arm 50 and the exit from the cold tube by the opposite rotation of the arm 50.
  • the device for securing the air injection nozzle at the end of the tube is unchanged. He is not shown here.
  • Another variant of the immersion device may allow the tubes to be immersed in an inclined manner, one end being in contact with the cooling fluid before the other end.
  • the inclination which may be a few degrees, can be obtained by a continuous relative angular offset of the arms 9 relative to each other, or by thicknesses of the branch in the vertical direction at right angles to the variable and increasing angle 17 continuously for the different arms 9 distributed along the tank or by any other suitable means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Automatic Assembly (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • La présente invention concerne un dispositif de refroidissement par immersion de tubes métalliques chauds, dispositifs pouvant, par exemple, intervenir dans le cycle de fabrication de tube soit immédiatement après mise en forme à chaud du tube, soit pour un traitement thermique spécifique, comme par exemple un traitement de trempe.
  • La fabrication des tubes métalliques et en particulier des tubes d'acier, requiert généralement des opérations de formage, de traitement thermique et de parachèvement.
  • Il est courant d'avoir à pratiquer des opérations de trempe ou d'hypertrempe nécessitant un refroidissement rapide à partir d'une température élevée.
  • Différentes techniques ont été développées jusqu'alors pour tremper les tubes.
  • Une première famille de techniques consiste dans le traitement au défilé. Dans ce procédé, le tube chaud est refroidi par un liquide distribué par un anneau d'arrosage autour du tube. Cette méthode oblige bien souvent, pour éviter les déformations longitudinales du tube, à faire avancer le tube avec un mouvement hélicoïdal, à en boucher les extrémités pour empêcher toute entrée d'eau intempestive. Elle oblige même souvent, pour obtenir une homogénéité de traitement dans la direction longitudinale, à procéder au refroidissement en sortie d'un four de réchauffage qui maintient la température adéquate sensiblement constante dans la partie arrière du tube pendant son mouvement d'avance.
  • Dans le cas particulier de tubes d'aciers longs et minces fabriqués par le procédé de filage au verre qui sortent de la presse à filer entre 1100° C et 1200°C, on dispose d'un temps très court de l'ordre d'une vingtaine de secondes pour exécuter l'opérateur. La vitesse de défilement dans l'installation de trempe qui, pour de tels tubes, serait de l'ordre de 30 m/min, ne permet pas d'effectuer un traitement thermique au défilé correct pour des tubes de 15 m, longueur courante dans le procédé de filage au verre, et il est nécessaire d'avoir recours à un traitement fait ultérieurement pour obtenir des tubes de bonne qualité.
  • Par ailleurs, au-delà d'une certaine épaisseur de produits à traiter, il est nécessaire, pour obten ir une vitesse de refroidissement suffisamment élevée en tout point de la section du tube, de refroidir par un dispositif approprié l'intérieur du tube.
  • La technique au défilé conduit à des installations importantes au plan dimensionnel, complexes au plan mécanique, dont l'usage est restrictif.
  • La deuxième famille de techniques consiste dans le traitement par immersion. Dans ce cas, le procédé consiste à immerger totalement et rapidement dans un bac de refroidissement rempli d'un liquide de refroidissement, le tube chaud sorti de l'outil de formage à chaud ou du four de traitement à chaud.
  • Cette méthode a l'avantage d'être simple et rapide, mais présente l'inconvénient majeur de soumettre le tube à des conditions de refroidissement irrégulières, tant sur la longueur que sur la section, étant donné, en particulier, la pénétration très irrégulière du fluide de refroidissement à l'intérieur du tube. Il en résulte, lorsque les produits traités sont des tubes minces ou à fort rapport diamètre extérieur/épais- seur, par exemple supérieur à 20, des déformations longitudinales importantes dites «en manche de chemise» rendant impossible ou gênant considérablement le travail ultérieur du tube; gêne qui, malgré des opérations de dressage, peut se retrouver sur la qualité des produits finis.
  • Différentes propositions ont été faites à ce jour pour améliorer la technique de trempe par immersion. C'est ainsi qu'on a essayé de régulariser la vitesse de refroidissement en créant un brassage- agitation important du bain de refroidissement ou en immergeant le tube incliné dans le liquide de refroidissement, pour favoriser l'introduction plus régulière du liquide de refroidissement à l'intérieur du tube.
  • En fait, aucune de ces techniques n'a résolu le problème de base, car l'introduction d'eau dans l'intérieur du tube se fait de façon aléatoire et l'on n'arrive pas à maîtriser la rectitude du tube après refroidissement. Ce problème est particulièrement sensible à mi-longueur du tube. Enfin, lors de l'immersion d'un tube se présentant horizontalement, la génératrice inférieure du tube se trouve au contact du liquide froid avant la partie supérieure.
  • La présente invention a pour objet un dispositif de refroidissement rapide par immersion de tubes métalliques chauds de grande longueur. Ce procédé ne présente pas les inconvénients décrits précédemment et conduit à un refroidissement régulier. Les tubes, après traitement selon l'invention, ne présentent pas d'anomalie notable de rectitude qui nécessite un traitement spécial avant la poursuite de la fabrication.
  • Le dispositif de refroidissement, objet de l'invention, comprend des moyens de transfert en amont des tubes chauds, un bac de trempe contenant le liquide de refroidissement, un dispositif d'immersion, des moyens de transfert des tubes chauds sur le dispositif d'immersion, des moyens de bridage du tube, des moyens de reprise, enlèvement et transfert aval des tubes. Il comporte un déflecteur longitudinal en forme générale de goulotte ou de cornière, disposé au droit inférieur et à faible distance du tube sans être en contact avec lui. Ce déflecteur précède le tube à la façon d'une étrave au moment de son premier contact avec le liquide de refroidissement puis, lors de sa descente dans le bac contenant le liquide. Au moment où, au cours de la descente du tube, sa génératrice inférieure parvient au niveau du liquide, celui-ci a été écarté et projeté de part et d'autre par le déflecteur. Le premier contact entre le tube et le liquide se trouve ainsi légèrement retardé. De plus, ce premier contact, au lieu de se faire par la génératrice inférieure du tube, se fait symétriquement le long de deux génératrices latérales voisines de celles correspondant à la section du tube par un plan diamétral horizontal. Au cours de sa descente dans le bac à l'avant du tube, le déflecteur crée des remous et une circulation symétrique du liquide autour du tube.
  • Le dispositif de refroidissement comporte également un système d'injection d'air à fort débit assujetti à une extrémité du tube à traiter. Ce système insuffle de l'air sous pression dans le tube pendant la phase de descente dans le bac et de maintien en immersion.
  • Parallèlement, une pluralité de tubulures de circulation et d'agitation du liquide de refroidissement est répartie longitudinalement dans le bac dont le liquide est maintenu à température homogène voisine de la température ambiante avant immersion.
  • Avant immersion, le tube est positionné longitudinalement sur le dispositif d'immersion, côté injection d'air, et maintenu fixe dans cette position par un sabot, afin de permettre l'assujettissement du système d'introduction d'air.
  • On expliquera maintenant le fonctionnement du dispositif de refroidissement.
  • Un tube chaud à tremper ou hypertremper, dont une extrémité, au moins, se termine par une coupe franche sensiblement perpendiculaire à l'axe du tube, est amené par un convoyeur horizontal et parallèle à l'axe du bac. Le tube est positionné par rapport au bac à l'aide d'une butée escamotable située à l'extrémité avant ou arrière du tube. Le tube est alors pris en charge par un système de transfert latéral constitué, par exemple, de bras inclinables clavetés sur un arbre commun, qui le fait passer de la position convoyeur à la position système d'immersion. Le dispositif d'immersion recueille le tube qui est immédiatement immobilisé longitudinalement dans cette position par un système de bridage porté par le dispositif d'immersion, commandé par un vérin pneumatique situé au voisinage de l'extrémité ayant servi à positionner l'extrémité qui se termine par une coupe franche. Le système d'injection d'air constitué par une buse à air vient s'appliquer sur l'extrémité du tube du côté où il a été immobilisé. Le tube est alors immergé brutalement dans le liquide de refroidissement par descente du dispositif d'immersion puis maintenu immergé le temps nécessaire pour obtenir le refroidissement désiré.
  • Dans la phase de descente du tube, le déflecteur crée, au contact du liquide de refroidissement, une dépression, ce qui fait que la génératrice inférieure du tube descend à un niveau inférieur à celui du liquide de refroidissement du bac, avant de rentrer au contact du liquide. Immédiatement après, le liquide de refroidissement passe au-dessus des ailes du déflecteur et vient simultanément au contact du tube selon deux génératrices latérales voisines des génératrices diamétralement opposées. On a ainsi un refroidissement symétrique dès le premier contact avec le liquide.
  • Simultanément, mais antérieurement au commencement de la descente, une buse à air portée par un flasque faisant joint et butée sur le tube, vient s'introduire dans l'extrémité du tube qui présente une coupe franche et qui a été préalablement bridé. De l'air est injecté à fort débit par cette buse de façon continue pendant tout le traitement. Pendant la descente et le maintien en immersion, la buse avec son flasque reste immobilisée à l'extrémité du tube par un dispositif mécanique suiveur associé au bac. On s'assure, de cette façon, de la permanence d'une circulation d'air dans le tube pendant tout le traitement, en évitant que celui-ci, grâce au dispositif de bridage, ne s'éloigne du dispositif d'injection d'air comprimé, que ce soit sous la poussée créée par l'air ou que ce soit par le retrait dû au refroidissement. L'eau qui peut pénétrer à l'intérieur du tube par les interstices entre le flasque et le tube est pulverisée et entraînée à grande vitesse par le courant d'air. Cela contribue à homogénéiser la température à l'intérieur du tube tout en contribuant à son refroidissement.
  • Le déflecteur a essentiellement pour but de rendre symétrique les courants de circulation du fluide de refroidissement pendant la phase de descente. Il est donc important que, sans être en contact avec le tube, il soit situé au droit inférieur immédiat de celui-ci. Il peut prendre plusieurs formes de réalisation, par exemple la forme de cornière en V plus ou moins ouvert, ou, par exemple, la forme de berceau ou goulotte arrondie semi-circulaire. Pour remplir sa fonction, le déflecteur doit être adapté à la dimension des tubes à traiter. Ceci peut être obtenu, entre autre, par réglage de la largeur de ses ailes ou, s'il est en forme de cornière, par ouverture de son angle de pliage ou, enfin, par réglage de la distance verticale qui le sépare du tube. Le déflecteur s'étend, de façon sensiblement continue, sur toute la longueur du dispositif d'immersion, mais sa réalisation peut être telle qu'il laisse le passage de bras d'amenée et d'enlèvement de tubes.
  • Le but du dispositif d'injection d'air dans le tube est d'éviter une introduction aléatoire du liquide de refroidissement dans le tube. Le débit et la vitesse de l'air dans le tube devront être suffisants pour assurer une circulation forcée importante. La section de la buse ainsi que la pression d'air à ce niveau doivent être suffisantes pour assurer cette circulation. La section de la buse d'air devra être adaptée à la section intérieure du tube à tremper. Des conditions opératoires satisfaisantes sont obtenues avec l'air sous pression du réseau, soit de l'ordre de 5 bars effectifs en utilisant un rapport section intérieure du tube à refroidir sur section buse de l'ordre de 3.
  • Les injecteurs de circulation et d'agitation du liquide de refroidissement répartis longitudinalement dans le bac fonctionnent pendant toute la durée du refroidissement, dès le début de la phase de descente. Cela homogénéise la température du liquide de refroidissement du bac et favorise l'enlèvement des calories du tube par le liquide de refroidissement. Le liquide du bac est, par ailleurs, recirculé à niveau constant et sa température moyenne est maintenue par un système de réfrigération extérieur au bac de trempe proprement dit, à une valeur voisine de la température ambiante.
  • Au terme du refroidissement dans le bac, le tube est remonté hors du liquide de refroidissement. On arrête alors l'injection d'air, on désaccouple la buse à air on libère le tube de son bridage. Le tube est pris par un dispositif d'enlèvement qui soulève et transfère latéralement le tube pour conduire aux étapes ultérieures de la fabrication. En général, un convoyeur parallèle à l'axe du bac assure cette opération. Le dispositif d'enlèvement peut, par exemple, être constitué de bras inclinables et une position d'arrêt momentané peut être prévue pour permettre l'égouttage du tube au-dessus du bac.
  • Le dispositif, objet de l'invention peut être conçu de sorte que les systèmes de convoyages amont et aval soient distincts ou confondus. Lorsqu'ils sont confondus, l'amenée des tubes se fait d'un même côté par rapport à la cuve et par les mêmes moyens que le transfert du tube aux postes de fabrication suivants. De même, le système de transfert latéral du tube convoyeur au système d'immersion, le système d'immersion et le système de reprise des tubes pour transfert latéral après trempe, peuvent être distincts ou communs en totalité ou en partie, un seul dispositif assurant alors les deux ou trois fonctions sans qu'on sorte du cadre de la présente invention pour autant.
  • Tous les dispositifs de transfert latéraux mis en oeuvre dans le cadre de la présente invention sont de conception connue et traditionnelle.
  • Le dispositif de refroidissement, objet de l'invention, peut être utilisé comme système de trempe, soit en sortie de four de chauffage, soit en sortie d'outil de formage à chaud du tube, comme, par exemple, une presse à filer au verre. Il est particulièrement bien adapté au traitement de tubes minces dont le rapport diamètre extérieur sur épaisseur est important, généralement supérieur à 20, et la longueur importante, soit de l'ordre de 10 à 20 m.
  • Dans le but de mieux faire comprendre l'invention et ses caractéristiques, on va décrire à titre d'exemple nullement limitatif, un mode de réalisation en se référant aux dessins annexés dans lesquels:
    • La figure 1 représente une vue de dessus d'ensemble du dispositif de refroidissement.
    • La figure 2 représente une coupe selon un plan courant A-A de la fig. 1.
    • La figure 3 représente, en position immergée, le système d'assujettissement de la buse à air sur l'extrémité du tube selon la coupe B-B de la fig. 1.
    • La figure 4 représente le système d'assujettissement de la buse à air sur l'extrémité du tube selon la coupe C-C de la fig. 3.
    • Les figures 5A-5B-6A et 6B représentent différentes réalisations de déflecteurs fixées sur le dispositif d'immersion des tubes.
    • La figure 7 représente en coupe une variante de réalisation du dispositif de trempe.
  • On décrit d'abord, un dispositif de refroidissement pour lequel le convoyage des tubes est assuré par un dispositif unique situé d'un seul côté de la cuve de trempe et pour lequel le dispositif de transfert latéral du convoyeur au système d'immersion, le dispositif . d'immersion et le dispositif de reprise et transfert latéral des tubes est commun.
  • La ligne de trempe comprend, fig. 1 et fig. 2, un convoyeur 1 équipé de rouleaux 2 sur lesquels se déplace un tube à traiter 3 ici de 0 100 mm. La cuve 4 est construite parallèle au convoyeur 1. Elle est constituée d'un bloc parallélépipédique ouvert en haut, en tôle, posé sur un socle 5. Le niveau du liquide de refroidissement dans la cuve est représenté par 6. Ici, la cuve est remplie d'eau dont la température est maintenue au voisinage de la température ambiante par un dispositif extérieur classique non représenté. Une pluralité de tubulures latérales 7 d'arrivées d'eaux est répartie tout au long de la cuve et est alimentée par une tuyauterie générale 8. L'évacuation de la cuve, permettant que le niveau reste constant, n'est par représentée.
  • Le dispositif de transfert latéral convoyeur-système d'immersion et le système d'immersion est constitué par sept bras 9 à deux branches 10-11 qui sont répartis de façon régulière sur toute la longueur de la cuve. Les branches 10 des bras 9 assurent l'enlèvement et le dépôt du tube 3 du convoyeur 1, les branches 11 constituent le dispositif d'immersion. Les bras 9 sont montés sur un arbre commun 12 tournant dans une pluralité de paliers 13 montés sur des poutres 14 entre le convoyeur 1 et la cuve 4. Ils sont respectivement repérés 9a à 9g.
  • Les bras 9 sont montés en alignement sur l'arbre 12 de façon à ce que le tube soit immergé horizontalement. Ils sont mus simultanément par un vérin 15 calé sur deux positions extrêmes correspondant à la position convoyeur pour la branche 10 et immersion pour la branche 11. La branche 10 manipule le tube par son arrondi 16. La branche 11 manipule le tube par son angle intérieur 17, comme représenté en fig. 2.
  • Une cornière 18 est fixée sur les branches 11 à un emplacement situé au droit inférieur du tube 3 et proche de ce dernier lorsque le tube 3 arrive au niveau 6 du liquide. Cette cornière 18 s'étend sur toute la longueur du bac, du premier bras 9a au dernier bras 9g. Un dispositif de bridage du tube, non représenté, constitué de façon classique par un vérin agissant sur un bras mobile, le tout porté sur le bras répertorié 9g fig. 1, situé à proximité immédiate du système d'assujettissement de la buse d'injection d'air sur l'extrémité du tube, assure le bridage du tube 3 dans l'angle intérieur 17 du bras 9g lors de l'immersion.
  • Le dispositif d'assujettissement de la buse d'injection d'air 19 sur le tube est représenté en détail, figures 3 et 4. L'ensemble du système est porté par un bras spécial 20 monté sur l'arbre commun 12 et subissant les mêmes déplacements que les bras 9. Le bras 20 comprend en 21 un angle intérieur semblable aux angles 17 sur lesquels vient reposer le tube 3.
  • La buse à injection d'air 19 est montée sur un flasque 22 faisant joint avec l'extrémité 23 côté bridage du tube 3. Ce flasque est porté par un bras 24 pivotant autour d'un axe 25 solidaire du bras 20.
  • Le flasque 22 est poussé de façon permanente contre l'extrémité 23 du tube 3 présentant une coupe franche et préalablement positionné longitudina-Jement par la tige 26 mue par le ressort 27, une butée étant prévue pour que la tige ne sorte pas de son alésage. Toutefois, ce mouvement du flasque vers le tube est compensé par un mouvement contraire provoqué par la came 28 agissant sur un galet cylindrique fou 29 monté sur le bras pivotant 24. La came, montée sur l'arbre 30 tournant autour des deux paliers 31-32 fixés au bras, est entraînée en roation lors de la descente dudit bras pour l'immersion du tube 3 par le système de deux engrenages coniques dont l'un est fixe et l'autre est monté sur l'arbre de came 30. Le profil de la came est tel que le flasque 22 est appuyé contre l'extrémité du tube 3 en position immergée, la buse 19 étant alors engagée dans le tube 3, comme représenté en figures 3 et 4, et écartée de l'extrémité du tube en position haute, avant immersion ou après immersion, l'extrémité avant de la buse d'injection d'air 19 étant dégagée du tube 3 pour permettre le transfert latéral de celui-ci.
  • La buse 19 est montée par filetage sur le flasque 22 de manière à pouvoir adapter le diamètre de buse au diamètre intérieur du tube 3 à traiter. Le diamètre de buse est en général tel que le rapport section intérieure du tube 3 sur section de la buse 19 est de l'ordre de 3.
  • L'air comprimé pris sur le réseau d'air comprimé standard à 5 bars de l'atelier est amené à la buse 19 par un conduit flexible non représenté.
  • Les figures 5A, 5B, 6A et 6B représentent différentes réalisations non limitatives de cornières 18 utilisées comme déflecteur.
  • La fig. 5A représente une réalisation dans laquelle la cornière 18 est constituée de deux parties, l'un fixe 39 fixée par soudage au bras 11 et de deux ailes 40 et 41 réglables. La largeur de l'ouverture en extrémité de cornière est réglée par coulissement de l'ensemble filetage-boulons 42 dans l'encoche 43 des ailes 40 et 41.
  • Dans la réalisation de la fig. 6A, la cornière 18 est de dimensions définies, mais elle est fixée au bras 9 par un ensemble tige filetée-boulons 44 venant coulisser dans une fente verticale 45 située au droit intérieur de l'angle 17 dans la branche du bras 11. Les cornières sont fixées de façon accouplées de part et d'autre de la branche 11. Le réglage des cornières 18 a pour but de rendre symétrique la circulation d'eau lors de la descente en immersion des tubes. Il faut donc que le réglage de la cornière soit sensiblement adapté aux diamètres extérieurs des tubes à traiter. Ceci est obtenu ici par le réglage des ailes ou par la position verticale relative de la cornière. On peut également utiliser des cornières dont l'ouverture angulaire des ailes soit réglable.
  • Le dispositif de refroidissement fonctionne de la façon suivante:
    • Le tube chaud 3 est amené du four et positionné longitudinalement sur le convoyeur 1. Les bras 9, par leur branche 10, viennent prendre en charge le tube 3 dans les arrondis 16, comme représenté en pointillé, fig. 2. Une première rotation des bras 9 amène la partie rectiligne 46 de la branche 11 sensiblement horizontale, légèrement inclinée vers le niveau 6 et maintient le bras dans cette position.
  • Le tube est ainsi transféré de 16 en 17 par rotation sans glissement sur la partie rectiligne 46. Le système est conçu de façon telle que le dispositif d'immersion constitué par la branche 11 et l'angle 17 n'est pas immergé lorsque le tube vient de 16 en 17, tandis que la partie rectiligne 46 est sensiblement horizontale. A ce niveau, l'extrémité avant de la buse d'air 19 est suffisamment reculée pour permettre le passage libre de l'extrémité du tube 3.
  • Le tube est alors bridé par le vérin agissant sur un bras mobile monté sur le bras 9g. Le bras 9 continuent alors leur rotation selon la flèche F et, simultanément, l'air est injecté dans le tube 3. Le tube est immergé rapidement par continuation de la rotation des bras 9. Pendant la rotation des bras 9, par le jeu de la came 28 et de la tige 26, le flasque porte-buse 22 est plaqué sur l'extrémité à bord franc du tube 3, laissant ainsi rentrer principalement de l'air dans le tube. Le tube 3 est maintenu immergé le temps nécessaire à son refroidissement jusqu'à la température voulue. Le tube est alors relevé par rotation en retour des bras 9. L'air est insufflé dans le tube jusqu'au passage à l'horizontale de la partie rectiligne 46, ce qui permet de vider le tube 3 de toute l'eau qui aurait pu s'infiltrer à l'intérieur. La continuation de la rotation en retour des bras 9 fait passer le tube de l'angle 17 à l'arrondi 16. Le tube froid est alors déposé sur le convoyeur 1 qui l'évacue vers la suite de la chaîne de fabrication. Un autre tube chaud peut être amené pour traitement. Pendant toute la durée de service de la cuve 4, le liquide de refroidissement est brassé énergiquement par les tubulures latérales 7 et maintenu à température ambiante par un système de réfrigeration extérieur non représenté.
  • La durée du cycle est fonction des tubes à traiter. Elle est de l'ordre de 30 secondes, sans compter le temps d'immersion proprement dit, qui est fonction de la nuance du métal et des dimensions du tube.
  • L'installation décrite s'est révélée particulièrement intéressante pour les tubes de grandes longueurs (supérieures ou égales à 15 m), de diamètre 70 à 150 mm, ayant un fort rapport diamètre sur épaisseur de l'ordre de 25. Ils sortent du traitement sans déformation longitudinale appréciable.
  • Le cycle de fonctionnement du dispositif de refroidissement est tel qu'il peut être utilisé soit à la sortie d'un four de chauffage, soit à la sortie d'un outil de formage à chaud, comme par exemple une presse à filer au verre, en vue de faire subir au métal une trempe ou une hypertrempe.
  • La fig. 7 représente en coupe une variante de réalisation du dispositif de refroidissement dans lequel les tubes chauds 47 sont amenés par un convoyeur à rouleau d'un côté de la cuve 48 de refroidissement et évacués froids de l'autre côté de la cuve par un convoyeur non représenté. Le bras 49 sert de transfert latéral du tube chaud sur le dispositif d'immersion.
  • Le dispositif d'immersion est représenté par la branche 51 du bras 50 équipé d'une cornière 52, comme dans la réalisation décrite précédemment. L'immersion se fait par rotation du bras 50 et la sortie du tube froid par la rotation contraire du bras 50.
  • Le dispositif d'assujettissement de la buse d'injection d'air à l'extrémité du tube est inchangé. Il n'est pas représenté ici.
  • Une autre variante du dispositif d'immersion peut permettre que les tubes soient immergés de façon inclinée, une extrémité étant en contact avec le fluide de refroidissement avant l'autre extrémité.
  • L'inclination qui peut être de quelques degrés, peut être obtenue par un décalage angulaire relatif continu des bras 9 les uns par rapport aux autres, ou par des épaisseurs de la branche dans le sens vertical au droit de l'angle 17 variables et croissantes de façon continue pour les différents bras 9 répartis le long du bac ou par tout autre moyen adéquat.
  • Il est bien entendu que la présente invention n'est pas limitée aux modes de réalisation décrits ci- dessus à titre d'exemple, et qu'elle pourra recevoir toutes formes d'exécution désirables.

Claims (15)

1. Dispositif de refroidissement rapide de tubes métalliques chauds comprenant des moyens de transfert amont de tubes chauds, un bac de trempe, un dispositif d'immersion, des moyens de transfert des tubes chauds sur le dispositif d'immersion, des moyens de bridage du tube, des moyens de reprise, enlèvement et transfert aval des tubes froids, caractérisé en ce que le dispositif d'immersion comporte un déflecteur longitudinal (18) situé au droit inférieur et espacé du tube à traiter (3) de manière à provoquer une circulation symétrique du liquide de refroidissement autour du tube pendant la phase de descente dans le bac et un système d'injection d'air (19) assujetti à une extrémité (23) du tube à traiter insufflant de l'air à fort débit dans le tube pendant la phase de descente dans le bac et de maintien en immersion.
2. Dispositif selon la revendication 1, caractérisé en ce que le bac de refroidissement est équipé d'une pluralité d'injecteurs (7) de liquide de refroidissement répartis longitudinalement dans le bac.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le même moyen de transfert est utilisé pour l'amenée et le départ des tubes.
4. Dispositif selon la revendication 1 ou 2, caractérisé en ce que les moyens de transfert des tubes chauds sur le dispositif d'immersion, le dispositif d'immersion proprement dit, le dispositif de reprise des tubes froids sont communs en totalité ou en partie.
5. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le déflecteur (18) s'étend de façon continue sur la totalité du bac de refroidissement.
6. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le déflecteur s'étend de façon discontinue sur la totalité du bac de refroidissement pour laisser le passage de bras de manutention.
7. Dispositif selon l'une quelconque des revendications 1, 2, 5 ou 6, caractérisé en ce que le déflecteur est constitué en forme de cornière dont les ailes sont prolongées par des plaques coulissantes (40, 41)
8. Dispositif selon l'une quelconque des revendications 1, 2, 5 ou 6, caractérisé en ce que le déflecteur est réglable en position verticale.
9. Dispositif selon l'une quelconque des revendications 1, 2, 5 ou 6, caractérisé en ce que la cornière est réglable en ouverture angulaire.
10. Dispositif selon l'une quelconque des revendications 1, 2, 5 ou 6, caractérisé en ce que le déflecteur est constitué en forme d'une goulotte arrondie.
11. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le dispositif d'injection est amovible et peut être introduit dans le tube au début de la phase de descente, puis assujetti à l'extrémité correspondante du tube pendant la phase de descente et d'immersion du tube.
12. Dispositif selon l'une quelconque des revendications 1, 2 ou 11, caractérisé en ce que le dispositif d'assujettissement du dispositif d'injection d'air (19), à l'extrémité du tube est porté par un bras spécial (20) et est constitué d'un autre bras oscillant (24) autour d'un axe mû par une tige poussoir (26) et une camme (28) commandée par un jeu d'engrenages.
13. Dispositif selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le tube est immergé en position inclinée dans le bac contenant le liquide de refroidissement.
14. Utilisation du dispositif selon l'une quelconque des revendications 1 à 13 en sortie de four de chauffage.
15. Utilisation du dispositif selon l'une quelconque des revendications 1 à 13 monté en sortie d'un dispositif de formage à chaud tel qu'une presse à filer.
EP82420026A 1981-02-27 1982-02-24 Dispositif de refroidissement rapide de tubes métalliques Expired EP0059675B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82420026T ATE10950T1 (de) 1981-02-27 1982-02-24 Vorrichtung zum schnellen abkuehlen von metallischen rohren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8104380A FR2500849B1 (fr) 1981-02-27 1981-02-27 Dispositif de refroidissement rapide de tubes metalliques
FR8104380 1981-02-27

Publications (2)

Publication Number Publication Date
EP0059675A1 EP0059675A1 (fr) 1982-09-08
EP0059675B1 true EP0059675B1 (fr) 1984-12-27

Family

ID=9255877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82420026A Expired EP0059675B1 (fr) 1981-02-27 1982-02-24 Dispositif de refroidissement rapide de tubes métalliques

Country Status (8)

Country Link
US (1) US4373703A (fr)
EP (1) EP0059675B1 (fr)
JP (1) JPS57164927A (fr)
AT (1) ATE10950T1 (fr)
DE (1) DE3261660D1 (fr)
ES (1) ES509939A0 (fr)
FR (1) FR2500849B1 (fr)
SU (1) SU1190994A3 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637561U (ja) * 1992-10-13 1994-05-20 株式会社日本気化器製作所 エンジンの燃料微粒化促進装置
JP2006137997A (ja) * 2004-11-12 2006-06-01 Toyota Motor Corp 中空部材の焼き入れ装置及び焼き入れ方法
CN104032110A (zh) * 2014-05-06 2014-09-10 安徽旭鸿热处理有限公司 一种长条类零件淬火用支撑装置
CN109182686A (zh) * 2018-10-29 2019-01-11 平湖市法埃斯铝制品有限公司 铝型材的淬火冷却装置
CN113531969B (zh) * 2021-07-15 2022-08-26 广东海洋大学 一种玻璃器皿加工用快速均匀冷却设备
CN114085964B (zh) * 2021-11-16 2023-10-10 江苏骏茂新材料科技有限公司 一种用于钢材输送平台的多腔室淬火装置
CN115383096A (zh) * 2022-09-22 2022-11-25 芜湖立升机械制造有限公司 一种零件铸造冷却装置及其使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1713136A (en) * 1929-05-14 Ments
US1984771A (en) * 1931-04-01 1934-12-18 Nat Tube Co Method of treating tubular products
DE758467C (de) * 1940-07-10 1953-06-22 Focke Wulf Flugzeugbau G M B H Verfahren zum doppelseitigen Haerten gewundener Rohrkoerper
FR878869A (fr) * 1941-02-04 1943-02-08 Rohrenwerke A G Deutsche Procédé de trempe d'objets allongés
US3212766A (en) * 1960-08-15 1965-10-19 Mannesmann Ag Apparatus for depth hardening long tubes
US3245671A (en) * 1963-04-08 1966-04-12 Takaishi Yoshio Cooling method and apparatus for hot rolled steel rod
US3623716A (en) * 1969-07-18 1971-11-30 Mannesmann Roehren Werke Ag Method and apparatus for hardening pipes internally and externally
US4032369A (en) * 1976-02-02 1977-06-28 The Timken Company Method for quenching ferrous tubing to achieve full hardening without quench cracking
JPS5383910A (en) * 1976-12-29 1978-07-24 Nippon Steel Corp Immersion cooling apparatus for high temperatus matallic pipe

Also Published As

Publication number Publication date
US4373703A (en) 1983-02-15
SU1190994A3 (ru) 1985-11-07
FR2500849A1 (fr) 1982-09-03
EP0059675A1 (fr) 1982-09-08
JPS6112973B2 (fr) 1986-04-11
ES8302790A1 (es) 1983-01-16
JPS57164927A (en) 1982-10-09
ES509939A0 (es) 1983-01-16
ATE10950T1 (de) 1985-01-15
DE3261660D1 (en) 1985-02-07
FR2500849B1 (fr) 1986-06-06

Similar Documents

Publication Publication Date Title
EP1768795B1 (fr) Machine multipostes de nettoyage d'un recipient par insufflation au moyen d'un jet peripherique de gaz comprime
EP0059675B1 (fr) Dispositif de refroidissement rapide de tubes métalliques
FR2693184A1 (fr) Procédé et dispositif de cintrage de feuilles de verre.
FR2478066A1 (fr) Procede et dispositif pour le formage de feuilles de verre a l'aide d'un moule a vide deformable
FR2600562A1 (fr) Procede et installation pour la fabrication de tubes sans soudure
FR2693183A1 (fr) Procédé et dispositif de cintrage de feuilles de verre.
BE1010419A3 (fr) Procede et dispositif de trempe de produits metalliques plats.
EP0187577B1 (fr) Installation de préparation de billettes de métal à filer
EP0395467A2 (fr) Procédé et dispositif pour bomber et tremper les feuilles de verre
LU86906A1 (fr) Procede e appareil de cambrage de feuilles de verre
FR2516502A1 (fr) Procede et dispositif pour extraire des feuilles de verre cintrees et trempees d'un poste de refroidissement
FR2590768A1 (fr) Dispositif pour le centrage et le formage de pieces de pate boulangere ou similaire
FR2833871A1 (fr) Procede et installation de fabrication de bandes metalliques a partir de bandes coulees directement a partir de metal liquide
EP0006276B1 (fr) Installation pour couper un ruban métallique en mouvement, en pièces uniformes
EP0157057B1 (fr) Procédé de galvanisation pour produire consécutivement deux revêtements différents sur une bande métallique
FR2460333A1 (fr) Procede et appareil pour refroidir des bandes d'acier au cours d'un traitement de recuit en continu
EP0250311B1 (fr) Procédé et dispositif pour le bombage de feuilles de verre
BE832391R (fr) Procede et dispositif de patentage de fils d'acier
EP0350345A1 (fr) Procédé et dispositif de coulée continue de produits métalliques minces
EP0393005A2 (fr) Procédé et dispositif de refroidissement d'un produit métallique coulé en continu
EP0290423B1 (fr) Dispositif de fabrication en continu d'une bande métallique mince
BE738234A (fr)
FR2515080A1 (fr) Procede et machine de coulee de pieces annulaires, et appareil de decriquage pour la mise en oeuvre du procede
FR2485569A1 (fr) Appareil de metallisation par immersion a chaud d'une face d'une bande
FR2645459A1 (fr) Dispositif extracteur pour presse d'extrusion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE GB IT SE

17P Request for examination filed

Effective date: 19820927

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE GB IT SE

REF Corresponds to:

Ref document number: 10950

Country of ref document: AT

Date of ref document: 19850115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3261660

Country of ref document: DE

Date of ref document: 19850207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 82420026.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010123

Year of fee payment: 20

Ref country code: AT

Payment date: 20010123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010124

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010125

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020224

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020223

EUG Se: european patent has lapsed

Ref document number: 82420026.5